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enhanced TGF-β signaling in the in vivo aortic regions, 
referred to as the TGF-β signaling paradox.

In contrast, pathogenic variants in TGFBR1 also induce 
a distinct skin disease called multiple self-healing squamous 
epithelioma (MSSE).6 MSSE is an autosomal dominant 
skin cancer syndrome characterized by the development of 
multiple rapidly growing invasive skin tumors that emerge 
for a few weeks only to subsequently spontaneously regress 
and heal with scarring, and there is no clinical overlap 
between LDS and MSSE.

We recently reported a familial Japanese case of LDS 
with a novel splice donor site variant in intron 5 in TGFBR1 
(c.973+1G>A).7 The in-frame deletion of the whole exon 
5 was predicted to be elicited by this variant, whereas a 
variant of MSSE in a British family (c.806-2A>C) was also 
predicted to induce the same deletion of exon 5.6 To clarify 
this, we performed minigene-based splicing assays of both 
variants and found that these 2 different diseases were 
caused by differences in the splicing patterns.

L oeys-Dietz syndrome (LDS) is an autosomal domi-
nant heritable disorder of the connective tissue 
closely related to Marfan syndrome (MFS), which is 

characterized by a triad of arterial tortuosity and aneurysm, 
widely spaced eyes (hypertelorism), and bifid uvula. Patients 
with LDS are more likely to exhibit rapidly progressive 
aortopathy with a tendency to rupture and dissection in 
the aorta/arteries at a young age and at smaller dimensions 
compared with MFS.1–3 LDS is caused by a pathogenic 
variant in transforming growth factor-β (TGF-β) signaling-
related genes and classified according to the pathogenic 
genes: TGFBR1 (LDS1), TGFBR2 (LDS2), SMAD3 
(LDS3), TGFB2 (LDS4), TGFB3 (LDS5), and SMAD2 
(LDS6). A large proportion of LDS patients have patho-
genic variants in the genes encoding TGF-β types I and II 
receptors, TGFBR1 (20–25%) and TGFBR2 (55–60%), 
especially in the serine/threonine kinase (STK)-encoding 
regions.4,5 Most variants have been verified or predicted to 
cause STK loss of function in vitro, but these variants 
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Variant types and sites in a single gene could influence the age of onset, severity, and pattern of affected organs of the genetic 
disease, such as in Marfan syndrome (MFS)-causing FBN1, and understanding the genotype-phenotype relationship could aid in 
determining the treatment strategy. In contrast, completely distinct system and/or organ diseases induced by 1 gene mutation have 
been rarely reported. Transforming growth factor-β (TGF-β) type I receptor-encoding TGFBR1 is such a gene, causing Loeys-Dietz 
syndrome (LDS) closely related to MFS, and also multiple self-healing squamous epithelioma (MSSE) without clinical overlap. The 
detailed mechanisms underlying this effect, however, remain elusive. We recently reported the significance of 2 distinct intronic 
variants (c.973+1G>A and c.806-2A>C) of TGFBR1, which were both predicted to mediate in-frame exon 5 skipping but caused LDS 
and MSSE, respectively. On ex vivo minigene splicing assay analysis we demonstrated that 2 different cryptic splice sites were 
activated, and in-frame and out-of-frame transcripts were produced in LDS and MSSE, respectively, supporting the previously 
proposed but not yet approved mechanism that loss-of-function and haploinsufficiency-causing variants in serine/threonine kinase 
domains induce LDS and MSSE, respectively. In this review, we briefly summarize the recent findings and unresolved problems for 
the pathogenesis of LDS, including the TGF-β signaling paradox: most variants have been verified or predicted to be loss of function 
in vitro, but these variants enhanced TGF-β signaling in vivo.
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mutations (Tgfbr1M318R/+ and Tgfbr2G357 W/+) identically 
developed vascular, craniofacial, and skeletal manifestations 
of LDS, but heterozygous knockout mice (Tgfbr1+/− and 
Tgfbr2+/−) did not develop any LDS features.10 This suggests 
that full-length variant TGFBR1 and TGFBR2 proteins 
improperly regulate the downstream signal pathways and 
cause LDS1 and LDS2.

TGF-β Signaling Paradox in LDS
The mechanisms of how the missense variants cause LDS1 
and LDS2 are still elusive. Although most variants have 
been verified or predicted to cause loss of function in the in 
vitro cultured cells (e.g., HEK293 cells; Figure 1B),11,12 
these variants enhanced TGF-β signaling in the aortic 
regions.10,13 The mechanism underlying the TGF-β signaling 
paradox remains elusive and is accepted as a scientific 
mystery.14 There has been speculation that increased TGF-β 
ligands in the LDS aortic wall activate intact TGFBR1/
TGFBR2 complexes in vivo (Figure 1C), but the mecha-
nisms of how TGF-β ligands are actively secreted remain 
to be determined.15

In this mini review, we present and discuss the recent 
understanding of the molecular mechanism of LDS and 
the unresolved problems, including the TGF-β signaling 
paradox and the mechanism by which TGFBR1 variants 
elicit 2 completely distinct diseases, LDS and MSSE.7

TGFBR1/TGFBR2 STK Domain and  
Cause of LDS1 and LDS2

TGFBR1 and TGFBR2 are transmembrane STK receptors 
consisting of 9 and 7 exons, respectively. The activation of 
TGFBR2 by TGF-β ligands induces TGFBR2 dimeriza-
tion, and the TGFBR2 homodimer forms a stable receptor 
complex with TGFBR1 homodimer and phosphorylates 
TGFBR1, leading to the subsequent activation of the 
SMAD signaling pathway. Phosphorylated SMAD2 and 
SMAD3 form stable complexes with SMAD4, which 
translocate to the nucleus and regulate the transcription 
of target genes (Figure 1A).8 In LDS, most variants in 
TGFBR1/TGFBR2 are missense and are located in or 
immediately flanking the evolutionarily conserved STK 
domain.9 Recently reported knock-in mice with missense 

Figure 1.  Dysregulated transforming growth factor-β (TGF-β) signaling caused by a TGF-β type I receptor (TGFBR1) missense 
variant. (A) In a normal aorta, TGF-β binding induces the formation of a heterotetrameric complex of two type 2 (TGFBR2; purple) 
and two type 1 (TGFBR1; yellow) receptors, and activates a phosphorylation cascade. (B) An in vitro functional assay using the 
overexpressed variant TGFBR1 (brown). The pathogenic missense variant in the serine/threonine kinase domain leads to a 
loss-of-function phenotype. (C) In the impaired Loeys-Dietz syndrome aortic wall, oversecreted TGF-β ligands can be theoretically 
transmitted through the remaining wild-type TGFBR1/TGFBR2 heterotetrameric complex.
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TGFBR1 Truncating STK Domain Variants
As described previously, LDS1 and LDS2 are induced by 
loss-of-function missense variants in or near the STK 
domain, and full-length variant proteins seem to function 
improperly. Interestingly, TGFBR1 has been reported to 
be a causative gene for MSSE,6 and most MSSE variants 
are reported to be located in the extracellular ligand-binding 
domain, and truncating variants (nonsense, frameshift) in 
the STK domain. We recently encountered, however, a 
Japanese familial case of LDS involving a novel splice 
donor site variant in intron 5 in TGFBR1 (c.973+1G>A), 
and noted that the in silico-predicted effect of in-frame exon 
5 skipping (168 bp) had the same effect as a splice acceptor 
site variant in intron 4 causing MSSE (c.806-2A>C; 
Figure 3A).6,7 Exon 5 encodes part of the STK domain, and 
LDS and MSSE family members do not present with overlap 
features; thus, we performed ex vivo minigene splicing 
assays of 2 variants (Figure 3B,C) to elucidate the mecha-
nism by which these 2 apparently similar variants produce 
different system diseases.7

On analysis of the resulting transcripts, the LDS variant 
was found to produce 2 types of in-frame products as a result 
of exon 5 skipping (r.806_973del, p.Asp269_Gln324del), 

Very recently, MacFarlane et al reported a partial solu-
tion to this problem (Figure 2).16 The severely affected 
aortic root and ascending aorta are composed of 2 types of 
vascular smooth muscle cells (VSMCs): secondary heart 
field (SHF)- and cardiac neural crest (CNC)-derived 
VSMCs. In Tgfbr1M318R/+ LDS mice these 2 types of VSMCs 
have distinct biological properties. SHF-derived VSMCs, 
but not CNC-derived VSMCs, showed impaired SMAD2/
SMAD3 activation in response to TGF-β, increased 
expression of angiotensin II (AngII) type 1 receptor (Agtr1a), 
enhanced responsiveness to AngII, and higher expression 
of TGF-β ligands. In contrast, CNC-derived VSMCs had 
preserved TGF-β signaling potential; and CNC-specific, 
but not SHF-specific, Smad2 deletion ameliorated aortic 
root aneurysm formation in Tgfbr1M318R/+ mice. This 
suggests that TGF-β ligands secreted from SHF-derived 
VSMCs in an AngII type I receptor (AT1R)-dependent 
manner could activate CNC-derived VSMCs, thereby 
contributing to the in vivo TGF-β overactivity in LDS 
aortopathy. This might also explain the usefulness of an 
AT1R inhibitor, losartan, for preventing aortic root 
aneurysm formation in LDS (Figure 2).

Figure 2.  Model for aortic pathogenesis associated with Loeys-Dietz syndrome (LDS).16 Aortic root and ascending aorta are 
composed of secondary heart field (SHF)- and cardiac neural crest (CNC)-derived vascular smooth muscle cells (VSMCs). 
SHF- and CNC-derived VSMCs in transforming growth factor-β (TGF-β) type I receptor (Tgfbr1)M318R/+ LDS mice have different 
biological characteristics, and cellular responses to TGF-β are decreased and preserved in SHF- and CNC-derived VSMCs, 
respectively. Increased AT1R signaling stimulates extracellular signal-regulated kinase (ERK) phosphorylation and TGF-β expression 
in SHF-derived VSMCs. In the presence of increased TGF-β, CNC-derived cells show increased levels of phosphorylated SMAD2/
SMAD3, which contributes to the pathogenesis of LDS aortopathy. Treatment with the angiotensin II type I receptor (AT1R) 
inhibitor losartan and CNC-specific Smad2 ablation ameliorates aortic root aneurysm formation.



Circulation Reports Vol.1, November 2019

490 FUJIWARA T et al.

Figure 4.  Antisense-mediated exon skipping therapy for Duchenne muscular dystrophy (DMD). (A) Schematic diagram of exon 
50 deletion of DMD, causing DMD. Exons 47–50 are the deletion mutation hotspot and the variable-sized deletions produce 
out-of-frame transcripts that are destroyed by nonsense-mediated mRNA decay. (B) An antisense oligonucleotide compound 
(eteplirsen) is designed to bind to exon 51 of pre-mRNA, resulting in the exclusion of exon 51 during pre-mRNA processing to 
restore the reading frame. Approximately 10–15% of patients with DMD are suitable for this treatment strategy.22

Figure 3.  Distinct variants affecting 
the differential splicing of TGF-β type I 
receptor (TGFBR1) exon 5 cause either 
Loeys-Dietz syndrome (LDS) or multiple 
self-healing squamous epithelioma 
(MSSE).7 (A) Two intronic variants 
(c.806-2A>C and c.973+1G>A), which 
are both predicted to mediate in-frame 
exon 5 skipping, cause 2 distinct system 
diseases: MSSE and LDS, respectively. 
(B,C) Ex vivo splicing assay of 2 variants 
using the pTBNde(min) minigene system. 
(B) The c.973+1G>A LDS variant pro-
duced 2 types of in-frame products as 
a result of exon 5 skipping and the 
activation of a cryptic donor splice at 
a site 9 bp upstream of the 5’ natural 
splice donor site (arrowhead). (C) The 
c.806-2A>C MSSE variant activated a 
cryptic acceptor site at 76 bp down-
stream of the 3’ natural splice acceptor 
site (arrowhead), which produced an 
out-of-frame transcript and generated 
premature termination codon (asterisk).
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enhancer region of pre-mRNA, leading to its exclusion 
from mRNA, is approved for the treatment of DMD 
patients who have a confirmed variant that is amenable to 
exon 51 skipping (Figure 4).22

Genetic tests for hereditary aortic aneurysm and dissec-
tion (HTAAD) to guide precision medicine have been 
covered by health insurance in Japan since 2016, and gene 
therapy for HTAAD has also been expected.5 There is no 
evidence to indicate that haploinsufficiency due to nonsense 
or out-of-frame variants predisposes to LDS caused by 
TGFBR1/TGFBR2 or to non-syndromic HTAAD caused 
by ATCA2 and MYH11; thus, gene therapy approaches to 
correct or destroy the affected allele could be theoretically 
applied to such variants. The biggest obstacle to success, 
however, might be a lack of established systems for the gene 
delivery to aortic VSMC, and various delivery methods are 
being developed.24,25

Conclusions
We briefly reviewed the recent understanding of the 
molecular mechanism of LDS and the unresolved problems, 
including the TGF-β signaling paradox and the mechanism 
by which TGFBR1 variants cause 2 distinct system diseases, 
LDS and MSSE. Recent basic research using the LDS 
mice model provides crucial insights into the pathogenic 
mechanisms of LDS, and the establishment of an integrated 
clinical and genomic information system for genetic diseases 
would also contribute to the discovery of promising clues 
to the mechanism behind gene mutation.9 Further analysis 
is also warranted to analyze genetic variants of unknown 
clinical and biological significance, as in the present study, 
to deepen the understanding of the disease mechanism.
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