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Abstract
In this paper, we review one of the oldest paradigms used in animal cognition: the detour paradigm. The paradigm presents 
the subject with a situation where a direct route to the goal is blocked and a detour must be made to reach it. Often being 
an ecologically valid and a versatile tool, the detour paradigm has been used to study diverse cognitive skills like insight, 
social learning, inhibitory control and route planning. Due to the relative ease of administrating detour tasks, the paradigm 
has lately been used in large-scale comparative studies in order to investigate the evolution of inhibitory control. Here we 
review the detour paradigm and some of its cognitive requirements, we identify various ecological and contextual factors 
that might affect detour performance, we also discuss developmental and neurological underpinnings of detour behaviors, 
and we suggest some methodological approaches to make species comparisons more robust.
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Introduction

One of the oldest paradigms in animal cognition research 
involves the use of a see-through obstacle that must be 
detoured in order to reach the visible goal on the opposite 
side. Studies on such detour behaviors date back to the 
beginning of the twentieth century. Hobhouse (1901) tested 
dogs who could see their owner through a window, and to 
reach him they had to make a detour and use the door of 
the house. Thorndike (1911) investigated whether chickens 
and fish will make roundabouts when a wire or glass barrier 
blocks the shortest path to a goal room. According to both 
authors, successful detours exemplify actions that are not 
solely governed by innate mechanisms because otherwise 
the animals would head straight for the visible goal.

A decade later, the detour paradigm was employed by 
the Gestalt psychologist Wolfgang Köhler. He tested chim-
panzees, dogs and chickens when they faced a wire fence 
barrier with a reward on the other side. His aim was to 

study their potential “insight” capacities. He believed that 
detours, which required moving away from the goal in order 
to ultimately reach it, were good tests of whether the goal-
directedness was first worked out in the mind (Köhler 1925).

Since then, the detour paradigm has been used in at least 
127 studies on at least 96 species, and it has been varied in 
different ways and used to measure diverse cognitive skills 
(Table 1, Online Resource 1). The paradigm has also been 
used in developmental studies on human children, and in 
neuropsychological studies. In recent years, detour tasks 
have been employed for large-scale comparative research 
into the evolution of complex cognitive skills (Kabadayi 
et al. 2016, 2017a; MacLean et al. 2014). Amidst the ever-
growing number of species being tested on various detour 
tasks, it is time to take stock and look closer at the detour 
paradigm and the cognitive skills it measures.

Here we review the detour paradigm within in the field of 
animal cognition. First, we discuss different types of detour 
tasks in relation to the cognitive skills they address. We 
examine various factors that may influence detour behaviors, 
including ecological, evolutionary and task-specific factors. 
We also review relevant developmental studies, and those 
investigating the neurological underpinnings of successful 
detour behavior. Special attention is paid to the contempo-
rary use of detour tasks as a measure of inhibition. We end 
with recommendations for future studies.
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article (https://doi.org/10.1007/s10071-017-1152-0) contains 
supplementary material, which is available to authorized users.
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The review is limited to tasks which require detours to 
reach a goal behind a barrier when this is visible from the 
animal’s starting position. Following Köhler (1925) and 
Chapuis (1987), we distinguish between two overarching 
setups:

(a)	 The goal is visible behind the barrier throughout the 
detour response (continuously visible goal detours).

(b)	 The goal is initially visible behind the barrier, but it 
becomes invisible for a certain duration while the ani-
mal is moving, due to some added visual occlusions 
along the way (initially visible goal detours).

Although different detour tests share an underlying 
characteristic—the direct path to the goal is blocked and a 
roundabout way must be taken—they also differ consider-
ably in their perceptual features (Fig. 1). Locomotor detours 
often require the subject to move its entire body around the 
barrier, whereas reaching detours require a reach only with 
a limb. Moreover, the barriers come in different shapes (U-, 
V-, I-, L-, J-shaped) and materials. Some barriers are fully 
transparent (e.g., glass), and some are semitransparent (e.g., 
fence/mesh). Semitransparent barriers can in turn have hori-
zontal or vertical grid patterns, or both (Online Resource 1). 
Variation in such perceptual features often affects the detour 
performance (Table 2).

Cognitive mechanisms investigated 
with the detour paradigm

Inhibitory control

Köhler (1925, p.11) begins the first chapter of his influential 
book, The Mentality of the Apes, with the following para-
graph: “When any of those higher animals, which make use 
of vision, notice food (or any other objective) somewhere 
in their field of vision, they tend—so long as no complica-
tions arise—to go after it in a straight line. We may assume 
that this conduct is determined without any previous expe-
rience, providing only that their nerves and muscles are 
mature enough to carry it out.” To contrast such behaviors, 
he then describes situations where a direct way to the target 
is blocked, and the animal thus must make a detour to reach 
the goal. Such situations would require some mental opera-
tions beyond innate responses.

Köhler (1925) described his observations on dogs, chick-
ens and chimpanzees making detours around wire fences. 
Whereas dogs and chimpanzees were usually successful, 
chickens had difficulties and often attempted to go directly 
for the food through the fence. But he also found individual 
variation within the species, and later studies have shown 
remarkable detour performances in chickens, even within 
few days after hatching (Regolin et al. 1994, 1995; Scholes 
1965; Scholes and Wheaton 1966).

As Köhler notes, the goal visibility behind the barrier is 
one of the major factors influencing detour performance. A 

Table 1   Overview of the cognitive skills measured in the detour paradigm

Tested skills Explanation

Cognitive and motor development The execution of reaching and locomotor detours become stabilized throughout infancy, indicating 
development of inhibitory control and motor development (Bojczyk and Corbetta 2004; Diamond 1990; 
Lockman 1984)

Functional generalization Subjects perceive the functional similarity between detour setups that differ in various perceptual features, 
and they transfer between tasks accordingly (Lockman and Adams 2001)

Inhibitory control The visible reward behind the barrier creates a strong prepotent tendency for a direct reach. Subjects 
inhibit this strong perceptual pull and instead execute detour behavior (Diamond 1990)

Insight A correct solution of the detour problem already on the first trial involves a mental operation where the 
subject manipulates the problem as a whole and thereafter executes the right response (Köhler 1925; 
Lorenz 1932)

Learning Repeated testing of the subjects on detour problems can reveal various learning processes and phenom-
ena such as spatial learning, trial-and-error learning, critical learning period during development, and 
disruption and retention mechanisms (Fischel 1933; Hull 1938; Scholes 1965; Thorndike 1911)

Social learning Subjects learn the detour solution by observing another individual demonstrating it (Pongrácz et al. 2005, 
2008; Wilkinson et al. 2010)

Task switching Subjects switch their previously reinforced detour responses if a shortcut option becomes available, and 
vice versa (Parker et al. 2005; Smith and Litchfield 2010; Thorndike 1911)

Working memory and route planning When the goal becomes invisible, subjects rely on working memory of the position of the goal, and they 
plan their detour routes in the absence of perceptual cues emanating from the goal (Cross and Jackson 
2016; Wells 1967)
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common finding in detour studies is that detours become 
harder to perform if the goal behind the barrier is more 
clearly visible, e.g., when the occlusion is reduced through 
mesh grids or Plexiglas barriers (chickens: Regolin et al. 
1994; dogs: Brucks et al. 2017; human infants: Lockman and 
Adams 2001; mice: Juszczak and Miller 2016, ring doves 
and pigeons: Miller and Tallarico 1974). Some researchers 
argue the visible reward behind the barrier acts like a “per-
ceptual magnet,” creating a prepotent tendency for a direct 
reach (Vallortigara and Regolin 2002). This makes it difficult 
to move away from the visible goal as a detour requires. In 
line with this, many species are better in making detours 

around opaque barriers compared to almost identical but 
transparent ones (cats: Poucet et al. 1983; chickens: Regolin 
et al. 1994; dogs: Chapuis et al. 1983; human infants: Lock-
man 1984, Noland 2008; mice: Juszczak and Miller 2016, 
although see Osthaus et al. 2010).

Similar to goal visibility, the distance to the goal affects 
detour behaviors: with increasing goal distance, it becomes 
easier to execute detours (chickens: Regolin et al. 1995; 
dogs: Köhler 1925; human infants: Diamond and Gilbert 
1989; long-tailed macaques: Junghans et al. 2016; toads: 
Lock and Collett 1979). This suggests a closer goal creates a 
stronger lure which makes it harder to move away from. The 

Fig. 1   A display of eight of the most common setups in detour tasks; 
each setup comes with two symbols: a half-filled circle (a goal), and 
a filled triangle (a subject), and occupies a separate panel. Within 
each panel, the upper figure shows the bird-eye view, while the 
lower figure the first-person view. The setups belong to the follow-
ing tasks: a the cylinder task requires a reaching detour through one 
of the side openings of the transparent cylinder. b Inward detour task 
requires locomotion detour around a V-shaped transparent/fence bar-
rier. c Plexiglas-hole task requires a reaching detour through one of 
the two holes in a Plexiglas panel placed upright between the subject 
and the reward. d Swing-door task requires a reaching detour through 
the door that is furthest from the goal. The doors can only be opened 
by pushing them forward, and an attempt to open the door that is 

closer to the goal results in the goal falling backwards and becoming 
out of reach. e Detour reaching task (object-retrieval task) requires a 
reaching detour through the side opening of the transparent box. The 
box has only one opening, which allows changing the open side fac-
ing the subject across trials. f Delayed-detour task requires passing 
by an opaque corridor and in the end selecting between two paths, 
only one of which leads to the goal room. g Four-compartment box 
task requires the subject to turn its back to the goal and choose among 
four doors, only two of which lead to the goal room. h Detour-choice 
task requires the subject to turn its back to the goal that is placed on 
top of a tower, and select among two poles, only one of which leads 
to the tower where the goal is placed
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effect of goal distance on detours has also been the subject of 
various theoretical analyses on detour behavior (Hull 1938; 
Lewin 1933; Tolman 1932; reviewed in: Rashotte 1987).

Such findings have led to the interpretation of detour tasks 
as a measure of executive functions, and more precisely of 
behavioral/motor inhibition: the subject must inhibit the pre-
dominant motor response of directly reaching for the reward 
and instead make a detour (Diamond 1990, 1991; Moll and 
Kuypers 1977). The fact that most subjects execute efficient 
detours around opaque barriers while having problems with 
identical but transparent barriers suggests a knowing/acting 
mismatch that is common to other inhibition tasks: the sub-
jects know the detour solution; however, they cannot act on 
the knowledge because the visible reward creates a strong 
lure for a direct reach, thus bumping into the barrier (Dia-
mond 2013).

Detour tasks have been used to study inhibitory control 
in development (see “The development of detour behaviors” 
section), in neurocognition (see “Neurological underpin-
nings of detour behaviors” section), and in inter-species 
comparisons (see “Ecological factors” section). The rela-
tive practical ease of using such tasks has begun to turn 
detour tasks into one of the benchmark tests of inhibition in 
inter-species comparisons and phylogenetic reconstructions 
(Amici et al. 2008; Kabadayi et al. 2016; MacLean et al. 
2014; Vlamings et al. 2010). However, there is an ongoing 
discussion of the interpretation of the results concerning the 
vast sensorimotor variation among the tested species, numer-
ous non-cognitive contextual factors that may affect perfor-
mance (Table 2), and the learning/ceiling effects sometimes 
seen over trials (see “Learning” section).

In general, detour tasks, which are used to measure inhib-
itory control, belong to continuously visible goal detours, 
where the goal is visible behind the barrier throughout the 
detour response (Fig. 1a–e). For example, reaching detours 
belong to this category, where the subject uses its limb to 
retrieve a goal from the side opening of a transparent box or 
cylinder (Diamond 1990; MacLean et al. 2014, Fig. 1a, e). 
Performances in such visible conditions are sometimes jux-
taposed with non-visible conditions (opaque apparatuses), 
in order to control for the effect of goal visibility (Diamond 
1990; Lockman 1984).

Working memory and route planning

Even though initially visible goal detour setups can be used 
for testing inhibition, they are more suitable for studying 
working memory and route planning. In such tasks, the ani-
mals arguably form some sort of a mental representation of 
the goal position, which they then keep in mind for a given 
amount of time when the goal goes out of sight.

As described, in initially visible goal detour tasks the goal 
behind the barrier is visible from the starting position, but 
becomes out of view when the animal moves. This is usually 
achieved by opaque walls along the detour path or in some 
parts of the barrier itself (Fig. 1f). A majority of such detour 
setups also require a choice between multiple routes, only 
a subset of which lead to the goal (Fig. 1f–h). During this 
selection, the animals cannot see the goal.

For example, octopuses (Octopus vulgaris) have been 
tested in such design, also known as a delayed-detour 
test (Schiller 1949a, b; Wells 1964, 1967, 1970). In these 

Table 2   Several factors that may affect the detour performance

Factor Examples

Distance to the goal Increased goal distance makes it easier to execute detours (Diamond 1990; Junghans et al. 2016; Köhler 1925; Rego-
lin et al. 1994)

Neophobia Animals tend to perform worse when they are in a fearful state, e.g., when tested alone in a novel environment 
(Regolin et al. 1995)

Orientation of the barrier In V-shaped barriers, dogs and goats perform better detours when they have to take outward detours compared to 
inward detours (Nawroth et al. 2016; Pongracz et al. 2001). Chickens execute better detours with horizontal grid 
pattern fence barriers compared to vertical grid ones, likely because the vertical grid barriers offer better goal vis-
ibility for a moving animal (Regolin et al. 1994)

Previous experience with 
transparent objects

Since the transparent objects are artificial, animals lacking previous experience with them might initially fail on the 
transparent barrier tasks because they did not learn that they cannot pass through transparent material. It takes 
experience to resolve the tactile-visual conflict presented with the transparent barriers (Bojczyk and Corbetta 2004)

Rearing conditions Data suggest that animals raised in enriched environments perform better in detour tasks compared to those raised in 
low enriched environments (Clarke et al. 1951)

Reward visibility The increased visibility of the reward behind the barrier creates a perceptual pull for a direct reach, thus making it 
harder to execute detour response (Chapuis et al. 1983; Juszczak and Miller 2016; Lockman 1984; Lockman and 
Adams 2001; Poucet et al. 1983; Regolin et al. 1994; Zucca et al. 2005)

Motivation Type of the reward behind the barrier as well as the motivational and physiological state of the animal can affect the 
detour response (Regolin et al. 1995; Shaw 2017)

Age Younger individuals might fail on detour tasks due to cognitive/motor immaturity (Diamond 1990; Lockman 1984)
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experiments, the rewards were visible behind a barrier from 
the starting position. To reach the reward, the animals had to 
move forward into an opaque corridor, and choose between 
two openings at the exit, with only one opening leading to 
the reward room (Fig. 1f). The octopuses successfully com-
pleted around three out of every four trials.

Similarly, jumping spiders have been tested on initially 
visible goal detour tasks, where the individual, from the 
starting position, could see a distant goal placed on top of 
a pole (Fig. 1h). A direct jump was not possible, and only a 
roundabout walking route—without the reward in sight—led 
to the goal; a binary route choice was again available to the 
individual (Cross and Jackson 2016; Tarsitano and Jackson 
1997). The spiders were often highly successful in these 
tasks (see “Ecological factors” section).

Several initially visible goal detour studies also made use 
of a four-compartment box; after spotting the goal behind 
a transparent/semitransparent barrier, the individual had to 
turn away from the barrier and head toward one of the four 
opaque compartments, with only two leading to the goal 
(chickens: Regolin et al. 1995; canaries, herring gulls and 
quails: Zucca et al. 2005, Fig. 1g).

Successful responses in such tasks have usually been 
interpreted as a result of the animal’s mental representation 
of the non-visible goal (Vallortigara and Regolin 2002), and 
its use of such representations in planning the detour routes 
(Cross and Jackson 2016). However, no agreement has been 
reached on the nature of these representations, and their 
very existence has been questioned (Barrett 2011; Cross 
and Jackson 2016). For example, although some interpret 
the results as cases of planning where the motor response 
is preceded by a decision (Cross and Jackson 2016), others 
argue the detour behaviors emerge from step-wise and situ-
ated processes, in which the animal uses environmental and 
sensorimotor affordances, such as wall following or visual 
scanning (jumping spiders: Barrett 2011; Tarsitano 2006; 
octopus: Wells 1967).

 Support for the embodied perspective comes from 
robotics, showing that robots succeed in detours not by 
representing the out-of-“sight” goal position, but rather by 
exploratory behavior using sensory feedback and the physi-
cal constraints in the environment (Walker and Miglino 
1999). The setup used in this study replicated Regolin et al. 
(1995) who tested chickens. After initially “seeing” the 
goal behind the barrier, the robot had to turn its back to the 
reward and select from four opaque compartments, two of 
which led to the goal (Fig. 1g). The performance of robots 
was similar to the chickens’ (22 out of 24 robots chose the 
right compartments), despite the lack of preprogrammed 
maps or other internal representations of the position of the 
goal (Miglino et al. 1998; Ponticorvo et al. 2007; Walker 
and Miglino 1999). Obviously, these results cannot tell us 

whether chickens use mental representations when solving 
the task, but only that it is in principle not necessary.

The behavior of the animal at the choice point in initially 
visible goal detours might be especially relevant in studying 
the process of deliberation and planning. At similar choice 
points where only one route leads to an out-of-sight goal, 
rats seemingly deliberate over their choices in a process 
called vicarious trial-and-error, where they pause and look 
back and forth before they chose a path (Redish 2016). Dur-
ing vicarious trial-and-error, the hippocampal place cells 
encode future outcomes (Johnson and Redish 2007) where 
the animal seemingly deliberates over the future alternatives. 
Similar neurological and behavioral investigations at choice 
points on initially visible goal detour tasks might shed light 
on the possible involvement of similar processes such as 
prospection in solving these detour tasks. Since vicarious 
trial-and-error occurs mostly when the animal faces the 
problem for the first time, and disappears after repeated tri-
als (Redish 2016), it is advisable to avoid repeated trials per 
individual with initially visible goal detour tasks to capture 
this process of deliberation.

Learning

In most detour studies, individuals have been tested repeat-
edly, and several studies have found improvements over tri-
als (Beniuc 1938; Boogert et al. 2011; Burghardt 1964; de 
Haan 1949; Fischel 1933; Lorenz 1932; Parker et al. 2005, 
2012; Schiller 1949a, b; Scholes 1965; Scholes and Wheaton 
1966; Smith and Litchfield 2010; Spigel 1964; Thorndike 
1911; Vernouillet et al. 2016; Vlamings et al. 2010; Wal-
lis et al. 2001; Wyrwicka 1959; however, see: Pongracz 
et al. 2001, 2008; Wells 1967; Zucca et al. 2005). Similarly, 
many studies have found animals become faster over trials in 
reaching the goal around the barrier, indicating yet another 
learning effect (Beniuc 1938; Burghardt 1964; Lockman and 
Adams 2001; Parker et al. 2005; Spigel 1964; Thorndike 
1911; Wyrwicka 1959; but see Baragli et al. 2011 for a lack 
of such effect).

Accordingly, detour tasks were employed to study vari-
ous learning processes. For example, studies focusing on 
critical learning periods compared the rate of improvement 
on detour tasks across different age groups in early develop-
ment to explore the peak learning period (chickens: Scholes 
1965, Scholes and Wheaton 1966). Other studies used 
detour tasks to explore learning and retention/disruption 
mechanisms (European green lizards: Fischel 1933; fish: 
Thorndike 1911; painted turtles: Spigel 1964). Research on 
social learning investigated whether some animals learn to 
solve detour problems through observing other individuals 
executing the detour behavior (Pongrácz et al. 2005, 2008; 
Wilkinson et al. 2010).
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Hull (1938) offered a model based on stimulus–response 
(S-R) learning in explaining the gradual improvement of 
detour behavior. According to this model, such an improve-
ment happens because the excitatory potential of the direct 
pathway is gradually reduced due to repeated failed attempts 
and barrier touches. The detour behavior emerges when the 
excitatory strength of the indirect pathway becomes stronger 
than the direct pathway (Rashotte 1987; see also Wyrwicka 
1959). A similar model was offered from the field of robotics 
to explain detour behavior based on reactive problem solving 
(Balkenius 1994).

In detours involving visible rewards, the recruited cog-
nitive mechanisms might differ between when solving the 
problem for the first time and after repeated trials. As men-
tioned, Köhler believed detour behaviors, especially when 
performed on the first trial, signaled insightful behavior as 
the animal must perceive the whole problem ahead of the 
detour (Köhler 1925). Some detour studies, mostly initially 
visible goal detours, have followed a strict one trial method, 
to explore whether animals spontaneously solve a detour 
problem (Atkinson 2003; Cross and Jackson 2016; Köhler 
1925; Regolin et al. 1994, 1995; Regolin and Rose 1999; 
Sun et al. 2010; Tarsitano and Andrew 1999; Tarsitano and 
Jackson 1994, 1997; Zucca et al. 2005).

Successful detours already in the first trial versus gradual 
increase of successes across trials are often distinguished 
and labeled differently: detour behavior versus detour learn-
ing (Vallortigara and Regolin 2002); spatial reasoning ver-
sus spatial learning or trial-and-error learning (Smith and 
Litchfield 2010; Wynne and Leguet 2004). Trial-and-error 
learning of the detour problem suggests a possibility that 
successfully solving the detour problem might arise from 
chance. One can imagine that after an initial frustration 
resulting from multiple bumps into the barrier, the animal 
gives up and walks away from the goal; then, once it reaches 
the end of the barrier, it follows the visual, acoustic or olfac-
tory cues from the goal to finally reach it (Scholes 1965; 
Vallortigara and Regolin 2002). To reduce the chance that a 
detour occurs by chance, some studies have used modifica-
tions, mostly by offering animals multiple options (Atkin-
son 2003; Regolin et al. 1995; Tarsitano and Jackson 1994; 
Zucca et al. 2005).

Köhler suggested one should observe the movement 
pattern of the animal in order to distinguish whether the 
detour results from a thoughtful process or from chance 
(Köhler 1925). He argued that in the case of the “real” solu-
tion, the movement of the animal displays unity in time and 
space: from the starting position the animal directly goes 
for a reward in a single line without hesitation. Conversely, 
solutions resulting from chance are often characterized by 
the sum of disparate and discontinuous movements where 
the animal zigzags in front of the barrier; and only once it 
has seen the reward from outside the barrier its movements 

become continuous toward the reward. Such a mechanism 
based on chance was also central for the S-R theories in 
explaining the initial solution to the detour problem (Hull 
1938; Rashotte 1987).

However, seemingly contradicting the behavioristic 
stance (Hull 1938), learning effects do not only come grad-
ually, but sometimes also rapidly after the first successful 
detour solution (Beniuc 1938; Regolin et al. 1995; Regolin 
and Rose 1999; Siniscalchi et al. 2013). Regolin et al. (1995) 
claimed that instead of gradual learning, rapid improvement 
may emerge from overcoming stress responses due to being 
tested in a novel environment. Besides, learning cannot 
explain all successful detour performances in studies that 
have used repeated trials as some species did perform well 
already from the initial trials (Bray et al. 2014; Kabadayi 
et al. 2016; MacLean et al. 2014; Marshall-Pescini et al. 
2015; Smith and Litchfield 2010).

Task switching

On the assumption that some detour tasks measure inhibi-
tion, swift improvement of the performance across trials 
might be inconsistent with findings from other inhibition 
tasks where no or very little improvement over trials is found 
(Berkman et al. 2014; Zelazo et al. 1996). Moreover, in con-
trast to other motor inhibition tasks, individuals often reach 
and maintain a ceiling level of perfect accuracy in detour 
tasks after repeated testing (song sparrows: Boogert et al. 
2011; parrots: Kabadayi et al. 2017a). In classical behavioral 
inhibition tasks, subjects know the task rules but are unable 
to follow them to achieve and preserve peak performance 
even after being tested repeatedly, because the task presents 
additional inhibitory challenges, often due to task switch-
ing. For example, on certain trials subjects have to inhibit 
an already initiated response (stop-signal task) or a response 
that has been repeated previously (go/no-go task). However, 
one can achieve and preserve peak performance in detour 
tasks by following the same strategy that proved to be effec-
tive in the previous trial(s). Neurological evidence suggests 
the detour task may cease to measure inhibition after the 
task is acquired and perfect accuracy is reached (Walker 
et al. 2006). This suggests after repeated trials with detour 
tasks, the knowing/acting mismatch weakens, and the visual 
reward behind the barrier no longer exerts a strong pull on 
direct reaching behavior.

Offering shortcuts on certain trials might test whether 
the detour response becomes habitual after repeated trials 
(Verbruggen et al. 2014). This idea was already imple-
mented over 100 years ago by Thorndike, who found if 
chickens used a detour path in around 75–80 trials, they 
tended to ignore shortcuts that were later made available 
(Thorndike 1911). Similarly, dogs appear to have difficulty 
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using shortcuts after detouring over repeated trials. They 
tend to cling onto the detour response instead of taking the 
shorter path, suggesting functional fixedness (Pongracz et al. 
2003a, b). The tendency of repeating the old—but not the 
most appropriate—response is especially pronounced if the 
dogs learn the detour from a human, perhaps as a result of 
domestication (Pongracz et al. 2003a, b). Likewise, dogs 
commit preservative errors by sticking to the previously 
reinforced detour despite an explicit change in the detour 
setup that requires a different response (Clarke et al. 1951; 
Hobhouse 1901; Osthaus et al. 2010).

 Shortcuts could also be used in a task-switching con-
text and increase the inhibitory requirements by adding a 
learned component that must be inhibited (Monsell 2003). 
The general setup in the few studies that have used this task-
switching component is the offering of a shortcut through 
an opening in the barrier; and after the animals have used 
the shortcut over repeated trials, removing the shortcut 
thereby forces the animals to take a detour. Whereas using 
the shortcut significantly deteriorates the subsequent detour 
response for dogs (Marshall-Pescini et al. 2015; Pongracz 
et al. 2003a, b), dingoes show pronounced task-switching 
skills as they detour equally efficiently around the barrier 
after the shortcut is no longer available (Smith and Litchfield 
2010). Similarly, squirrel monkeys have more difficulties in 
making detours after the shortcut is blocked (Lyons et al. 
2000; Parker et al. 2005, 2012), suggesting a cost from task 
switching (Monsell 2003). Implementing shortcuts in detour 
setup prevents a ceiling effect of perfect accuracy (Jentsch 
et al. 2000; Parker et al. 2005, 2012). Transparent detour 
apparatuses with only one opening (Fig. 1e) are suitable for 
such task-switching problems as one can change the open 
side that faces the subject across the trials (Lyons et al. 2000; 
Parker et al. 2012).

Functional generalization

Are different versions of detour tasks understood by ani-
mals in similar ways because they share the same underlying 
principle? Such functional generalization would allow an 
animal to take into account higher-order functional aspects 
of a detour problem and ignore irrelevant perceptual features 
(Call 2013; Jacobs and Osvath 2015).

Evidence suggests that perceptual features might con-
siderably affect detour performance in many species (see 
Table 2). For example, children found it more challenging 
to make locomotor detours than reaching detours around 
transparent barriers (Lockman and Adams 2001). Similarly, 
a study found no correlation between performances of dogs 
and wolves in equivalent locomotor and reaching detour 
tasks (Marshall-Pescini et al. 2015). The orientation of the 
barrier also affects the success of chickens, dogs and goats 
(Nawroth et al. 2016; Pongracz et al. 2001; Regolin et al. 

1994). With V-shaped barriers, both dogs and goats were 
more successful in outward (subject begins inside the vertex 
of V) than inward (subject begins outside the vertex of V) 
detours (Nawroth et al. 2016; Pongracz et al. 2001, Table 2, 
Fig. 1b).

The lack of generalization of different detour problems 
can also be explained from an action–perception perspec-
tive where the subjects, through their interactions with the 
barriers, obtain information about the specific affordances 
and possibilities for action, and they are not merely react-
ing to reward visibility (Lockman and Adams 2001; Thelen 
et al. 2001). However, this does not mean all species lack 
functional generalization when it comes to detour tasks. 
Such generalization might help when faced with a transpar-
ent barrier after training on an identical but opaque barrier, 
as is often done in many studies (e.g., MacLean et al. 2014; 
Wallis et al. 2001). Those species that are more efficient 
in perceiving the functional similarity between opaque and 
transparent barriers should find it easier to detour around 
the transparent barrier. In primates for example, the lateral 
prefrontal cortex seems to mediate this ability of functional 
generalization and task transfer between opaque and trans-
parent barriers (Wallis et al. 2001, see “Neurological under-
pinnings of detour behaviors” section).

Ecological, neurological and developmental 
underpinnings of detour behaviors

Ecological factors

As many species face problems similar to the detour para-
digm in their environments, detour tests likely often reflect 
ecologically relevant situations, and detour problems might 
be more ecologically meaningful for some species com-
pared to others. Various comparative studies using detour 
problems attributed the results partly to the ecology of the 
tested species (birds: Miller and Tallarico 1974; Zucca et al. 
2005; canines: Marshall-Pescini et al. 2015; Pongracz et al. 
2001; Smith and Litchfield 2010; great apes: Vlamings et al. 
2010; jumping spiders: Cross and Jackson 2016; Tarsitano 
and Jackson 1994; monkeys: Amici et al. 2008; reptiles: 
Burghardt 1977).

For example, the perception of the task features might dif-
fer between species due to their ecology. Dogs find it harder 
to take inward detours rather than outward detours around 
V-shaped barriers, probably because they tend to avoid con-
stricted spaces (Pongracz et al. 2001). Analogously, how 
obstacles are perceived may differ between aerial and ter-
restrial species: vertical obstacles may be more ecologically 
meaningful for flying species compared to earth bound ones 
(Lorenz 1971). This may explain why chickens, which are 
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poor flyers, performed worse on detours around barriers with 
vertical bars than with horizontal ones (Regolin et al. 1994; 
Vallortigara and Regolin 2002), whereas herring gulls dis-
played an opposite pattern (Zucca et al. 2005). Similarly, 
Zucca et al. (2005) found that canaries performed markedly 
worse in a detour problem (Fig. 1g) compared to quails and 
young herring gulls. The authors suggested the adaptation 
to terrestrial or aerial habitats could explain this difference: 
whereas in their natural environment canaries could avoid 
the detour problem simply by flying, the detour problem 
was ecologically meaningful for ground-living quails and 
young herring gulls that use walking as the main mode of 
locomotion.

Similarly, detour problems might be more ecologically 
meaningful for predators compared to prey species, as their 
pursuit of prey often involves detours around obstacles 
(Lorenz 1932). For example, jumping spiders performed 
remarkably well in many detour problems (Cross and Jack-
son 2016); and this was attributed to their ecology as in the 
wild they navigate complex three-dimensional environments 
when searching for prey, using their well-developed visual 
system (Tarsitano 2006).

In general, certain skills, that are adaptive within a cer-
tain ecological niche, might prove more useful than oth-
ers in solving various detour problems. Thus, ecological 
factors must be addressed both in the task’s design and in 
the interpretation of the results. Some authors have given 
central importance to such ecological factors. For example, 
Burghardt (1977) asserted that detour behaviors are as much 
a result of the dominant sense, and cue relevance and species 
ecology, as of “intelligence.” However, hardwired predis-
positions due to species-specific ecological factors cannot 
solely explain detour success, as there are learning effects 
and individual variation within species (Dettmer et al. 2015; 
Frank and Frank 1982; Juszczak and Miller 2016; Köhler 
1925). Due to these differences, an average success rate in 
the task is often not sufficient in inter-species comparisons; 
instead, a variance of the species-specific success rates may 
be more informative.

Others have taken a more integrated approach, using 
detour tasks across species to measure the socio-ecological 
correlates of certain cognitive skills. For example, Vlamings 
et al. (2010) found orangutans outperformed chimpanzees, 
bonobos and gorillas in a detour task called the swing-door 
task, which is considered to test for inhibition (Fig. 1d). 
The authors partly attributed the high inhibitory skills of 
orangutans to the reduced food competition among group 
mates compared to other great ape species. Similarly, Amici 
et al. (2008) used two detour tasks—the swing-door task 
and Plexiglas-hole task (Fig. 1c)—as parts of a task battery 
measuring inhibitory control in seven species of primates, 
and found that the species living in more dynamic and fluid 
social environments (fission–fusion societies) outperformed 

those having more cohesive group structures. The authors 
concluded primates living in more complex social groups 
often require inhibition of inappropriate prepotent responses 
in a dynamic social environment, and this partly explains 
why they performed better in detour tasks.

Attempts to find tasks that could be applicable to wide 
range of species have led to a simplification of the detour 
setup. More recently, a detour task was designed utilizing a 
hollow transparent cylinder and it was named “the cylinder 
task” (Bray et al. 2014). This task requires inhibition of a 
direct reach for the reward placed centrally inside a hollow 
transparent cylinder, and an execution of a detour through 
one of the side openings instead (Fig. 1a). Each subject 
receives training on an opaque cylinder before being tested 
on a transparent, but otherwise identical, cylinder. The train-
ing ensures the subjects learn the correct detour solution; 
then, the subsequent errors in the transparent condition may 
be attributed to the inhibition failure (Santos et al. 1999), 
consistent with the idea of the existence of a knowing/acting 
mismatch. The cylinder task was recently administered to 36 
different species—29 mammal and seven bird species—in 
order to study the evolution of motor inhibition (MacLean 
et al. 2014). This study found that the great apes were the 
most successful on the cylinder task of all the species tested 
and that absolute brain size significantly correlated with 
the task performance (see “Neurological underpinnings of 
detour behaviors” section).

Neurological underpinnings of detour behaviors

Most neurocognitive studies have relied on induced lesions 
in primate brains to find correlations between various brain 
regions and the execution of effective detour responses. The 
object-retrieval task, a detour reaching task around a trans-
parent cubicle (Fig. 1e), is the most popular detour task used 
in these lesion studies, and successful performance in this 
task has been interpreted as an expression of inhibitory con-
trol. The lesion studies targeted the prefrontal cortex, given 
its role in supporting inhibitory processes (Diamond 1990).

Rhesus monkeys with dorsolateral prefrontal cortex abla-
tions and marmoset monkeys with joint lesions of orbito-
frontal and lateral prefrontal cortex had difficulties with 
detouring transparent barriers (Diamond and Goldman-
Rakic 1985; Dias et al. 1996; Moll and Kuypers 1977). 
Other studies on African green monkeys have suggested low 
dopamine levels in the striatum and the prefrontal cortex, 
as well as serotonin depletions in orbitofrontal cortex, dete-
riorate the detour performance around transparent barriers 
(Jentsch et al. 1997, 1999a, b, 2000; Taylor et al. 1990a, b; 
Walker et al. 2006).

A study on marmoset monkeys suggested two separate 
and dissociable systems play a role for detours around trans-
parent barriers (Wallis et al. 2001). Orbitofrontal cortex 
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lesioned marmosets performed poorly compared to con-
trols in detours around a transparent box. But after extensive 
training with an identical but an opaque box, the lesioned 
monkeys overcame their problems. In contrast, lateral pre-
frontal cortex lesioned monkeys had problems transferring 
the detour behavior they learned in the opaque box to the 
transparent box. This suggests at least two different brain 
areas facilitate detours around transparent barriers: one for 
motor inhibition (the orbitofrontal cortex) and another for 
task transfer between the opaque and the transparent barrier 
(the lateral prefrontal cortex). This study also provides a 
neurological explanation for the common behavioral finding 
that experience with opaque barriers improve detours around 
transparent, but otherwise identical, barriers (Juszczak and 
Miller 2016; Santos et al. 1999).

 A recent large-scale comparative study testing 36 spe-
cies, 29 mammal and 7 bird species found absolute brain size 
strongly predicted detour performance on the cylinder task 
(Fig. 1a), with great apes as the best performers (MacLean 
et al. 2014). This conclusion was soon challenged when 
three corvid species (ravens, New Caledonian crows and 
jackdaws) showed scores similar to great apes on the cylin-
der task, despite having vastly smaller absolute brains sizes 
(Kabadayi et al. 2016). However, corvids have much greater 
neural densities than primates (Olkowicz et al. 2016), and it 
has been suggested that total number of pallial neurons is a 
better predictor of cognitive ability—including cylinder task 
performance—than absolute brain size (Herculano-Houzel 
2017). But parrots, despite having similarly high numbers 
of pallial neurons, performed poorly on the cylinder task 
(Kabadayi et al. 2017a). Such discrepant findings suggest 
the level of analyses should focus on specific brain regions 
rather than the whole pallium. As mentioned, in primates, 
detours around the transparent barriers are mediated by pre-
frontal regions. In birds, the associative brain area called 
nidopallium caudolateral (NCL) is an obvious candidate for 
a similar function. The NCL functions analogously to the 
mammalian prefrontal cortex (Güntürkün 2005) and medi-
ates other executive processes such as working memory as 
well as motor inhibition (Kalt et al. 1999; Veit and Nieder 
2013).

The development of detour behaviors

Comparative developmental studies using detour tasks may 
also provide insights into the evolution of cognition. Cogni-
tive developmental research investigates the emergence of 
adaptive systems from the various combinations of cognitive 
building blocks during development (Gómez 2005). Devel-
opment is a key evolutionary mechanism, and developmental 
investigations can complement comparative studies in order 
to reach a better understanding of cognitive evolution (Rosati 
et al. 2014). For example, they can reveal if different species 

attain similar cognitive skills using similar or different build-
ing blocks (Osvath et al. 2014). Despite this potential impor-
tance, there are few comparative developmental studies, with 
rhesus monkeys and ravens representing the only non-human 
species tested longitudinally through development (Diamond 
1990; Kabadayi et al. 2017b).

Detour problems with transparent or fence barriers have 
been used to study the development of inhibitory skills 
and motor control in human infants (Bojczyk and Corbetta 
2004; Diamond 1990; Lockman 1984; Lockman and Adams 
2001; Piaget 1954) and rhesus monkey infants (Diamond 
and Goldman-Rakic 1986). Human infants exhibit a clear 
developmental progression between the sixth and the 12th 
month of life in detouring transparent barriers (Diamond 
1981; Diamond and Gilbert 1989), and similar develop-
mental trajectory has been found in infant rhesus monkeys 
between the first and the fourth month (Diamond and Gold-
man-Rakic 1986). During a certain period, both human and 
rhesus monkey infants perform better with an opaque bar-
rier compared to an identical but transparent one (Diamond 
1981, 1990; Lockman 1984). This “opaque advantage” dur-
ing a certain developmental period suggests the problem 
with detours around transparent barriers is one of inhibi-
tion. The gradual overcoming of the difficulty of detouring 
around transparent barriers has thus been attributed to the 
development of executive functions and to the maturation of 
prefrontal cortex (Diamond 1990, 1991; however, see below 
for a different view from the perspective of motor control).

Raven chicks have similar difficulties during development 
in inhibiting a direct reach for a reward behind a transparent 
barrier, but they overcome this difficulty and succeed in the 
cylinder task when they are around 10 weeks old (Kabadayi 
et al. 2017b). Before the 10th week, and after they attain 
object permanence, they perform better on opaque barri-
ers than transparent ones. Their detour performance on a 
fence barrier is better than on a fully transparent barrier. This 
suggests reduced reward visibility makes it easier to inhibit 
motor responses (for a similar finding in human infants: 
Lockman and Adams 2001; Noland 2008).

Developmental studies can also demarcate the relative 
contributions of motor experience and cognitive maturation 
in solving detour problems. For example, Diamond (1988) 
found human infants tested longitudinally (tested every sec-
ond week) succeeded on the detour reaching task around 
2–4 weeks earlier than infants in the cross-sectional group 
[for a similar finding in ravens see Kabadayi et al. (2017b)]. 
This suggests repeated motor experience with the task helps 
infants solve the task earlier, and the successful detours 
develop not solely from a task-independent inhibitory matu-
ration, but also from an interaction of various processes such 
as sensorimotor experience with the barrier as well as motor 
coordination (Williams et al. 2015).
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Conclusion and future directions

There are numerous advantages of using the detour para-
digm. It is easy to administer and often ecologically mean-
ingful: many animals face situations in their natural envi-
ronment where various obstacles block the shortest path to 
the goal. However, there is surprisingly little agreement on 
the cognitive requirements for successful detours. Inhibi-
tory control is a common interpretation of continuously 
visible goal detours; however, rule learning and functional 
generalization/task transfer are other cognitive skills likely 
involved in solving detour problems. Instead of comparing 
the average scores obtained over a fixed number of trials on 
detour tasks, investigating how species obtain those scores 
might yield better understanding on these other cognitive 
processes involved in solving the task and hence lead to a 
more robust comparison of the cognitive skills between spe-
cies (Güntürkün et al. 2017).

For example, increasing the number of training trials 
received with an opaque cylinder might shed light to the 
relative contribution of functional generalization to the cyl-
inder task performance. Similarly, measuring the change in 
latency to obtain a reward behind a barrier might reveal an 
operant/rule learning component. Inserting shortcuts into 
the detour setup can measure whether the detour response 
has become habitual after repeated trials, and implement-
ing switches between shortcuts and detours may measure 
task-switching skills. Systematically targeting these different 
cognitive processes by controls and modifications in detour 
setups can allow robust quantification of cognitive traits, 
which would lead to meaningful intra-and inter-species com-
parisons (Thornton et al. 2014).

The executive function interpretation of the detour prob-
lem is based on the knowing/acting mismatch: the subject 
must have the necessary physical knowledge to solve the 
detour problem, and yet it cannot reflect this knowledge in 
action because the visible reward behind the barrier cre-
ates a lure and the subject acts impulsively by attempting a 
direct reach. The inhibitory faculty thus liberates the already 
existing knowledge from the intrusion of impulsive tenden-
cies. Thus, studies focusing on inhibition should ensure the 
animals tested know the impenetrability of the transparent 
barrier. This means they should have sufficient experience 
with transparent objects before being tested with transparent 
barrier detour tasks. This is especially important given that 
transparent objects are highly artificial (animals rarely face 
transparent barriers in their natural environment) and pre-
sent conflicting visual/tactile information. Inhibition tasks 
often infer costs when choosing the immediate gratifica-
tion/acting impulsively. However, some detour tasks—such 
as the cylinder task—do not infer a major cost to animals 
when they make a contact with the barrier in an attempt to 

directly reach for the reward. In order to make inhibitory 
failures costlier, one can modify the detour setup, e.g., a 
direct contact to the barrier makes the reward unavailable, 
as in the swing-door task (Fig. 1d, also see: Hughes and 
Russell 1993).

When it comes to initially visible goal detours, there is 
a similar dispute concerning the precise nature of the rep-
resentations necessary to solve such tasks. The core ques-
tion depends on whether animals plan their detour routes 
at the beginning of the task when they can see the reward, 
and later use those representations when choosing the cor-
rect pathway among alternatives, when the reward goes out 
of sight. Controlling for factors such as landmark use and 
path integration is helpful to test this question. Another 
promising avenue might be to observe the behavior, and 
possibly the brain, at the choice point: a vicarious trial-
and-error behavior and an accompanying future-encoding 
place cell activity might reflect a process of deliberation 
and planning (Redish 2016). First trials are of importance 
for such observations because the deliberation process 
tends to disappear after repeated trials (Redish 2016).

Neurological correlates of detour behavior might pro-
vide useful information on the cognitive mechanisms 
measured by detour tasks. For example, neuropsychologi-
cal studies focused on specific brain regions suggested that 
for primates, visible goal detour tasks measure not only 
inhibition, but also functional generalization (Wallis et al. 
2001); and the detour task may stop measuring inhibi-
tion once the ceiling level of perfect accuracy is reached 
(Walker et  al. 2006). Consistently, future comparative 
studies should focus on specific brain regions, instead of 
broad correlations such as absolute/relative brain size and 
the total number of pallial neurons.

Comparative developmental studies can provide useful 
tools to approach cognitive evolution from an ontogeni-
cal perspective, i.e., how cognition emerges from vari-
ous constellations of cognitive building blocks (Gómez 
2005). Thus, developmental comparisons may reveal novel 
patterns that cannot be uncovered by comparing adult 
performances (Rosati et al. 2014). Similar developmen-
tal patterns between different species suggest a similarly 
constructed cognitive skill, whereas differences in pattern 
may reveal a different architecture, which can explain dif-
ferences in mature cognition. There are only few devel-
opmental studies on detour behaviors. Expanding such 
developmental studies would be promising in answering 
whether the pace and pattern of development share simi-
larities across lineages (Rosati et al. 2014).

We have pointed toward various contextual factors that 
affect detour performances (Table 2). Comparative studies 
should take into account such factors for robust compari-
sons. Simplifying the task is a convenient attempt in this 
direction, but there are still numerous factors that should 
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be controlled for, such as the previous experience with 
transparency, motivation, size and material of the barrier, 
age and sensorimotor capability of the animal. Since task-
specific factors may favor certain species at the expense 
of the others, avoiding single tasks and using detour task 
batteries might lead to more robust comparisons.
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