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6 Chodźki St., 20-093 Lublin, Poland; szymanska.polska@gmail.com

8 Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology,
Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland; bartosz.plachno@uj.edu.pl

9 Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St.,
20-081 Lublin, Poland; tomasz.zubilewicz@umlub.pl (T.Z.); martinf@interia.pl (M.F.)

* Correspondence: daniel.piotr.zalewski@gmail.com; Tel.: +48-81-448-7236
† Both authors shared first authorship.
‡ These authors shared senior authorship.

Abstract: Several human tissues are investigated in studies of molecular biomarkers associated with
diseases development. Special attention is focused on the blood and its components due to combining
abundant information about systemic responses to pathological processes as well as high accessibility.
In the current study, transcriptome profiles of peripheral blood mononuclear cells (PBMCs) were used
to compare differentially expressed genes between patients with lower extremities arterial disease
(LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD). Gene expression
patterns were generated using the Ion S5XL next-generation sequencing platform and were analyzed
using DESeq2 and UVE-PLS methods implemented in R programming software. In direct pairwise
analysis, 21, 58 and 10 differentially expressed genes were selected from the comparison of LEAD
vs. AAA, LEAD vs. CVD and AAA vs. CVD patient groups, respectively. Relationships between
expression of dysregulated genes and age, body mass index, creatinine levels, hypertension and
medication were identified using Spearman rank correlation test and two-sided Mann–Whitney U
test. The functional analysis, performed using DAVID website tool, provides potential implications
of selected genes in pathological processes underlying diseases studied. Presented research provides
new insight into differences of pathogenesis in LEAD, AAA and CVD, and selected genes could
be considered as potential candidates for biomarkers useful in diagnosis and differentiation of
studied diseases.

Keywords: lower extremities arterial disease; chronic venous disease; abdominal aortic aneurysm;
gene expression; next generation sequencing; biomarker; transcriptome profiling
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1. Introduction

Noncommunicable diseases such as cancer, diabetes mellitus, cardiovascular and
chronic respiratory diseases are today the major contributors to the global burden of
death instances [1,2]. Out of them conditions linked to cardiovascular system are one of
the most common cause of death worldwide and their contribution will be even higher
in future decades [1,3]. This work encompasses comparative gene expression analysis
of three conditions from this vast group of diseases: lower extremities arterial disease
(LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD), which are
complex and multifactorial vascular diseases burdened with high prevalence and severe
life-threating consequences, making them major global health problems.

LEAD is the most common manifestation of peripheral arterial disease (PAD), charac-
terized by chronic degenerative changes due to vascular flow deficit caused by formation
of atheromatous plaques in arteries of lower limbs [4,5]. Overall global prevalence of LEAD
is estimated to 5.56% of individuals aged 25 years and older and exceeds 10% in people
older than 70 years [6]. The risk factors for LEAD include age, dyslipidemia, diabetes,
smoking, hypertension and cardiovascular disease history [4,6]. The typical symptom of
LEAD is intermittent claudication, resulting from recurrent ischemia-reperfusion cycles
during physical activity, however more than 50% of LEAD cases is asymptomatic [5,7].
One of the most severe complication of LEAD is chronic limb-threatening ischemia, which
affects approximately 11% of patients with LEAD [4,8].

AAA is a focal dilatation of the abdominal aorta measuring 50% greater than the prox-
imal normal segment, or >3 cm in maximum diameter [9]. The prevalence of AAA ranges
between 4% and 8% in general population of men aged 65–80 years [10]. Identified risk
factors for aneurysm development include older age, male gender, cigarette smoking, obe-
sity, dysregulation of lipid levels, hypertension [9,11,12] and genetic predisposition [13,14].
Patients with AAA may report nonspecific symptoms such as abdominal and back pain;
however, in many cases, disease progress is asymptomatic [15]. Globally, AAA rupture
is responsible for 0.3–0.4% of all death causes and approximately 1% of deaths among
men above 65 years [16]. AAA rupture is associated with high distensibility of aortic wall,
higher peak wall stress and aortic calcification [17].

CVD is defined as a syndrome of chronic morphological and functional abnormalities
of the venous system caused by venous wall remodeling related to vascular inflammation,
leading to venous hypertension, venous valve incompetency and reflux in veins of lower
limbs [18–21]. The disease encompasses a wide spectrum of clinical presentations such as
telangiectasia, varicose veins, leg edema, skin changes and ulcers [22]. The prevalence of
symptomatic CVD among general practitioner attendees was estimated as high as 60%.
The common risk factors include age, obesity, low physical activity, periods of prolonged
standing or sitting and positive family history [23].

Guidelines for LEAD, AAA and CVD management, accomplished by specialists in
the field and regularly updated [4,9,20,24,25], indicate urgent need for more effective
diagnostic, treatment and differentiating strategies. Despite different clinical onset of
LEAD, AAA and CVD, these diseases share main pathological mechanisms, such as
inflammation, endothelial dysfunction and vascular smooth muscle cells proliferation and
apoptosis, potentially impeding identification of specific biomarkers able to distinguish
individuals affected with LEAD, AAA and CVD. Elucidation of molecular aspects of
these diseases, including alterations in gene expression patterns associated with vascular
pathology, could provide more focused insight into pathological conditions governing
variety of vascular diseases.

Many studies have identified dysregulations of gene expression associated with vas-
cular cell functions, including cell differentiation, proliferation, migration, and apoptosis
exhibiting modulatory function of angiogenesis, endothelial cells dysfunction and response
for ischemic events and oxidative stress [26–31]. Alterations in expression of numerous
genes are considered as potential signatures of vascular diseases including atherosclero-
sis [32–34], LEAD [35–37], AAA [38–42] and CVD [43–46].
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Peripheral blood mononuclear cells (PBMCs) represent a white blood cell subpop-
ulation that includes lymphocytes and monocytes and constitute blood-derived clinical
material broadly studied for elucidation of diseases processes due to possessing abundant
information about systemic alterations in pathology. High accessibility of PBMCs make
them a valuable source of potential biomarkers useful for detection and monitoring of
disease progress. Changes in transcriptome expression of PBMCs may reflect ongoing
local pathological processes in vascular tissues in either LEAD, AAA and CVD. Moreover,
PBMCs subpopulations are key regulators of vascular inflammation, which is an important
element of either LEAD, AAA or CVD onsets.

Therefore, transcriptomic patterns of PBMCs subpopulations originating from pa-
tients with LEAD, AAA and CVD versus healthy subjects were previously compared and
potential transcriptomic biomarkers of these diseases were proposed [37,42,46]. In the
current study, pairwise comparison of gene expression profiles between LEAD, AAA and
CVD were performed in order to identify transcriptomic similarities and differences of
these conditions. Obtained results could provide deeper insight into either general mecha-
nisms of vascular pathology or unique processes contributing to LEAD, AAA and CVD.
Identification of specific biomarkers potentially enables to select and monitor patients with
high cardiovascular risk and to classify affected individuals to LEAD, AAA and CVD
group, providing new diagnostic and treatment perspectives.

The study design, methodology and language were inspired by our previous stud-
ies regarding dysregulation of microRNA (miRNA) regulatory network in LEAD [37],
AAA [42] and CVD [46] compared to healthy controls.

2. Results
2.1. Study Group Characteristics

The study group included 8 patients with LEAD, 7 patients with AAA and 7 patients
with CVD. Clinical characteristics of participants are presented in Table 1 and detailed
description of clinical features specific for each disease was provided in Table A1 in
Appendix A. Statistical analysis of studied groups showed statistically significant (p < 0.05)
differences in some characteristics, including age, BMI (body mass index), smoking habits,
hypertension status, creatinine serum level and medication with statins, acetylsalicylic
acid and beta-adrenergic blockers. These differences are a result of different risk factors
and medication related to studied diseases. The influence of demographical and clinical
differences on obtained results was examined and discussed further in the text.

2.2. The Comparison of Differentially Expressed Genes in PBMCs of LEAD, AAA and CVD
Subjects in Relation to Healthy Controls

In our previous studies, whole transcriptome and miRNA expression profiles of
PBMCs in patients with LEAD [37], AAA [42] and CVD [46] in relation to healthy controls
were investigated. MiRNAs and genes with the most promising biomarker potential
as well as alterations of miRNA regulatory network associated with analyzed diseases
were identified. Further functional analyzes draw interesting relations between proposed
biomarkers and the etiopathology of studied diseases.

In this paper, we continue our investigations on molecular aspects of LEAD, AAA
and CVD etiopathogenesis by searching for transcriptomic differences and similarities
between these diseases. In the first approach, we compared previously obtained results of
differential expression analysis that were performed for the total number of 55,765 genes
using DESeq2 and UVE-PLS (Uninformative Variable Elimination by Partial Least Squares)
methods between disease groups in the background of healthy controls (LEAD vs. control,
AAA vs. control and CVD vs. control) [37,42,46]. To reduce and to assure high compa-
rability of the data, strict and unified cutoff criteria for gene selection were applied: for
DESeq2 results—genes with p value (adjusted by Benjamini–Hochberg false discovery rate)
below 0.001 were selected and for UVE-PLS results—genes with the minimum reliability
score equal to 8 were selected. Application of p < 0.001 threshold to DESeq2 data resulted
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in a selection of 22 differentially expressed genes in LEAD vs. control, 341 differentially
expressed genes in AAA vs. control and 675 differentially expressed genes in CVD vs. con-
trol. As a result of establishing reliability score ≥8 as a selection criterium of differentially
expressed genes resulted from UVE-PLS, 43 genes in LEAD vs. control, 323 genes in AAA
vs. control and 468 genes in CVD vs. control were obtained. The sets of selected genes were
compared within each studied disease on Venn diagrams and 17, 162 and 395 genes were
obtained as common for both methods for LEAD vs. control, AAA vs. control and CVD vs.
control, respectively (Figure 1A). Differential expression characteristics of common genes,
including adjusted p values, fold changes and Partial Least Squares (PLS) coefficients are
provided in Supplementary File 2.

Table 1. Clinical characteristics of the study subjects.

Characteristic LEAD (n = 8) AAA (n = 7) CVD (n = 7) p 1

Age 62 ± 7.82 2 66.3 ± 4.03 2 41.3 ± 4.03 2
8.273 × 10−4 4

48–71 3 59–71 3 35–47 3

Gender males/females 6 (75%)/2 (25%) 6 (85.7%)/ 3 (42.9%)/
0.275 5

1 (14.3%) 4 (57.1%)

Body mass index (BMI) 28.25 ± 2.07 2 27.23 ± 2.76 2 23.36 ± 1.94 2
6.272 × 10−3 4

25.5–31.2 3 23.66–30.85 3 20.94–25.83 3

Risk factors and cardiovascular comorbidities

Smoking
never/former/current

0 (0%)/6 (75%)/ 3 (42.9%)/ 5 (71.4%)/0 (0%)/
0.011 5

2 (25%) 2 (28.6%)/2 (28.6%) 2 (28.6%)

Diabetes type 2 3 (37.5%) 2 (28.6%) 0 (0%) 0.300 5

Hypertension 7 (87.5%) 5 (71.4%) 0 (0%) 9.418 × 10−4 5

Coronary artery disease
(CAD) 2 (25%) 1 (14.3%) 0 (0%) 0.746 5

Myocardial infarction 2 (25%) 1 (14.3%) 0 (0%) 0.746 5

Stroke/Transient ischemic
attack 0 (0%) 0 (0%) 0 (0%) 1.000 5

Hematological and biochemical blood parameters

Red blood cells (M/µl) 4.81 ± 0.33 2 4.96 ± 0.19 2 4.93 ± 0.31 2
0.630 4

4.22–5.18 3 4.56–5.10 3 4.29–5.21 3

White blood cells (K/µl) 5.49 ± 0.69 2 5.85 ± 0.75 2 5.58 ± 0.50 2
0.677 4

4.79–6.70 3 4.89–6.89 3 4.67–5.99 3

Platelets (K/µl) 348.5 ± 105.5 2 379.43 ± 82.26 2 368.14 ± 66.26 2
0.430 4

267–432 3 267–501 3 295–467 3

Hemoglobin (g/dl) 14.22 ± 0.59 2 13.88 ± 0.52 2 13.98 ± 0.33 2
0.415 4

13.45–14.80 3 13.34–14.60 3 13.56–14.60 3

Hematocrit (%) 40.91 ± 1.15 2 41.31 ± 1.13 2 40.24 ± 2.35 2
0.425 4

38.9–42 3 39.9–43 3 37.00–44 3

Creatinine (mmol/L) 80.38 ± 11.11 2 58.86 ± 11.60 2 58.71 ± 8.75 2
4.529 × 10−3 4

59–89 3 44–77 3 45–67 3

Urea (mmol/L) 4.69 ± 0.70 2 4.61 ± 0.47 2 4.77 ± 0.98 2
0.931 4

3.70–6.01 3 3.89–5.10 3 3.78–6.37 3

Medication

Statins 7 (87.5%) 4 (57.1%) 0 (0%) 2.818 × 10−3 5

Acetylsalicylic acid 8 (100%) 7 (100%) 0 (0%) 1.173 × 10−5 5

Clopidogrel 2 (25%) 0 (0%) 0 (0%) 0.303 5

Beta-adrenergic blockers 6 (75%) 5 (71.4%) 0 (0%) 8.375 × 10−3 5

Angiotensin-converting
enzyme inhibitor 2 (25%) 0 (0%) 0 (0%) 0.303 5
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Table 1. Cont.

Characteristic LEAD (n = 8) AAA (n = 7) CVD (n = 7) p 1

Ca2+ channel blockers 3 (37.5%) 1 (14.3%) 0 (0%) 0.270 5

Fibrates 3 (37.5%) 1 (14.3%) 0 (0%) 0.270 5

Metformin 1 (12.5%) 0 (0%) 0 (0%) 1.000 5

Gliclazide 3 (37.5%) 2 (28.6%) 0 (0%) 0.300 5

1 Statistical significance of differences between lower extremities arterial disease (LEAD), abdominal aortic aneurysm (AAA) and chronic
venous disease (CVD) groups, 2 mean ± SD, 3 range, 4 p value calculated using Kruskal-Wallis rank sum test, 5 p value calculated using
two-sided Fisher’s exact test.Int. J. Mol. Sci. 2021, 22, 3200 6 of 29 
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Figure 1. The comparison of differentially expressed genes in lower extremities arterial disease (LEAD), abdominal aortic
aneurysm (AAA) and chronic venous disease (CVD) in relation to healthy controls. (A) The comparisons of differentially
expressed genes in LEAD vs. control, AAA vs. control and CVD vs. control comparisons. Genes were obtained using
DESeq2 and UVE-PLS methods and unified selection criteria (p value adjusted by Benjamini–Hochberg false discovery
rate < 0.001 and reliability score ≥ 8, respectively). The numbers in the middle fields in each Venn diagram represent the
amount of genes common for both methods. (B) The comparison of the genes common for DESeq2 and UVE-PLS methods
from the Venn diagrams on panel A. The rectangles present gene symbols located in the corresponding fields of the Venn
diagram. (C) Boxplot for the log10 of normalized counts of GGT1, which was found as a common gene on the Venn diagram
from panel B. Whiskers define range between minimum and maximum value, boxes range between 25% and 75% quartile,
horizontal lines inside boxes mark median value. UVE-PLS-Uninformative Variable Elimination by Partial Least Squares.
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To identify transcriptomic similarities and differences between LEAD, AAA and CVD,
the sets of selected 17, 162 and 395 genes were compared on Venn diagram (Figure 1B).
Differential expression of one gene (GGT1, gamma-glutamyltransferase 1) was common
for all analyzed gene sets, one gene (CDS2, CDP-diacylglycerol synthase 2) was common
for LEAD vs. control and CVD vs. control, three genes were common for LEAD vs. control
and AAA vs. control, and 23 genes were common for AAA vs. control and CVD vs. control
(Figure 1B). To conclude, the approach of making comparisons of differentially expressed
gene sets in LEAD, AAA and CVD in relation to control group indicated that upregulation
of GGT1 could be considered as a common feature of PBMCs from patients with these dis-
eases (Figure 1C). Moreover, the differential expression of 12, 135 and 370 genes are specific
for the comparisons LEAD vs. control, AAA vs. control and CVD vs. control, respectively
(Figure 1B). These genes were additionally highlighted in the Supplementary File 2.

To further examine differences between diseases, the potential biological role of 12,
135 and 370 genes specific for LEAD vs. control, AAA vs. control and CVD vs. control
comparisons, respectively, was determined in functional enrichment analysis performed
using Database for Annotation, Visualization and Integrated Discovery (DAVID) database.
Up to top ten enriched terms (with the lowest p value of enrichment) of Gene Ontology
Biological Processing (GOBP), Gene Ontology Cellular Compartment (GOCC), Gene Ontol-
ogy Molecular Function (GOMF), KEGG (Kyoto Encyclopedia of Genes and Genomes) and
Reactome categories for each gene sets were selected and presented on Figure 2.

2.3. The Comparison of Differentially Expressed Genes in PBMCs of LEAD, AAA and CVD
Subjects after Direct, Pairwise Comparisons

To further investigate transcriptomic similarities and differences in PBMCs of LEAD,
AAA and CVD subjects, a direct, pairwise differential gene expression analysis was per-
formed within these groups. In this approach, LEAD vs. AAA, LEAD vs. CVD and AAA
vs. CVD comparisons were performed using DESeq2 and UVE-PLS methods. To assess
the quality of the data, control plots including MA plot and histogram of p values were
generated and evaluated for each comparison (Supplementary Materials Figures S1–S3).
The boxplot of Cook’s distances of genes across all samples presents lack of any outliers in
analyzed data (Figure S4). Similar to the previous approach, the unified cutoff thresholds
(corrected p < 0.001 and reliability score ≥8) were used for gene selection from DESeq2 and
UVE-PLS results, respectively (Table A2). Sets of genes selected from used methods were
compared on Venn diagrams, revealing 21 genes (9 upregulated and 12 downregulated)
common for DESeq2 and UVE-PLS methods from the comparison of LEAD vs. AAA
(Figure 3A), 58 genes (43 upregulated and 15 downregulated) common for both methods
from the comparison of LEAD vs. CVD (Figure 3B) and 10 genes (all downregulated)
common for both methods from the comparison of AAA vs. CVD (Figure 3C, Table 2).

To identify common and unique genes for LEAD vs. AAA, LEAD vs. CVD and
AAA vs. CVD diseases pairs, the obtained sets of 21, 58 and 10 genes were compared
on the subsequent Venn diagram (Figure 3D), which shows a lack of genes shared by all
three sets of genes. It indicates that these gene sets could be considered as potentially
unique for performed comparisons and presumably useful to differentiate studied diseases.
Differential expression characteristics of 89 (21 + 58 + 10) unique genes, including adjusted
p values, fold changes and Partial Least Squares (PLS) coefficients are provided in Table 3.
The expression of 89 unique genes was visualized on the heatmap with Euclidean clustering
and on the Principal Component Analysis (PCA) plot (Figure 4).

The Receiver Operating Characteristics (ROC) analysis was performed to further
evaluate the discriminative ability of 89 unique genes. The obtained areas under ROC
curves ranged between 1 and 0.939 for analyzed genes, indicating good performance for
distinguishing of studied diseases (Table 3). The detailed results of ROC analysis are
provided in Table S1.
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12 potentially specific genes for the comparison of lower extremities arterial disease (LEAD) vs.
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control, (B) 135 potentially specific genes for the comparison of abdominal aortic aneurysm (AAA)
vs. control and (C) 370 potentially specific genes for the comparison of chronic venous disease
(CVD) vs. control (refer to panel B on the Figure 1). Up to top ten the most enriched terms of
Gene Ontology Biological Processing (GOBP), Gene Ontology Cellular Compartment (GOCC), Gene
Ontology Molecular Function (GOMF), KEGG (Kyoto Encyclopedia of Genes and Genomes) and
Reactome categories were presented. p value—EASE score for enrichment, the thick black vertical
line represents p = 0.05 threshold. The numbers in brackets following the names of terms indicate the
numbers of associated genes. Due to a large length of some names of Reactome terms on panel C, to
make the figure more readable they were shown in shorten form: the full name of “APC/C:Cdh1 me-
diated degradation of Cdc20” term is “APC/C:Cdh1 mediated degradation of Cdc20 and other
APC/C:Cdh1 targeted proteins in late mitosis/early G1”, the full name of “Activation of anterior
HOX genes” term is “Activation of anterior HOX genes in hindbrain development during early
embryogenesis”.
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Figure 3. The comparison of differentially expressed genes resulted from comparative analysis performed using DESeq2 and
UVE-PLS methods between (A) LEAD and AAA groups, (B) LEAD and CVD groups as well as (C) AAA and CVD groups.
Genes were selected using unified selection criteria: p value adjusted by Benjamini–Hochberg false discovery rate < 0.001
(for DESeq2 results) and reliability score ≥ 8 (for UVE-PLS results). The number in the middle fields in each Venn diagram
represents the number of genes common for both methods. Genes shared by both methods from each comparison (genes
from the middle fields in Venn diagrams on panel A–C) were selected and compared on the subsequent Venn diagram (D),
which shows a lack of sharing genes. AAA—abdominal aortic aneurysm, CVD—chronic venous disease, LEAD—lower
extremities arterial disease, UVE-PLS—Uninformative Variable Elimination by Partial Least Squares.
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Table 2. Differential expression parameters of 21, 58 and 10 genes identified as unique for LEAD vs. AAA, LEAD vs. CVD
and AAA vs. CVD comparisons, respectively. The table presents p (FDR with Benjamini–Hochberg correction) and fold
change values received from DESeq2 analysis, PLS coefficients received from UVE-PLS analysis and areas under ROC
curves (ROC-AUC) received from ROC analysis. Genes were divided into upregulated and downregulated groups within
each comparison and ordered according to increasing p value. Gene symbols without assigned gene names by HUGO Gene
Nomenclature Committee Multi-symbol checker (https://www.genenames.org/tools/multi-symbol-checker/, accessed on
20 January 2021) were named as “Unmatched”.

No. Gene Symbol Gene Name p Fold Change PLS Coefficient ROC-AUC

LEAD vs. AAA—Upregulated Genes

1. SNORD20 small nucleolar RNA, C/D box 20 1.712 × 10−7 3.338 2.746 × 10−3 1.000

2. SNORA72 small nucleolar RNA, H/ACA box 72 1.205 × 10−4 2.103 1.551 × 10−3 0.964

3. SNHG5 small nucleolar RNA host gene 5 1.205 × 10−4 1.984 1.541 × 10−3 1.000

4. SNORA26 small nucleolar RNA, H/ACA box 26 1.358 × 10−4 2.365 1.857 × 10−3 1.000

5. SNORD82 small nucleolar RNA, C/D box 82 1.489 × 10−4 2.206 1.721 × 10−3 1.000

6. UFM1 ubiquitin fold modifier 1 2.157 × 10−4 1.391 7.038 × 10−4 1.000

7. SNORD101 small nucleolar RNA, C/D box 101 3.292 × 10−4 2.352 1.757 × 10−3 0.964

8. SNORD91B small nucleolar RNA, C/D box 91B 6.538 × 10−4 2.493 1.987 × 10−3 1.000

9. SNORD111B small nucleolar RNA, C/D box 111B 7.373 × 10−4 2.337 1.910 × 10−3 1.000

LEAD vs. AAA—downregulated genes

10. POLR2A RNA polymerase II subunit A 2.583 × 10−5 0.764 −6.306 × 10−4 1.000

11. AC092620.2 Unmatched 2.583 × 10−5 0.401 −1.694 × 10−3 1.000

12. EHMT1 euchromatic histone lysine methyltransferase 1 2.854 × 10−5 0.744 −6.428 × 10−4 1.000

13. TRAPPC12 trafficking protein particle complex 12 1.313 × 10−4 0.762 −5.972 × 10−4 0.980

14. RN7SKP286 RN7SK pseudogene 286 1.313 × 10−4 0.143 −3.159 × 10−3 0.964

15. ZNF592 zinc finger protein 592 5.389 × 10−4 0.740 −6.769 × 10−4 1.000

16. YBX1 Y-box binding protein 1 5.525 × 10−4 0.625 −9.797 × 10−4 0.982

17. RN7SKP208 RN7SK pseudogene 208 5.525 × 10−4 0.292 −1.571 × 10−3 0.982

18. RN7SKP45 RN7SK pseudogene 45 5.525 × 10−4 0.213 −2.861 × 10−3 0.982

19. RN7SKP7 RN7SK pseudogene 7 5.525 × 10−4 0.199 −1.277 × 10−3 1.000

20. MAU2 MAU2 sister chromatid cohesion factor 6.538 × 10−4 0.804 −4.892 × 10−4 0.982

21. GIT2 GIT ArfGAP 2 9.198 × 10−4 0.768 −5.651 × 10−4 1.000

LEAD vs. CVD—upregulated genes

1. CALM2P2 calmodulin 2 pseudogene 2 4.927 × 10−6 2.622 1.572 × 10−3 1.000

2. RP11-490H24.5 Unmatched 9.430 × 10−6 3.231 1.296 × 10−3 1.000

3. RP11-334L9.1 Unmatched 1.438 × 10−5 3.236 1.468 × 10−3 0.982

4. API5P1 apoptosis inhibitor 5 pseudogene 1 3.627 × 10−5 2.592 1.284 × 10−3 1.000

5. PDIA3P1 protein disulfide isomerase family A member
3 pseudogene 1 3.627 × 10−5 1.968 1.090 × 10−3 1.000

6. ARL6IP1 ADP ribosylation factor like GTPase 6 interacting
protein 1 3.627 × 10−5 1.540 8.133 × 10−4 1.000

7. RP11-
1033A18.1 Unmatched 4.570 × 10−5 2.266 1.376 × 10−3 1.000

8. EIF4A1P10 eukaryotic translation initiation factor
4A1 pseudogene 10 5.014 × 10−5 2.026 1.131 × 10−3 1.000

9. RP11-262D11.2 Unmatched 5.014 × 10−5 1.913 1.072 × 10−3 0.946

10. S100A10 S100 calcium binding protein A10 5.014 × 10−5 1.723 9.939 × 10−4 1.000

11. CFL1P4 cofilin 1 pseudogene 4 5.355 × 10−5 2.826 1.400 × 10−3 1.000

12. AC078899.1 Unmatched 5.355 × 10−5 2.411 1.334 × 10−3 0.982

13. CAP1P2 CAP1 pseudogene 2 7.322 × 10−5 2.104 1.191 × 10−3 1.000

14. HNRNPA1P7 heterogeneous nuclear ribonucleoprotein
A1 pseudogene 7 7.322 × 10−5 1.814 1.017 × 10−3 1.000

15. FCGR3B Fc fragment of IgG receptor IIIb 9.228 × 10−5 3.135 1.917 × 10−3 1.000

16. CTNNA1P1 catenin alpha 1 pseudogene 1 9.228 × 10−5 3.030 1.412 × 10−3 0.982

https://www.genenames.org/tools/multi-symbol-checker/
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Table 2. Cont.

No. Gene Symbol Gene Name p Fold Change PLS Coefficient ROC-AUC

17. PSME1 proteasome activator subunit 1 9.228 × 10−5 1.744 1.083 × 10−3 1.000

18. RP11-6B6.3 Unmatched 1.126 × 10−4 3.206 1.602 × 10−3 1.000

19. MSNP1 moesin pseudogene 1 1.602 × 10−4 2.059 1.213 × 10−3 1.000

20. ACTR3P2 ACTR3 pseudogene 2 1.640 × 10−4 2.564 1.369 × 10−3 1.000

21. RP13-104F24.3 Unmatched 1.640 × 10−4 2.143 8.857 × 10−4 0.982

22. HSP90B3P heat shock protein 90 beta family member 3,
pseudogene 1.987 × 10−4 2.373 1.277 × 10−3 1.000

23. DYNC1I2P1 dynein cytoplasmic 1 intermediate chain
2 pseudogene 1 2.024 × 10−4 2.441 1.344 × 10−3 1.000

24. EIF3FP3 eukaryotic translation initiation factor 3 subunit F
pseudogene 3 2.996 × 10−4 1.976 1.059 × 10−3 0.964

25. C1orf216 chromosome 1 open reading frame 216 3.042 × 10−4 1.474 6.989 × 10−4 0.982

26. ANXA2P2 annexin A2 pseudogene 2 3.767 × 10−4 2.368 1.258 × 10−3 1.000

27. MNDA myeloid cell nuclear differentiation antigen 4.212 × 10−4 2.198 1.322 × 10−3 1.000

28. AC104651.2 Unmatched 4.292 × 10−4 3.349 9.316 × 10−4 0.946

29. PGDP1 phosphogluconate dehydrogenase pseudogene 1 4.292 × 10−4 2.653 1.284 × 10−3 0.982

30. PSME2P2 proteasome activator subunit 2 pseudogene 2 4.425 × 10−4 2.547 1.508 × 10−3 1.000

31. CDC42P6 cell division cycle 42 pseudogene 6 4.693 × 10−4 1.981 1.051 × 10−3 1.000

32. HSP90B2P heat shock protein 90 beta family member 2,
pseudogene 5.142 × 10−4 2.048 1.107 × 10−3 1.000

33. HSPA9P1 heat shock protein family A (Hsp70) member
9 pseudogene 1 5.302 × 10−4 1.930 8.806 × 10−4 1.000

34. C1QB complement C1q B chain 5.647 × 10−4 5.492 2.159 × 10−3 0.964

35. CTB-52I2.4 Unmatched 5.855 × 10−4 2.077 1.013 × 10−3 0.982

36. RP11-286H14.4 Unmatched 5.907 × 10−4 1.932 9.926 × 10−4 1.000

37. SETP14 SET pseudogene 14 6.672 × 10−4 1.785 9.681 × 10−4 1.000

38. CALM2P4 calmodulin 2 pseudogene 4 6.970 × 10−4 2.329 1.066 × 10−3 1.000

39. GLUD2 glutamate dehydrogenase 2 7.874 × 10−4 1.870 8.908 × 10−4 0.982

40. EIF3C eukaryotic translation initiation factor 3 subunit C 8.845 × 10−4 1.670 9.814 × 10−4 1.000

41. SDCBPP2 syndecan binding protein pseudogene 2 9.306 × 10−4 2.454 1.164 × 10−3 1.000

42. SRRM1P3 serine/arginine repetitive matrix 1 pseudogene 3 9.306 × 10−4 2.044 1.077 × 10−3 1.000

43. S100A12 S100 calcium binding protein A12 9.443 × 10−4 2.972 1.516 × 10−3 0.946

LEAD vs. CVD—downregulated genes

44. TSC2 TSC complex subunit 2 3.328 × 10−6 0.765 −5.314 × 10−4 1.000

45. SGSM3 small G protein signaling modulator 3 5.014 × 10−5 0.723 −5.758 × 10−4 1.000

46. TECPR1 tectonin beta-propeller repeat containing 1 6.319 × 10−5 0.716 −6.552 × 10−4 1.000

47. RASGRP2 RAS guanyl releasing protein 2 7.322 × 10−5 0.663 −7.661 × 10−4 0.964

48. GLI4 GLI family zinc finger 4 1.484 × 10−4 0.671 −6.852 × 10−4 1.000

49. PPP6R2 protein phosphatase 6 regulatory subunit 2 1.640 × 10−4 0.773 −5.375 × 10−4 1.000

50. TBC1D27P TBC1 domain family member 27, pseudogene 1.806 × 10−4 0.220 −2.347 × 10−3 1.000

51. D2HGDH D-2-hydroxyglutarate dehydrogenase 2.024 × 10−4 0.589 −9.321 × 10−4 0.964

52. DNAH1 dynein axonemal heavy chain 1 2.532 × 10−4 0.727 −5.605 × 10−4 1.000

53. PAM16 presequence translocase associated motor 16 3.180 × 10−4 0.526 −1.073 × 10−3 0.982

54. HIP1R huntingtin interacting protein 1 related 3.236 × 10−4 0.489 −1.198 × 10−3 1.000

55. FAM167A family with sequence similarity 167 member A 4.088 × 10−4 0.331 −1.221 × 10−3 0.982

56. PIDD1 p53-induced death domain protein 1 4.292 × 10−4 0.682 −6.748 × 10−4 1.000

57. HECTD4 HECT domain E3 ubiquitin protein ligase 4 5.855 × 10−4 0.785 −4.282 × 10−4 0.982

58. POLRMT RNA polymerase mitochondrial 6.453 × 10−4 0.710 −5.682 × 10−4 1.000
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Table 2. Cont.

No. Gene Symbol Gene Name p Fold Change PLS Coefficient ROC-AUC

AAA vs. CVD—downregulated genes

1. SNORA11 small nucleolar RNA, H/ACA box 11 2.066 × 10−6 0.392 −1.585 × 10−3 0.980

2. SNORD64 small nucleolar RNA, C/D box 64 4.692 × 10−6 0.354 −1.471 × 10−3 0.959

3. MIR150 microRNA 150 2.022 × 10−5 0.274 −1.996 × 10−3 0.959

4. SNORD94 small nucleolar RNA, C/D box 94 3.480 × 10−5 0.441 −1.229 × 10−3 0.939

5. MALT1 MALT1 paracaspase 1.177 × 10−4 0.762 −4.413 × 10−4 1.000

6. SNORD127 small nucleolar RNA, C/D box 127 1.519 × 10−4 0.550 −9.698 × 10−4 0.959

7. SNORA14B small nucleolar RNA, H/ACA box 14B 4.364 × 10−4 0.672 −6.430 × 10−4 0.959

8. STMN3 stathmin 3 4.598 × 10−4 0.603 −8.031 × 10−4 0.939

9. TCP11L2 t-complex 11 like 2 7.061 × 10−4 0.689 −6.071 × 10−4 1.000

10. SNORA60 small nucleolar RNA, H/ACA box 60 9.366 × 10−4 0.641 −7.161 × 10−4 0.959

AAA—abdominal aortic aneurysm, CVD—chronic venous disease, LEAD—lower extremities arterial disease, ROC—receiver operating
characteristics, UVE-PLS—Uninformative Variable Elimination by Partial Least Squares.

Table 3. Correlation analysis between characteristics of studied groups (age, BMI, creatinine level) and expression of 21,
58 and 10 genes identified as unique for LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD comparisons, respectively. The
table presents genes correlated with statistical significance (Benjamini–Hochberg FDR adjusted p < 0.05) and with the abso-
lute value of Spearman correlation coefficient R ≥ 0.6 (the entire correlation results are provided in Supplementary File 2.

Comparison
Age BMI Creatinine

Gene Symbol R p Gene
Symbol R p Gene Symbol R p

LEAD vs. AAA none none
POLR2A −0.65 2.91 × 10−3

ZNF592 −0.62 5.25 × 10−3

TRAPPC12 −0.60 7.01 × 10−3

LEAD vs. CVD

PSME2P2 0.69 1.27 × 10−3 TECPR1 −0.76 2.25 × 10−4 RP11−262D11.2 0.72 6.68 × 10−4

FCGR3B 0.69 1.35 × 10−3 PIDD −0.75 2.97 × 10−4 SRRM1P3 0.70 9.06 × 10−4

API5P1 0.67 1.83 × 10−3 PSME1 0.67 2.01 × 10−3 SDCBPP2 0.70 9.66 × 10−4

ACTR3P2 0.65 2.80 × 10−3 D2HGDH −0.66 2.42 × 10−3 ARL6IP1 0.67 1.83 × 10−3

CDC42P6 0.64 3.80 × 10−3 HSP90B3P 0.65 3.04 × 10−3 HNRNPA1P7 0.67 1.83 × 10−3

HSP90B2P 0.63 4.24 × 10−3 PPP6R2 −0.64 3.39 × 10−3 API5P1 0.67 1.94 × 10−3

PIDD1 −0.62 4.70 × 10−3 EIF3C 0.62 3.41 × 10−3 AC104651.2 0.66 2.39 × 10−3

SGSM3 −0.62 4.79 × 10−3 HSPA9P1 0.60 6.72 × 10−3 EIF3FP3 0.65 2.85 × 10−3

CAP1P2 0.62 4.89 × 10−3 RP11-286H14.4 0.65 2.88 × 10−3

RP11-6B6.3 0.62 5.08 × 10−3 CTNNA1P1 0.64 3.25 × 10−3

RP11-490H24.5 0.62 5.14 × 10−3 DYNC1I2P1 0.64 3.54 × 10−3

RP13-104F24.3 0.61 5.55 × 10−3 CTB-52I2.4 0.62 5.49 × 10−3

CTB-52I2.4 0.61 5.65 × 10−3

HSP90B3P 0.61 5.77 × 10−3

CTNNA1P1 0.60 6.83 × 10−3

AAA vs. CVD

SNORD64 −0.68 1.40 × 10−3

none noneSTMN3 −0.66 2.20 × 10−3

MIR150 −0.65 2.99 × 10−3

MALT1 −0.63 4.39 × 10−3

None—no genes meeting selection criteria (R ≥ 0.6 and corrected p < 0.05), R—Spearman correlation coefficient, BMI—body mass index,
AAA—abdominal aortic aneurysm, CVD—chronic venous disease, LEAD—lower extremities arterial disease.

To explore the biological role of unique genes, a set of 21 unique genes selected from
the comparison LEAD vs. AAA, 58 unique genes selected from the comparison LEAD vs.
CVD and 10 unique genes selected from the comparison AAA vs. CVD were submitted to
functional analysis performed by DAVID website tool. Up to top ten the most enriched
functional terms for each gene set were harvested and presented on Figure 5. The most
enriched terms for 21 genes differentiating LEAD and AAA groups were mainly associated
with regulation of posttranscriptional modifications of RNA and translation, the most
enriched terms for 58 genes differentiating LEAD and CVD were associated mainly with
protein metabolism, and the most enriched terms for 10 genes differentiating AAA and
CVD were mainly associated with intracellular signal transduction (Figure 5). Network of
functional terms and associated genes is presented on Figure 6.
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Figure 4. Differential expression of 21, 58 and 10 genes identified as unique for LEAD vs. AAA, LEAD vs. CVD and
AAA vs. CVD comparisons, respectively. (A) Heatmap with clustering of Euclidean distances using complete method. (B)
Principal Component Analysis (PCA) plot. LEAD—lower extremities arterial disease, AAA—abdominal aortic aneurysm,
CVD—chronic venous disease.
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Figure 5. Results of functional analysis performed using DAVID website tool for the sets of (A)
21 unique genes for LEAD vs. AAA comparison, (B) 58 unique genes for LEAD vs. CVD comparison
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and (C) 10 unique genes for AAA vs. CVD comparison. Similar to Figure 2, up to ten of the
most enriched terms of Gene Ontology Biological Processing (GOBP), Gene Ontology Cellular
Compartment (GOCC), Gene Ontology Molecular Function (GOMF), KEGG (Kyoto Encyclopedia of
Genes and Genomes) and Reactome categories were presented. p value—EASE score for enrichment,
the black vertical line represents p = 0.05 threshold. The number in brackets following the name of
terms indicates the number of associated genes. Due to a large length of some names of Gene Ontology
terms on panel A, to make this figure clearer, they were shown in shortened form: the full name
of “RNA splicing” term is “RNA splicing, via transesterification reactions with bulged adenosine
as nucleophile”, the full name of “transferase activity” term is “transferase activity, transferring
phosphorus-containing groups”. LEAD—lower extremities arterial disease, AAA—abdominal aortic
aneurysm, CVD—chronic venous disease.
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Figure 6. Networks of enriched functional terms and associated genes. The network was constructed using significantly
(p < 0.05) enriched terms revealed for 21 unique genes selected from LEAD vs. AAA comparison (A) and 58 unique genes
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selected from LEAD vs. CVD comparison (B) (refer to Figure 5). Due to the lack of significantly enriched terms for
10 unique genes selected from AAA vs. CVD comparison, all terms presented on Figure 5 were networked (C). GOBP—
Gene Ontology Biological Processing, GOCC—Gene Ontology Cellular Compartment, GOMF—Gene Ontology Molecular
Function, AAA—abdominal aortic aneurysm, CVD—chronic venous disease LEAD—lower extremities arterial disease.

2.4. Identification of Relationships between the Study Group Characteristics and Expression of
Genes Found as Unique for LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD Comparisons

The identified transcriptomic differences between studied diseases could be an effect
of not only disease status, but also clinical and demographical characteristics for each
studied group. Therefore, the relationships between expression of 89 genes (21 + 58 + 10)
identified as unique for LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD comparisons
and characteristics differentiating LEAD, AAA and CVD groups with statistical significance
were evaluated. The analyzed characteristics include age, body mass index, smoking and
hypertension status, creatinine level, medication with statins, acetylsalicylic acid and beta-
adrenergic blockers (Table 1). Analysis of continuous variables (age, body mass index,
creatinine level) was performed using Spearman rank correlation test with application of
corrected statistical significance p < 0.05 and the absolute value of correlation coefficient
R ≥ 0.6 as a cutoff threshold. For categorical variables (never and former smokers vs.
current smokers, hypertension status, medication with statins, acetylsalicylic acid and
beta-adrenergic blockers), a two-sided Mann–Whitney U test with corrected p < 0.05 as a
cutoff threshold was applied.

Among 21 genes unique for LEAD vs. AAA comparison, three were negatively
correlated with creatinine level. In the group of 58 genes unique for LEAD vs. CVD
comparison, 15 were correlated with age, eight were correlated with BMI and 12 were
positively correlated with creatinine level. In the case of 10 genes selected from AAA vs.
CVD comparison, four were negatively correlated with age (Table 3). Obtained results
show relation of either age, BMI or creatinine level with genes differentiating LEAD and
CVD groups, suggesting difference in influence of these characteristics on LEAD and CVD
onsets. Obtained correlations could be also a reflective for differences in these characteristics
between LEAD and CVD groups, because LEAD group included significantly older subjects
with higher BMI and creatinine levels than CVD group (Table 1).

Fifteen genes unique for LEAD and CVD comparison as well as 4 genes unique for
AAA vs. CVD comparison were correlated with age (Table 3), what could be result in
significant differences in age between compared groups. Interestingly, there were no
genes unique from AAA vs. CVD comparison which were correlated with BMI, despite
significant differences in BMI between these groups, what may suggest lower impact of
these characteristic an AAA than on LEAD development.

In the case of correlation between gene expression and creatinine level, genes down-
regulated in LEAD vs. AAA were negatively correlated with creatinine levels as well as
genes upregulated in LEAD vs. CVD were positively correlated with creatinine levels
(Tables 2 and 3), what may reflect a relationship between the higher creatinine levels in
LEAD patients (Table 1) and change in expression of correlated genes. Results of correla-
tion analysis show that differences in gene expression patterns found between compared
diseases are at least partially affected by differences in age, BMI and creatinine levels and
further investigations of these relationships should be carried out.

The statistically significant relationships between expression of 89 genes identified
as unique for LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD comparisons and
categorical characteristics of all patients (smoking and hypertension status, medication
with statins, acetylsalicylic acid and beta-adrenergic blockers) are presented in Table 4.
None of analyzed genes was found to be related to smoking status, which could be a
result of similar proportions of patients who never and former smoked to patients who
are current smokers (Table 1). There were also none of analyzed genes which were found
to have statistically significant different expression between subjects with and without
beta-adrenergic blockers medication. Two genes each from LEAD vs. CVD comparison
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were found to be linked to hypertension status (GLI4 and MNDA) and usage of statins
(FAM167A and C1orf216) as well as 58 genes (54 and 4 from LEAD vs. CVD and AAA vs.
CVD comparisons, respectively) were related to acetylsalicylic acid medication (Table 4).
These genes mainly belong to genes differentiating LEAD and CVD groups, characterized
by prominent differences in hypertension status and usage of statins and acetylsalicylic
acid (Table 1), what could be an substantial factor altering expression of related genes.

Obtained results indicate that hypertension and medication in studied groups could
affect transcriptomic profiles of PBMCs and the differential character of analyzed genes
could be a result of applied pharmacotherapy, however further studies are needed to
evaluate this effect.

Table 4. Relationships between categorical characteristics of study subjects (smoking and hypertension status, medication
with statins, acetylsalicylic acid and beta-adrenergic blockers) and expression of 89 genes selected from LEAD vs. AAA,
LEAD vs. CVD and AAA vs. CVD comparisons. The table presents genes with statistically significant relationship
(Benjamini–Hochberg FDR adjusted p < 0.05) obtained from two-sided Mann–Whitney U test (the entire results are provided
in Supplementary File 2).

Comparison
Hypertension Status Statins Medication Acetylsalicylic Acid

Gene
Symbol p Gene

Symbol p Gene
Symbol p Gene

Symbol p Gene
Symbol p

LEAD vs.
AAA none none none

LEAD vs.
CVD

GLI4 8.09 × 10−3 FAM167A 2.05 × 10−2 FCGR3B 2.09 × 10−3 SGSM3 5.22 × 10−3 D2HGDH 1.09 × 10−2

MNDA 3.52 × 10−2 C1orf216 4.76 × 10−2 GLI4 2.09 × 10−3 CDC42P6 6.02 × 10−3 DYNC1I2P1 1.09 × 10−2

HSP90B2P 2.09 × 10−3 EIF3C 6.02 × 10−3 EIF3FP3 1.09 × 10−2

PSME2P2 2.09 × 10−3 EIF4A1P10 6.02 × 10−3 PGDP1 1.09 × 10−2

TECPR1 2.09 × 10−3 PSME1 6.02 × 10−3 RASGRP2 1.09 × 10−2

HSP90B3P 2.32 × 10−3 RP11-6B6.3 6.02 × 10−3 SDCBPP2 1.09 × 10−2

PIDD1 2.32 × 10−3 ANXA2P2 7.34 × 10−3 CALM2P4 1.38 × 10−2

RP11-
490H24.5 2.32 × 10−3 CAP1P2 7.34 × 10−3 FAM167A 1.38 × 10−2

RP13-
104F24.3 2.32 × 10−3 HIP1R 7.34 × 10−3 RP11-

262D11.2 1.38 × 10−2

HSPA9P1 3.04 × 10−3 MSNP1 7.34 × 10−3 TBC1D27P 1.38 × 10−2

PDIA3P1 3.04 × 10−3 POLRMT 7.34 × 10−3 C1orf216 1.82 × 10−2

SETP14 3.04 × 10−3 RP11-
1033A18.1 7.34 × 10−3 TSC2 1.82 × 10−2

ACTR3P2 3.91 × 10−3 CALM2P2 9.06 × 10−3 SRRM1P3 3.11 × 10−2

API5P1 3.91 × 10−3 CTB-52I2.4 9.06 × 10−3 AC104651.2 3.90 × 10−2

C1QB 3.91 × 10−3 CTNNA1P1 9.06 × 10−3 CFL1P4 3.90 × 10−2

HNRNPA1P7 3.91 × 10−3 GLUD2 9.06 × 10−3 HECTD4 4.76 × 10−2

RP11-
286H14.4 5.22 × 10−3 MNDA 9.06 × 10−3 PAM16 4.76 × 10−2

RP11-
334L9.1 5.22 × 10−3 AC078899.1 1.09 × 10−2 S100A10 4.76 × 10−2

AAA vs.
CVD

none none TCP11L2 6.02 × 10−3 STMN3 1.38 × 10−2 MIR150 3.11 × 10−2

MALT1 6.02 × 10−3

None—no genes meeting selection criteria (corrected p < 0.05), AAA—abdominal aortic aneurysm, CVD—chronic venous disease,
LEAD—lower extremities arterial disease.

3. Discussion

High prevalence and the burden of severe complications make LEAD, AAA and
CVD together the major health problem worldwide. Often asymptomatic course of disease
progress as well as atypical symptoms cause these diseases to be constantly underdiagnosed
what creates the need for new tools for detection and assessment. Determination of
biological markers using high-accessible biological material, including PBMCs and other
blood components, is beneficial for clinical practice. Therefore, in our previous works we
used PBMCs to identify dysregulations in miRNA:gene regulatory network in patients
with LEAD, AAA and CVD in relation to healthy controls and potential biomarkers
were proposed [37,42,46]. In the current paper, transcriptomic differences in PBMCs
between studied diseases were investigated and potential implications to pathogenesis
were explored.

In the first approach, upregulation of GGT1 was identified as a common marker of
LEAD, AAA and CVD subjects after comparison to healthy controls (Figure 1). This finding
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is in concordance with previous studies, where increased serum level of GGT was found
to be associated with peripheral arterial disease (PAD) in non-alcoholic males [47] and
with higher risk of subclinical coronary atherosclerosis, coronary artery calcification and
cardiac events [48,49]. Elevated serum GGT levels are related to increased concentrations of
homocysteine [50], which is well known independent risk factor of cardiovascular diseases,
including LEAD [51]. Upregulation of GGT1 was also found in aortic tissue wall of AAA
patients [52]. Increased GGT level is considered as an adaptation to higher oxidative stress,
since GGT plays an important role in glutathione homeostasis by providing cysteine for
intracellular de novo synthesis of glutathione via breaking down extracellularly localized
glutathione [53]. GGT is also involved in arachidonic acid metabolism through catalyzing
of leukotriene D4 (LTD4) formation [54], a factor stimulating vascular inflammation [55].
Both GGT1 and LTD4 circulatory levels were demonstrated to be elevated in individuals
exposed to acute hypoxia [56]. These finding suggests that the upregulation of GGT1 in
LEAD and AAA could be a hallmark of oxidative stress, inflammation and hypoxia, which
are pertinent elements of these diseases’ onsets.

In the second approach, differential gene expression analysis was performed using
DESeq2 and UVE-PLS methods for the following comparisons: LEAD vs. AAA, LEAD
vs. CVD and AAA vs. CVD. From each comparison, genes meeting unified cutoff criteria
(p value adjusted by Benjamini–Hochberg false discovery rate <0.001 for DESeq2 results
and reliability score ≥8 for UVE-PLS results) were selected. 21, 58 and 10 genes were
selected from LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD, respectively (Figure 3,
Table 2). Interestingly, there were no genes overlapping in all three sets (Figure 3D),
therefore selected genes could be considered as specific for corresponding comparisons and
may carry abundant information about differences in transcriptomic patterns of studied
diseases.

Differentially expressed genes identified as specific for performed comparisons formed
a transcriptional landscape of every disease, pointing out differences between them. The
striking observation was a clear bias towards enrichment in genes of various regulatory
potential, such as pseudogenes (Table 5). Due to advancement of high-throughput sequenc-
ing platforms, it was shown, that a high number of pseudogenes is indeed transcriptionally
active and could be functionally significant part of the genome [57–59].

Pseudogene regulatory function may be elucidated by many different mechanisms
such as being a microRNA sponge, recruiting chromatin-remodeling factors to its parental
gene, acting as a decoy for RNA-binding proteins, associating with DNA-binding tran-
scription factors and interrupting the DNA binding capacity [60].

Upregulation of genes belong to pseudogene class is a prominent feature distinguish-
ing LEAD from CVD, comprising 76.7% (Table 5) of all upregulated specific genes. This
may reveal potential complex mode of regulation in LEAD as a subtype of atherosclerosis
and may reflect relative richness of atherosclerotic symptoms and characteristics.

The majority of genes with lower expression in AAA group in relation to LEAD and
CVD patients belongs to small nucleolar RNAs (snoRNAs) of C/D box and H/ACA box
types (Table 5). The function snoRNAs is 2′-O-ribose methylation and pseudouridylation
of ribosomal RNAs [61], which suggests different regulation of translation process in AAA
when compared to LEAD and CVD.

SNHG5 was reported as a pro-oncogenic factor stimulating proliferation of myeloid
leukemia cells [62]. High expression of two snoRNAs, SNORA72 and SNORA26, was
correlated with pro-oncogenic properties of cells and poor prognosis in cancer [63,64].
Upregulation of these genes in LEAD vs. AAA subjects may promote proliferation of
immune cells and reflect higher inflammation status of the atherosclerotic lesions compared
to aneurysm.
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Table 5. Gene types of 21, 58 and 10 genes identified as specific for LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD
comparisons, respectively. Gene types were harvested from Ensembl genome browser release 102 (http://www.ensembl.
org/index.html, accessed on 20 January 2021).

Direction of
Regulation Gene Type Gene Symbols

Number in
up-/Downregulated

Group of Genes
%

LEAD vs. AAA

up

snoRNA SNORA26, SNORA72, SNORD101, SNORD111B,
SNORD20, SNORD82 6/9 66.7

protein coding UFM1 1/9 11.1

lncRNA SNHG5 1/9 11.1

sense intronic SNORD91B 1/9 11.1

down

protein coding POLR2A, EHMT1, TRAPPC12, ZNF592, YBX1, MAU2,
GIT2 7/12 58.3

misc RNA RN7SKP208, RN7SKP286, RN7SKP45, RN7SKP7 4/12 33.3

lncRNA AC092620.2 1/12 8.3

LEAD vs. CVD

up pseudogene

AC078899.1, AC104651.2, ACTR3P2, ANXA2P2, API5P1,
CALM2P2, CALM2P4, CAP1P2, CDC42P6, CFL1P4,

CTB-52I2.4, CTNNA1P1, DYNC1I2P1, EIF3FP3,
EIF4A1P10, HNRNPA1P7, HSP90B2P, HSP90B3P,
HSPA9P1, MSNP1, PDIA3P1, PGDP1, PSME2P2,
RP11-1033A18.1, RP11-262D11.2, RP11-286H14.4,

RP11-334L9.1, RP11-490H24.5, RP11-6B6.3,
RP13-104F24.3, SDCBPP2, SETP14, SRRM1P3

33/43 76.7

protein coding ARL6IP1, C1orf216, C1QB, EIF3C, FCGR3B, GLUD2,
MNDA, PSME1, S100A10, S100A12 10/43 23.3

down
protein coding

D2HGDH, DNAH1, FAM167A, GLI4, HECTD4, HIP1R,
PAM16, PIDD1, POLRMT, PPP6R2, RASGRP2, SGSM3,

TECPR1, TSC2
14/15 93.3

pseudogene TBC1D27P 1/15 6.7

AAA vs. CVD

down
snoRNA SNORA11, SNORA14B, SNORA60, SNORD127,

SNORD64, SNORD94 6/10 60

protein coding MALT1, STMN3, TCP11L2 3/10 30

miRNA MIR150 1/10 10

AAA—abdominal aortic aneurysm, CVD—chronic venous disease, LEAD—lower extremities arterial disease, lncRNA—long non-coding
RNA, miRNA—microRNA, misc RNA—miscellaneous RNA, snoRNA—small nucleolar RNA.

Four out of 12 genes downregulated in LEAD vs. AAA patients belong to RN7SK
miscellaneous RNAs (RN7SKP7, RN7SKP45, RN7SKP208, RN7SKP286) (Table 5). For the
time being, there were no reports about contribution of those genes to cardiovascular
diseases or any biological process (according to GWAS Catalog database [65], accessed
15 January 2021). Despite lack of data, their function could be elucidated on the known
functions of the RN7SK gene. Its product is a long, non-coding RNA which contributes to
control of transcription elongation by RNA polymerase II [66,67]. One can speculate, that
miscellaneous RN7SK RNAs found in our study may coregulate the AAA transcriptome in
a global manner.

Upregulation of UFM1 was demonstrated in LEAD vs. AAA group (Table 2). UFM1
encodes evolutionarily conserved ubiquitin-like protein triggering activation of protein
targets through UFMylation. UFMylation process is essential for erythropoiesis by main-
taining proper survival and differentiation of cells in erythroid lineage. Knockout of
UFMylation pathway downstream effectors in animals causes severe anemia associated
with defective differentiation of both megakaryocytes and erythrocytes [68]. Higher expres-
sion of UFM1 in LEAD patients when compared to AAA subjects may reflect enhanced
erythropoiesis stimulated by chronic ischemia characteristic for LEAD progression.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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The presented study show downregulation of EHMT1 in LEAD vs. AAA group (Table 2).
Lower expression level of EHMT1 was shown to be a factor increasing fetal hemoglobin
levels [69], which is positively correlated with carotid artery intima media thickness in
patients with β-thalassemia major [70]. The influence of atherosclerosis status of fetal
hemoglobin levels seems to be an interesting topic for future studies on biomarkers of
atherosclerosis. Moreover, EHMT1 together with EHMT2 regulate alternative splicing of
VEGFA [71], which antiangiogenic splice isoform VEGF-A165b was shown to be elevated
in serum of LEAD patients with coexistence of the reduction of the proangiogenic VEGF-
A165a isoform [72]. The possible influence of EHMT1 dysregulation on biosynthesis
of these VEGFA splicing isoforms in the context of vascular diseases should be further
investigated.

Downregulation of YBX1 observed in the current study in LEAD vs. AAA subjects
(Table 2) may indicate enhanced oxidized LDL-mediated inflammatory response and lipid
deposition in macrophages [73], what is characteristic for pathogenesis of atherosclerosis,
and hence LEAD.

GIT2 was identified as a key regulator of complex ageing processes, including DNA
damage, oxidative stress, metabolic disruption, inflammation and fat deposition. GIT2
promote DNA repair and its age-dependent increase reflects a cellular protection mech-
anism attenuating ROS-induced DNA damage. Elevation in GIT2 expression levels was
reported in an animal model for diabetes and obesity. GIT2 is also involved in regula-
tion of inflammaging, which is an age-related, progressive increase in low-grade chronic
inflammation linked to elevated levels of inflammatory biomarkers such as C-reactive
protein and interleukin IL-6 [74]. Higher expression of GIT2 in AAA patients in relation
to LEAD subjects (Table 2) suggests enhanced association of aging hallmarks with AAA
pathogenesis in comparison to LEAD, what is especially suggestive, because individuals in
the AAA and LEAD groups have similar age.

S100A10 and S100A2 were shown in presented research as to be upregulated in LEAD
vs. CVD group (Table 2). S100A10 was previously shown to be hypomethylated in coronary
artery plaques compared to great saphenous vein [75], what may be an explanation of
higher expression of this gene in LEAD group. Higher expression of S100A12 was identified
as a biomarker of coronary artery disease, aortic calcification, increased plaque vulnerability
and as predictor of cardiovascular events [76]. Both genes were identified as being involved
in macrophage activation and inflammatory cytokines induction [75,76]. Implications of
S100A10 and S100A12 in atherosclerosis could entail differences in their expression in
LEAD and CVD groups, however acetylic acid medication could also be causative for
obtained results (Table 5).

Upregulation of SGSM3 in CVD vs. LEAD group (Table 2) may reflect higher ROS
status in CVD, due to protective role of SGSM3 against oxidative stress [77].

In CVD group, TSC2 exhibits higher expression when compared to LEAD group (Table 2).
It may suggest less intense cellular proliferation in CVD since TSC2 was evidenced to
exert suppressing effect on cell cycle through inhibition of mTOR signaling [78]. Lower
expression of TSC2 in LEAD may be an effect of aging, a process with declined AMP-
activated protein kinase (AMPK) signaling, which activates TSC2 [78]. One of the features
of aging related to suppression of AMPK is lowering the autophagy, a process essential for
degradation of protein aggregates forming in aging cells [79]. Lower level of autophagy
could be also indicated by downregulation of promotor of aggrephagy TCPR1 in LEAD
group [80]. These findings could reflect a more advanced aging process in LEAD vs. CVD
group, but may also be a result of significant difference in age between these groups.

Another gene downregulated in LEAD after comparison to CVD group is RASGRP2
(Table 2), which promotes adhesion of T cells and contribute to the endothelial homeostasis
via preventing TNF-induced ROS production and apoptosis in umbilical vein endothe-
lial cells (HUVECs) [81]. Higher expression of RASGRP2 in CVD vs. LEAD may be a
stimulus for venous inflammation and lower expression in LEAD could be a hallmark of
endothelium dysfunction, however further studies on this topic are required.
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MIR150 is a gene downregulated in AAA vs. CVD and also negatively correlated with
age and potentially linked to acetylsalicylic acid usage (Tables 2–4). This gene encodes
mature miRNA miR-150-5p, whose downregulation was reported in patients with AAA and
subaneurysmal aortic dilation in relation to high cardiovascular risk subjects with normal
aortic diameter [82]. Aberrant expression of this miRNA seems to be triggered by disease
status rather than by age, because age-matched populations were investigated in [82].
Lower expression of miR-150-5p may indicate AAA-associated endothelial dysfunction
and vascular remodeling, since this miRNA has been suggested to play protective role by
maintaining endothelium function and suppressing vascular remodeling via inhibition of
pentaxin-3 expression [83].

Another gene with expression higher in CVD when compared to AAA is MALT1
(Table 2), which is a component of CARD11–BCL10–MALT1 signalosome, triggering
inflammatory pathways in activated leukocytes and mediate lymphocyte proliferation,
differentiation, metabolic reprogramming and survival after antigen recognition. The
CARD10–BCL-10–MALT1 complex is a regulator of cardiovascular inflammation and
remodeling though induction of cytokine and chemokine production in either endothelial
or vascular smooth muscle cells. Moreover, this complex mediates the disruption of the
endothelial barrier [84]. Higher expression of MALT1 in CVD patients may be a hallmark
of vascular inflammation and remodeling ongoing in vein tissues during CVD.

Three genes (POLR2A, ZNF592, TRAPPC12) differentiating LEAD from AAA and
12 genes (RP11-262D11.2, SRRM1P3, SDCBPP2, ARL6IP1, HNRNPA1P7, API5P1, AC104651.2,
EIF3FP3, RP11-286H14.4, CTNNA1P1, DYNC1I2P1, CTB-52I2.4) differentiating LEAD and
CVD were also correlated with creatinine levels (Table 3). Altered expression of these genes
probably reflect higher levels of creatinine observed in LEAD patients (Table 1). High
creatinine level is a hallmark of declined glomerular filtration rate, a typical clinical marker
of kidney failure. Chronic kidney disease was previously reported to be strongly associated
with LEAD and other markers of kidney function such as cystatin C and β2-microglobulin
were shown to be better markers of LEAD risk in patients with kidney diseases [85–87].
POLR2A gene, which is shown in the current study as downregulated in LEAD vs. AAA
(Table 2) and negatively correlated with creatinine level (Table 3), was previously found
as involved in congenital obstructive nephropathy [88] and encoded protein was strongly
functionally linked to dysregulated proteins in animal models of salt-induced kidney
damage [89]. The implications of POLR2A and other dysregulated genes correlated with
creatinine levels in cross-talks between LEAD and kidney failure onsets should be a subject
of further studies.

A descriptive character of our study raised some limitations. Application of unified
cutoff criteria for selection of differentially expressed genes, although increasing the com-
parability of obtained results, could cause loss of certain genes important for differentiating
diseases studied. Due to statistically significant differences in demographic and clinical
characteristics of compared groups, selected differentially expressed genes could be not
exclusive for disease status, but their expression levels could be affected by other analyzed
variables, especially age, BMI, creatinine levels, hypertension and medication. Moreover,
changes in lymphocytes and monocytes subpopulations content in PBMCs samples, how-
ever assessed as not significant (Figure S5), could be a potential source of bias in obtained
transcriptome profiles.

To recompensate the lack of qPCR validation, we decided to use broader and more
advance statistical analysis (DESeq2 with UVE-PLS confirmation, ROC analysis) and took
much stricter thresholds of statistical significance (p < 0.001) with Benjamini–Hochberg
false discovery rate correction into account in order to substantially limit potential false
positive results.

Finally, due to initial and descriptive character of the presented study, the conclusions
inferred from obtained results need to be confirmed in explanatory studies. Differential
character of determined gene signatures and their role in vascular pathology should be
elucidated in detail in further studies using such techniques as qPCR, flow cytometry,



Int. J. Mol. Sci. 2021, 22, 3200 21 of 28

western blot, transfection methods or experiments with animal models. Further validation
studies should also include investigations in much larger and more balanced populations.

The aim of sharing findings of the current work was to give the opportunity to start
a discussion within scientific community and to propose new explorative paths for other
research groups.

4. Materials and Methods
4.1. Study Participants

The study was performed in accordance with the Declaration of Helsinki and after
approval of the Bioethics Commission of the Medical University of Lublin (decision No. KE-
0254/341/2015, approval date 17 December 2015). The study group consists of 8 patients
with LEAD, 7 patients with AAA and 7 patients with CVD. All individuals were diagnosed
in Independent Public Clinical Hospital No. 1 in Lublin between February 2016 and
May 2017. Informed and signed consent was obtained from all study subjects. Detailed
inclusion procedure and established exclusion criteria were provided in our previous
papers [37,42,46]. Clinical characteristics of participants are presented in Table 1 and
detailed clinical features specific for each disease was provided in Table A1 in Appendix A.

4.2. Gene Expression Datasets

Gene expression datasets were generated by RNA sequencing of PBMCs samples
obtained from the study participants as described in our previous papers. Briefly, PBMCs
specimens were isolated from whole blood samples using density gradient centrifugation
with Gradisol L reagent (Aqua-Med, Łódź, Poland). A diversity of white blood cells
subpopulations in studied groups were evaluated using the whole blood morphology
analysis (Figure S5). Total RNA was isolated from PBMCs samples using TRI Reagent
Solution (Applied Biosystems, Foster City, CA, USA). Total RNA samples underwent
ribodepletion procedure using RiboMinus Eukaryote System v2 (Ambion, Austin, TX,
USA) and were subjected to whole transcriptome libraries preparation using Ion Total
RNA-Seq Kit v2, Magnetic Bead Cleanup Module kit and Ion Xpress RNA-Seq Barcode 01-
16 Kit (Life Technologies, Carlsbad, CA, USA). Libraries were sequenced on Ion 540 chips
(Life Technologies) using Ion S5 XL System (Thermo Fisher Scientific, Waltham, MA,
USA). Raw sequences were aligned to 55,765 genes of hg19 human genome using Torrent
Suite Software v5.0.4. and Ion Torrent RNASeqAnalysis plugin v.5.0.3.0 (Thermo Fisher
Scientific). Statistics of parameters describing transcriptome libraries and primary results
of sequencing data analysis are provided in Table S2.

4.3. Data Analysis

Data analysis was performed using R environment (version 3.6.3, https://www.r-
project.org, accessed on 12 January 2021) and appropriate packages according to corre-
sponding reference manuals.

Statistical significance of differences in demographic and clinical parameters between
LEAD, AAA and CVD groups was examined using Kruskal-Wallis rank sum test for
continuous variables (kruskal.test function in R) and two-sided Fisher’s exact test for
categorical variables (fisher.test function in R).

All further statistical procedures applied to expression datasets and subsequent bioin-
formatical analysis were previously described in detail in [37,42,46].

Differential expression analysis of whole transcriptome expression datasets was per-
formed on biological replicates using DESeq2 method implemented in DESeq2 1.26.0 pack-
age [90] (https://bioconductor.org/packages/release/bioc/html/DESeq2.html, accessed
on 12 January 2021) and Uninformative Variable Elimination by Partial Least Squares (UVE-
PLS) method [91] implemented in plsVarSel 0.9.6 package [92] (https://cran.r-project.org/
web/packages/plsVarSel/index.html, accessed on 12 January 2021).

DESeq2 analysis was performed on expression data filtered out of genes with mean
of reads lower than one. Differentially expressed genes received from DESeq2 analysis

https://www.r-project.org
https://www.r-project.org
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://cran.r-project.org/web/packages/plsVarSel/index.html
https://cran.r-project.org/web/packages/plsVarSel/index.html
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with p value below 0.001 after Benjamini–Hochberg false discovery rate correction were
considered as statistically significant.

For UVE-PLS analysis, filtered expression data was transformed using regularized
log normalization (rlog function in DESeq2 package). UVE-PLS analysis was performed
with 1000 iterations, reliability score cutoff threshold equal to 8 and 0.75 ratio for splitting
into trained and tested data subsets. An optimal number of PLS (Partial Least Squares)
components for UVE-PLS analysis (Table A2 in Appendix B) was established by PLS
regression with leave-one-out (LOO) cross-validation followed by visual inspection of plots
presenting the arrangement of estimated Root Mean Squared Error of Prediction (RMSEP)
over the number of PLS components (Figure S6).

Venn diagrams, heatmap with Euclidean clustering and PCA plot were created us-
ing VennDiagram 1.6.20 (https://cran.r-project.org/web/packages/VennDiagram/index.
html, accessed on 15 January 2021) [93], pheatmap 1.0.12 (https://cran.r-project.org/
web/packages/pheatmap/index.html, accessed on 15 January 2021) and ggplot2 3.3.0 (
https://ggplot2.tidyverse.org, accessed on 15 January 2021) packages, respectively.

A ROC analysis implemented in pROC package 1.16.2 [94] (https://cran.r-project.
org/web/packages/pROC/index.html, accessed on 16 January 2021) was used to evaluate
the predictive value of selected genes.

Identification of relationships between characteristics of study participants and expres-
sion of selected genes were performed using Spearman rank correlation test implemented
in Hmisc package 4.4-0. (https://cran.r-project.org/web/packages/Hmisc/index.html,
accessed on 18 January 2021) as well as a two-sided Mann–Whitney U test implemented in
wilcox.test function in R.

Functional analysis of selected genes was performed using Database for Annotation,
Visualization and Integrated Discovery (DAVID) 6.8 tool (https://david.ncifcrf.gov/, ac-
cessed on 21 January 2021) [95,96]. Default whole genome of Homo sapiens was applied as a
background. Up to ten top the most enriched terms were selected from Gene Ontology,
KEGG and Reactome categories. Functional network of the most enriched terms and
associated genes was constructed using Cytoscape v3.7.0 software (https://cytoscape.org/,
accessed on 23 January 2021) [97].

5. Conclusions

In our work we demonstrated that PBMCs are a valuable material to investigate
transcriptomic differences between patients with LEAD, AAA and CVD. Analysis of
PBMCs gene expression profiles enabled finding of associations of selected genes with
characteristics of participants and their implications in disease pathogenesis. Performed
identification of potentially disease-specific biomarkers could provide new diagnostic
and therapeutic opportunities in LEAD, AAA and CVD management; however, further
validation in studies on larger and demographically matched populations is required to
launch implementation process of our results to clinical practice.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/6/3200/s1, Figure S1: Quality control of results obtained from differential gene expression
analysis performed by DESeq2 package between group of 8 LEAD subjects and a group of 7 CVD
subjects, Figure S2: Quality control of results obtained from differential gene expression analysis
performed by DESeq2 package between group of 8 LEAD subjects and a group of 7 AAA subjects,
Figure S3: Quality control of results obtained from differential gene expression analysis performed
by DESeq2 package between group of 7 AAA subjects and a group of 7 CVD subjects, Figure S4:
Boxplot presenting Cook’s distances of genes across samples, Figure S5: Proportions of white blood
cells subpopulations in the study subjects, resulted from blood morphology analysis, Figure S6:
Plots presenting the arrangement of prediction error and Partial Least Squares (PLS) components
generated in UVE-PLS differential expression analysis of gene expression data, Table S1: Results of
ROC analysis for 21 genes unique for the comparison of LEAD vs. AAA, 58 genes unique for the
comparison of LEAD vs. CVD and 10 genes unique for the comparison of AAA vs. CVD, Table S2:
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Assessment of transcriptome libraries and results of primary analysis of transcriptome sequencing
data carried out with Ion Torrent RNASeqAnalysis plugin v.5.0.3.0.
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Appendix A

Table A1. Detailed clinical characteristics of the study subjects specific for LEAD, AAA and CVD
groups.

Group Parameter

LEAD
(n = 8)

Indication for treatment:

Rutherford category 2 6 (75%)

Rutherford category 3 2 (25%)

Initial claudication distance (m) 143.75 ± 26.69 (100–180) 1

Ankle-brachial index 0.658 ± 0.045 (0.59–0.72) 1

Length of occlusion (cm) 13.63 ± 5.15 (7–22) 1

Plaque localization:

Iliac artery 1 (12.5%)

Femoral artery 6 (75%)

Iliac and femoral artery 1 (12.5%)

AAA
(n = 7)

Abdominal aneurysm measurements:

Maximum aneurysm diameter (cm) 6.371 ± 0.419 (5.8–7.0) 1

Thrombus volume (cm3) 10.821 ± 2.605 (6.3–14.7) 1

Aneurysm neck length (cm) 0.971 ± 0.198 (0.7–1.2) 1

CVD
(n = 7)

Signs and symptoms:

Pain 2 (28.6%)

Ankle-brachial index 0.974 ± 0.016 (0.95–0.99) 1

Extended anatomical classification:

Great saphenous vein (above knee) 3 (42.8%)

Great saphenous vein (below knee) 2 (28.6%)

Small saphenous vein 2 (28.6%)

Medication:

Micronized diosmin 3 (42.98)

Preparation with vitamin C, hesperidin
and Ruscus aculeatus extract 2 (28.6%)

Both medications 2 (28.6%)
1 mean ± SD (range). LEAD—lower extremities arterial disease, AAA—abdominal aortic aneurysm, CVD—
chronic venous disease.

Appendix B

Table A2. General results of differential gene expression analysis performed using DESeq2 and UVE-PLS methods obtained
for comparisons: LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD.

Comparison

DESeq2 UVE-PLS Number of Genes Common
for Sets of Genes Selected

from DESeq2 (p < 0.001) and
from UVE-PLS (Reliability

Score ≥8)

Number of All
Differentially

Expressed Genes

Number of
Differentially

Expressed Genes
with p < 0.05

NUMBER of
Differentially

Expressed Genes
with p < 0.001

Number of PLS
Compo-

nents/Iterations

Number of
Informative Genes

with Reliability
Score ≥8

LEAD vs. AAA 21,460 544 31 3/1000 89 21
LEAD vs. CVD 21,460 1603 87 3/1000 174 58
AAA vs. CVD 20,550 685 56 2/1000 34 10

p—statistical significance after correction by Benjamini–Hochberg false discovery rate, AAA—abdominal aortic aneurysm, CVD—chronic
venous disease, LEAD—lower extremities arterial disease, UVE-PLS—Uninformative Variable Elimination by Partial Least Squares.
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42. Zalewski, D.P.; Ruszel, K.P.; Stępniewski, A.; Gałkowski, D.; Bogucki, J.; Komsta, Ł.; Kołodziej, P.; Chmiel, P.; Zubilewicz, T.;
Feldo, M.; et al. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. J. Clin. Med. 2020, 9, 1974.
[CrossRef] [PubMed]

43. Markovic, J.N.; Shortell, C.K. Genomics of varicose veins and chronic venous insufficiency. Semin. Vasc. Surg. 2013, 26, 2–13.
[CrossRef]

44. Grant, Y.; Onida, S.; Davies, A. Genetics in chronic venous disease. Phlebology 2017, 32, 3–5. [CrossRef]
45. Serralheiro, P.; Novais, A.; Cairrão, E.; Maia, C.; Costa Almeida, C.M.; Verde, I. Variability of MMP/TIMP and TGF-β1 receptors

throughout the clinical progression of chronic venous disease. Int. J. Mol. Sci. 2018, 19, 6. [CrossRef] [PubMed]
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