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Glioma is a deadly tumor that accounts for the vast majority of brain tumors. 2us, it is important to elucidate the molecular
pathogenesis and potential diagnostic and prognostic biomarkers of glioma. In the present study, gene expression profiles of
GSE2223 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and hub genes related to glioma were
identified using weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis
of differentially expressed genes (DEGs). After a series of database screening tests, we identified 11 modules during glioma
progression, followed by six hub genes (RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1) that can predict the prognosis
of glioma and were validated in glioma tissues by qRT-PCR. 2e CIBERSORT algorithm was used to analyze the difference of
immune cell infiltration between the glioma and control groups. Finally, Identification VSIG4 for immunotherapy response in
patients with glioma demonstrating utility for immunotherapy research.

1. Introduction

Glioma is a deadly tumor that accounts for about a third of
all brain tumors [1]. 2ey originate from the glial cells in the
central nervous system and have a more malignant histo-
logical appearance compared to other brain tumors [2]. 2e
World Health Organization classifies glioma into low and
high grades. Low-grade glioma (LGG) (astrocytoma, oli-
godendroglioma, and oligoastrocytoma) is a well-
differentiated tumor with high 5-year survival rates of al-
most 60% [3–5]. Among the high-grade gliomas, glioblas-
toma (GBM) is the most aggressive tumor with a median
survival of only 15 months [6]. About 70% of LGG patients
progress to a high grade within 5–10 years [7].

Glioma usually occurs relatively late in life, which makes
complete resection difficult [8]. Current treatment for glioma
includes surgical removal, followed by chemotherapy and
radiation. Aggressive surgical treatment is associated with
serious side effects, including the development of resistance

against chemotherapy and radiotherapy, leading to treatment
failure, tumor recurrence, and ultimately death [9].2erefore,
it is necessary to identify new diagnostic and prognostic
biomarkers for personalized gene and molecular therapies.

Weighted gene coexpression network analysis
(WGCNA) is a systems biology method used to identify the
correlations between genes in microarray samples, as well as
identify modules of highly correlated genes [10]. WGCNA
can be used to discover genes and biological processes of
unknown function, candidate diseases, or transcriptional
regulatory work. Although WGCNA cannot prove a causal
relationship, coexpression networks can identify regulatory
genes of different phenotypes. 2e network approach
bridges the gap between individual genes and systemic tu-
mors [11, 12].

In this study, the GSE2223 dataset, including 50 glioma
samples and four control samples, were used to conduct
WGCNA. Gene coexpression networks and gene modules
were identified. Overlapping genes were evaluated using the

Hindawi
Journal of Oncology
Volume 2022, Article ID 8615949, 13 pages
https://doi.org/10.1155/2022/8615949

https://orcid.org/0000-0002-8518-1159
https://orcid.org/0000-0001-9233-5788
mailto:qws0309@163.com
mailto:flydottjh@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8615949


black-blue module and protein-protein interaction (PPI)
network of differentially expressed genes (DEGs) using the
cytoHubba plugin to identify diagnostic and prognostic
related hub genes of glioma. Finally, identification of VSIG4
for immunotherapy response in patients with glioma in-
dicates that the VSIG4 signature may have the ability to
predict the effect of immunotherapy in glioma.

2. Materials and Methods

2.1.DataProcessing. Figure 1 depicts the procedures used for
data preparation, processing, analysis, and validation. Gene
expression profiles of GSE2223 were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi).2e GPL1833 (HG-U133A) Affymetrix Human Genome
U133A array was used to extract the expression profile of the
GSE2223 dataset. 2e dataset consisted of 50 glioma and four
control samples. 2e original expression profile was down-
loaded, followed by background correction and quantile
normalization using a robust multiarray averaging (RMA)
algorithm. Subsequently, mRNA expression matrices were
developed for patients with glioma.

2.2. Screening and Analysis of DEGs. Cuffdiff was used to
screen for DEGs between glioma and control samples. 2e
threshold for DEGs was set as follows: adjusted p value
<0.02; log2 (fold change)> 1.5 or log2 (fold change)<−1.5.
2e ggplot2 package in R software (R Foundation for Sta-
tistical Computing, Vienna, Austria) was used to display
heat and volcano maps.

DEGs with unique biological significance were identified
using Gene Ontology (GO) analysis. 2e Kyoto Encyclopedia
of Genes and Genomes (KEGG) database was used to search
for important pathways.2e ClusterProfiler package in R was
used for GO annotation and KEGG pathway analysis.

2.3. Coexpression Network Constructed Using WGCNA.
2e WGCNA R package was used to construct the coex-
pression network of all genes in glioma and control samples.
2e algorithm screened the top 25% of genes for further
analysis. 2eWGCNA analysis was performed on 50 glioma
and four control samples.2e samples were used to calculate
the Pearson correlation matrix. Weighted adjacency matrix
was established using the formula amn� |cmn|β (where
amn� adjacency between genes m and n; cmn�Pearson’s
correlation; β� soft-power threshold). Furthermore, the
weighted adjacency matrix was transformed into a topo-
logical overlap metric matrix (TOM) to estimate its con-
nectivity in the network. 2e average linkage hierarchical
clustering method was used to construct a clustering den-
drogram of the TOM matrix. 2e minimum gene module
size was set at 30 to obtain suitable modules, and the
threshold for merging similar modules was set at 0.25.

2.4. Hub Gene Identification Using WGCNA and PPI. 2e
WGCNA modules that were most significantly correlated
with the clinical phenotypes were identified. 2en, the most

relevant MEyellow and MEbrown modules were selected for
subsequent analysis. To construct a PPI network, 311 DEGs
were uploaded to the STRING database (https://string-db.
org/) [13]. 2e confidence score was set at 0.9. 2e core
modules of the PPI network were analyzed using Cytoscape
software and plugin (cytoHubba) [14], and the degree scores
of the first 100 genes were screened. Gene overlapping
between cytoHubba and the yellow-brown modules were
identified as hub genes.

2.5. Validation of Hub Genes. To validate the abnormal
expression level of hub genes, the online database GEPIA
[15] was used to analyze the hub gene expression profiles of
glioma tissue and normal brain samples from the Cancer
Genome Atlas (TCGA) database.

Results of the immunohistochemical staining were
collected from the Human Protein Atlas to verify the protein
levels of hub genes in glioma tissue and normal tissue (HPA,
https://www.proteinatlas.org/). HPA is a Sweden-based
program initiated in 2003, which maps human proteins in
cells, tissues, and organs. We used the GeneMANIA online
platform to analyze the hub genes and their networks of
coexpressed genes (https://genemania.org/) [16].

2.6. Survival Analysis. 2e Kaplan–Meier curve of GEPIA
[15] was used to analyze the overall survival (OS) and
disease-free survival (DFS) for hub genes in TCGA glioma
patients. 2e methods used were in accordance with the
publisher’s instructions. Only genes with p values <0.05
were considered potential prognostic genes.

2.7. Reverse-Transcription and Quantitative Real-Time PCR
(qRT-PCR). Glioma (n� 12) and normal brain (from
traumatic decompression patients, n� 6) tissues were col-
lected from the Neurosurgical Department of Tongji
Hospital after obtaining written consent and approval from
the Research Ethics Committee of Tongji Hospital (no. TJ-
IBR20181111). Tissue total RNA was isolated using the
Trizol reagent (Takara Bio Inc., Shiga Japan) according to
the manufacturer’s instructions. 2e RT Premix kit (Takara
Bio Inc.) was used for reverse transcription. 2e reaction
was conducted at 37°C for 15min and at 85°C for 5 s.
Quantitative real-time PCR (qRT-PCR) was performed
using the real-time PCR system (Bio-Rad Laboratories,
Hercules, CA, USA) and SYBR Green PCR Master Mix
(Toyobo Co., Ltd., Osaka, Japan). Table 1 lists the primer
sequences.

2.8. Analysis of Immune Cell Infiltration. 2e CIBERSORT
algorithm was used to evaluate the percentage of 22 immune
cell types in each sample. 2e fraction of 22 immune cells
was compared between the glioma and control groups, and
the violin plot was drawn by the “vioplot” R package. 2e
correlation coefficient between immune cells was calculated
using the “corrplot” R package. Spearman correlation
analysis was also performed to investigate the correlation of
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Figure 1: Schematic flow diagram of the study.

Table 1: Primer sequences of hub genes.

Gene Primer (5′ -> 3′)

GAPDH Forward GGAGCGAGATCCCTCCAAAAT
Reverse GGCTGTTGTCATACTTCTCATGG

RAB3A Forward GAGTCCTCGGATCAGAACTTCG
Reverse TGTCGTTGCGATAGATGGTCT

TYROBP Forward ACTGAGACCGAGTCGCCTTAT
Reverse ATACGGCCTCTGTGTGTTGAG

SYP Forward CTCGGCTTTGTGAAGGTGCT
Reverse CTGAGGTCACTCTCGGTCTTG

CAMK2A Forward GCTCTTCGAGGAATTGGGCAA
Reverse CCTCTGAGATGCTGTCATGTAGT

VSIG4 Forward GGGGCACCTAACAGTGGAC
Reverse GTCTGAGCCACGTTGTACCAG

GABRA1 Forward AGCCGTCATTACAAGATGAACTT
Reverse TGGTCTCAGGCGATTGTCATAA
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RAB3A, TYROBP, SYP, CAMK2A, VSIG4, GABRA1, and
infiltrating immune cells.

2.9. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism (GraphPad Software, Inc., San Diego,
CA, USA). Hub gene PCR data are expressed as mean-
s± standard deviations (SDs). Nonparametric tests (Man-
n–Whitney U test) were used to compare variables between
the groups. Receiver-operating characteristic curves were
generated to determine the diagnostic value of hub genes. p

values <0.05 were considered significant.

3. Results

3.1. Data Collection and DEG Analysis. Fifty glioma samples
and four control samples were collected using the Glioma tissue
gene chip (GSE2223).2eRpackage “limma”was used to screen
DEGs between glioma and normal samples in GSE2223; 311
DEGs were screened, including 187 downregulated genes and
124 upregulated genes. 2e DEGs are displayed in heat and
volcano maps (Supplementary Figures 1A and 1B).

To explore the relationship between DEGs, they were
annotated using GO andKEGG.2eGO analysis showed that
the most important GO terms were “modulation of chemical
synaptic transmission” (body: biological process), “synaptic
vesicle membrane” (body: cell component), and “calmodulin
binding” (body: molecular function) (Supplementary
Figure 2A). In addition, KEGG pathway analysis revealed that
the most significant enrichment pathway was “insulin se-
cretion” (Supplementary Figure 2B).

3.2. Construction of the Coexpression Network. Raw data
were normalized using the RMA method in the limma
package. Genes with a false discovery rate <0.05 and log2
fold change ≥0.5 were included in the WGCNA analysis.
First, genes and samples were examined with the missing
values, and all of them met the threshold. Next, the samples
were clustered to identify any significant outliers. 2e height
cut-off value was set at 30, and all samples were included in
the analysis (Figure 2(a)).

To construct the WGCNA network, the soft threshold
power β was calculated, and the coexpression similarity was
proposed to calculate the adjacency. 2e pick soft-threshold
function in WGCNA was used to analyze the network to-
pology. In subsequent analyses, the soft threshold power β
was set at 11 due to the scale independence of 0.9 and
relatively high average connectivity (Figure 2(b)). 2e gene
network was constructed and modules were identified using
the one-step network construction function of the WGCNA
R package. For cluster splitting, the soft threshold power was
set at 11, minimum module size at 30, and deepSplit at 2
(which correlated with medium sensitivity). Finally, 11 gene
coexpression modules were constructed (Figure 2(c)).

3.3. Construction of Coexpression Modules and Identification
of Key Modules. Relationships between the identified
modules were mapped, and the connectivity of eigengenes

was analyzed. Eigengenes provide pairings between gene
coexpression modules. 2e results showed that the 11
modules could be clustered into two clusters (Figure 2(d)).
2e associations between modules and clinical character-
istics were evaluated to identify the most significant asso-
ciation. 2e results of this analysis showed that modules
(yellow and brown modules) were most significantly cor-
related with glioma (correlation coefficients: 0.61 and −0.6,
respectively). 2erefore, the two modules were selected for
further analyses (Figure 2(e)). A scatterplot of gene signif-
icance and module membership was plotted in the yellow
and brown modules (Supplementary Figure 3).

3.4. Identification of HubGenes. To investigate the functions
of DEGs, a PPI network was constructed using the STRING
database to provide a visual annotation network for iden-
tifying the structural and functional properties of proteins
(Figure 3(a)). 2en, cytoHubba was used to detect the key
genes of the PPI network. 2e top 100 gene networks are
shown in Figure 3(b). Using the Venn package in R, the
overlapping genes were screened in the yellow-brown
module and cytoHubba (Figure 3(c)). We screened 60
overlapping genes; the differences in hub gene expression in
the top nine hub genes in glioma are shown in Table 2.

3.5. Validation of Hub Gene Expression Levels. 2e expres-
sion levels of the top nine genes in glioma were validated
using GEPIA. DEGs between LGG andGBMwere considered
hub genes. We identified six hub genes: RAB3A, SYP,
CAMK2A, and GABRA1 had a lower expression level, while
TYROBP and VSIG4 had a higher expression level in 163
GBM and 518 LGG tissues, compared to 207 normal samples
(Figure 4). Meanwhile, the results of immunohistochemical
staining showed that the expression level of corresponding
proteins in glioma tissues was consistent with the tran-
scription level of hub genes selected from the GEO database
(Supplementary Figure 4). To explore the relationship be-
tween hub genes in glioma, the interaction network of hub
genes and their coexpression genes were analyzed using the
GeneMANIA online platform (Figure 3(d)).

3.6. Expression Level of Hub Genes in the GSE2223 Dataset.
In the GSE2223 dataset, the expression levels of six hub
genes (RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and
GABRA1) were consistent with those from the GEPIA
database (Figures 5(a)–5(f)). 2e areas under the curve
(AUC) for all six hub genes were ≥0.89, while the receiver
operating characteristic (ROC) curve was p≤ 0.03
(Figures 5(g)–5(l), Table 3). 2erefore, the six hub genes had
a good diagnostic value for glioma.

3.7. Prognostic Value of Hub Genes in Glioma. Using the
GEPIA database, the survival curves were produced to ex-
plore the prognostic value of hub genes. 2e higher level of
expression of RAB3A, SYP, CAMK2A, and GABRA1 in
glioma patients was associated with improved OS and DFS
(Figures 6(a), 6(a)-6(d), 6(f)-6(g), 6(i)-6(j), and 6(l)), whereas
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Figure 2: Sample dendrogram and soft-thresholding value estimation. (a) Sample dendrogram and trait heat map. (b) Scale independence
and mean connectivity of various soft-thresholding values (β). (c) 2e cluster dendrogram of all filtered genes in the top 25% of variance
clustered according to a dissimilarity measure (1-TOM) by WGCNA, which presents 11 gene coexpression modules in GSE2223, which
contained 50 glioma and four normal samples. Each branch represents one gene, and every color represents one coexpressed module.
WGCNA: weighted gene coexpression network analysis. TOM, topological overlap matrix. (d) Clustering of module eigengenes in GSE2223
by WGCNA. (e) Heat map of the correlations between the clinical traits and MEs of glioma. 2e rectangles in each row and column
represent a module eigengene. In the correlated heat map plot, light blue represents low adjacency, while red represents high adjacency. p

values are shown. 2e yellow and brown module showed significant correlation with glioma.
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Figure 3: (a) Protein-protein interaction network of DEGs in GSE was constructed using STRING software. (b)2e top 100 genes network.
2e top 100 genes of the degree method were chosen using cytoHubba plugin. 2e more forward ranking is represented by red color.
(c) Overlapping genes of meyellow+mebrown and top 100 hub genes. DEG: differentially expressed genes. (d) Six hub genes and their
coexpression genes were analyzed using GeneMANIA. Nodes with white lines represent hub genes. Nodes without white lines represent
coexpression genes. Hub genes are determined by the degree of connectivity between differentially expressed genes. 2e top six hub genes
with the highest degree of connectivity were identified, including RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1.

Table 2: Top nine overlapping genes in GSE2223.

Gene logFC Average expression p value Adjusted p vaue
1 RAB3A −2.601184259 11.16312569 0.00032 0.008621
2 TYROBP 2.503201759 15.59798543 8.59E-05 0.003944
3 SYP −2.391063519 13.73489952 0.000715 0.013885
4 CAMK2A −2.399456944 10.5253732 2.59E-06 0.000669
5 VAMP2 −1.504794074 12.35222771 1.99E-05 0.001808
6 SV2B −3.216642593 12.1141689 0.00066 0.013313
7 VSIG4 3.576306204 13.8629201 5.78E-05 0.003276
8 CAMK2B −3.133447315 11.39848628 2.43E-05 0.001964
9 GABRA1 −3.897073333 12.88497377 0.000231 0.007141
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Figure 4: 2e expression blots for RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 (a–f) from the GEPIA database between
glioma and normal brain tissue. Box plots in GEPIA showing that the expression of the six hub genes (RAB3A, TYROBP, SYP, CAMK2A,
VSIG4, and GABRA1) was similar to the GSE2223 database (p< 0.05). 2e red node represents tumor samples, and gray node represents
normal samples.
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Figure 5:2e expression of RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 (a–f) in GSE2223 microarray data. 2e expression of
RAB3A, SYP, CAMK2A, and GABRA1 were decreased, and expression of TYROBP and VSIG4 were increased in glioma samples. ROC
curves of RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 (g–l) in GSE2223 microarray data. ROC: receiver operating
characteristic.
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the higher level of expression of TYROBP and VSIG4 was
associated with reduced OS and DFS (Figures 6(b), 6(e), 6(h),
and 6(k)). 2erefore, the six hub genes had a significant
prognostic value in glioma patients and predicted the OS rate
and progression-free interval (PFI).

3.8. Verification of Hub Gene Expression Levels in Glioma
Tissues. 2e levels of mRNA expression of the hub genes
were measured using quantitative PCR in glioma and
normal tissues. Compared to the control tissues, glioma

tissues had a decreased expression of RAB3A, SYP,
CAMK2A, and GABRA1 but an increased expression of
TYROBP and VSIG4 (Figures 7(a)–7(f)). 2ese results are
in agreement with the findings from the GEO microarray,
GEPIA database, and immunohistochemical staining in the
Human Protein Atlas database. 2e AUC and ROC
values for the six hub genes were ≥0.83 and p≤ 0.03, re-
spectively. 2erefore, all hub genes had a good diagnostic
value for glioma. 2e data from the hub genes were con-
sistent with those from the GSE2223 dataset (Figures 7(g)–
7(l), Table 4).
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Figure 6: OS for RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 (a–f) from the GEPIA database in glioma patients grouped by
median cut-offs. Glioma patients with high expression levels of RAB3A, SYP, CAMK2A, and GABRA1 had improved OS. Glioma patients
with high expression levels of TYROBP and VSIG4 were associated with poor OS. OS: overall survival. DFS of RAB3A, TYROBP, SYP,
CAMK2A, VSIG4, and GABRA1 (g–l) from the GEPIA database in glioma patients, grouped by median cut-offs. Glioma patients with high
expression levels of RAB3A, SYP, CAMK2A, and GABRA1 had improved DFS. Glioma patients with high expression levels of TYROBP and
VSIG4 had poor DFS. DFS: disease-free survival.

Table 3: ROC curve validation of 6 hub genes in GSE2223.

Hub gene AUC 95% CI p value
1 RAB3A 0.99 0.9662 to 1.000 0.0012
2 TYROBP 0.895 0.8018 to 0.9882 0.0091
3 SYP 0.98 0.9412 to 1.000 0.0015
4 CAMK2A 1 1.000 to 1.000 0.001
5 VSIG4 0.95 0.8791 to 1.000 0.003
6 GABRA1 0.98 0.9439 to 1.000 0.0015
AUC: area under the curve; ROC: receiver operating characteristic; CI: confidence interval.
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3.9. Immune Infiltration Analyses. 2e CIBERSORT algo-
rithm was used to analyze the difference of immune cell
infiltration between the glioma and control groups in 22
subpopulations of immune cells. 2e total value of all im-
mune cells in each sample was set at 100%, and the pro-
portion of each immune cell in these samples is presented in
Figure 8(a).2e violin plot showedmarked differences in the
distribution of 13 out of 22 immune cells (Figure 8(b)).
Taken together, these results suggest that the heterogeneity
of infiltrating immune cells in glioma is evident and may
play a role in the pathogenesis of glioma.

To further investigate the correlation of RAB3A,
TYROBP, SYP, CAMK2A, VSIG4, GABRA1, and infiltrating
immune cells, Spearman correlation was performed and
plotted in a lollipop chart (Figures 8(c)–8(h)). 2ese results
indicate that the core gene RAB3A, TYROBP, SYP,
CAMK2A, VSIG4, and GABRA1 is closely related to the
level of immune cell infiltration and plays a crucial role in the
immune microenvironment of glioma.

3.10. Potential of VSIG4 as an Indicator of Response to
Immunotherapy. 2e TIDE score reflects the sensitivity to
immune checkpoint. We evaluated the correlation between
the RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and
GABRA1 signature and the TIDE score. We only found that

the TIDE score was significantly negatively correlated with
VSIG4 gene expression (Figure 8(i)). We also observed
similar outcomes in VSIG4 high and low subgroups. 2e
high expression levels of the VSIG4 group benefited more
from immunotherapy (Figure 8(j)).2ese findings suggested
that patients of the high-expression VSIG4 group may be
more sensitive to immunological treatment.

4. Discussion

In the present study, we analyzed 50 glioma samples and
four normal samples from GSE2223 and constructed a gene
coexpression network based on WGCNA. Overlapping
genes were confirmed in the yellow-brown module and PPI
network of DEGs using the cytoHubba plugin. We identified
six hub genes (RAB3A, TYROBP, SYP, CAMK2A, VSIG4,
and GABRA1) that predicted the prognosis of glioma. 2ese
findings were supported by the RT-qPCR test, which is used
in the clinical setting. Finally, the identification of VSIG4 for
immunotherapy response in patients with glioma demon-
strates utility for immunotherapy research.

After screening a series of databases (GEO, TCGA, HPA,
STRING, GEPIA, and GeneMANIA) in GSE2223, 11
modules were identified for glioma progression, followed by
six hub genes for prognosis of glioma. RAB3A regulates
calcium-dependent lysosome exocytosis and plasma mem-
brane repair through interaction with two effectors: SYTL4
and myosin-9/MYH9 [17]. RAB3A positively regulates ac-
rosome content secretion in sperm cells by interacting with
RIMS1 [18, 19]. TYROBP is tyrosine-phosphorylated in the
ITAM domain following ligand binding by the associated
receptors, which leads to the activation of additional tyrosine
kinases and subsequent cell activation [20]. TYROBP sta-
bilizes the TREM2 C-terminal fragment produced by
TREM2 ectodomain shedding, which suppresses the release
of proinflammatory cytokines [21]. SYP is possibly involved
in organizing membrane components and targeting vesicles
to the plasma membrane, as well as short-term and long-
term synaptic plasticity [22]. CAMK2A regulates dendritic

Table 4: ROC validation of 6 hub genes in our glioma samples (6
normal vs. 12 glioma samples).

Hub gene AUC 95% CI p value
1 RAB3A 0.9722 0.9034 to 1.000 0.0015
2 TYROBP 0.9167 0.7603 to 1.000 0.005
3 SYP 0.9583 0.8675 to 1.000 0.002
4 CAMK2A 0.8333 0.6225 to 1.000 0.0246
5 VSIG4 0.9167 0.7603 to 1.000 0.005
6 GABRA1 1 1.000 to 1.000 0.0007
AUC: area under the curve; ROC: receiver operating characteristic; CI:
confidence interval.
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Figure 7: Validation of RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 (a–f) gene expression using real-time quantitative
polymerase chain reaction in glioma samples (normal: 6; glioma: 12). ROC curves for RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and
GABRA1 (g–l) in our glioma samples (normal: 6; glioma: 12). ROC: receiver operating characteristic.
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Figure 8: Continued.
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spine development [23] and migration of developing neu-
rons [24]. VSIG4 phagocytic receptor negatively regulates
T-cell proliferation and IL-2 production [25]. 2e RAB18-
VSIG4 interaction was involved in reducing glioma pro-
liferation and increasing apoptosis, as well as reducing TMZ
sensitivity [26]. Let-7g-5p could inhibit epithelial-
mesenchymal transition of glioblastoma by targeting
VSIG4, which was consistent with the reduction of the
glioma stem cell (GSC) phenotype [27]. High expression of
VSIG4 was associated with poor prognosis of OS and PFS in
high-grade glioma patients [28]. 2e GABRA1 ligand-gated
chloride channel, which is a component of the hetero-
pentameric receptor for GABA, is the major inhibitory
neurotransmitter in the brain [29–31]. GABRA1 plays an
important role in the formation of functional inhibitory
GABAergic synapses and synaptic inhibition of GABA-
gated ion channels [29, 30]. 2is trend was confirmed by
immunohistochemical staining of hub genes in Human
Protein Atlas.

2e survival curves were produced using the GEPIA
database to explore the prognostic value of hub genes.
Higher expression levels of RAB3A, SYP, CAMK2A, and
GABRA1, as well as lower expression levels of TYROBP and
VSIG4, in glioma patients were associated with improvedOS
and DFS. 2is suggests that all hub genes have a significant
prognostic value in glioma and can predict the OS and
PFI event.

2e mRNA expression levels for the hub genes in tissue
samples were similar to those obtained from the GEO
microarray, GEPIA database, and Human Protein Atlas
database. AUC values for the hub genes demonstrated
a good diagnostic value for glioma, which suggests that they
may be useful as diagnostic biomarkers and therapeutic
targets in glioma.

In addition, immune infiltration analysis in this study
demonstrated that the changes of infiltrating immune cells
in glioma are evident. Interestingly, RAB3A, TYROBP, SYP,
CAMK2A, VSIG4, and GABRA1 were also found to be
closely related to the level of immune cell infiltration in the
current study. 2erefore, it could be concluded that RAB3A,
TYROBP, SYP, CAMK2A, VSIG4, and GABRA1 may play
a critical role in glioma by regulating immune cells. We also
observed the TIDE score was significantly negatively cor-
related with VSIG4 gene expression, indicating that the
VSIG4 high expression group may be more sensitive to
immunological treatment. Different from the classical
complement receptors CR3 and CR4, the unique function of
VSIG4 suggests unique functions in the regulation of innate
and acquired immunity [32]. Soluble Vsig4-IG could at-
tenuate the induction of T cell responses in vivo and inhibit
2 cell-dependent responses [25]. VSIG4 signaling inhibited
the proliferation of CD4(+) and CD8(+) T cells and the
production of IL-2 and IFN-c in coculture in vitro [33].
Besides, after coculture with DCs transfected with hVSIG4
recombinant adenovirus, T cell proliferation potential, cy-
tokine production, and activation marker expression were
suppressed [34]. All the above suggests that VSIG4 may
contribute to the development of new immunotherapy
strategies.

2ere were some limitations to our study. First, this
study included a small sample size. Second, we did not have
data for the survival curve analysis (OS and DFS) of glioma
patients. 2ird, the corresponding protein levels for the hub
genes were not measured. Fourth, the molecular mecha-
nisms underlying the relationships between hub genes and
glioma diagnosis and prognosis were not studied. 2erefore,
further studies are needed to validate the new therapeutic
targets.
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Figure 8: Landscape of immune infiltration between the glioma and control groups. (a) 2e box plot diagram indicates the relative
percentage of different types of immune cells in each sample. (c) 2e violin plot shows the differences of immune infiltration between the
glioma (red) and healthy control (blue) groups. (d)2e lollipop chart presents the correlation of RAB3A, TYROBP, SYP, CAMK2A, VSIG4,
GABRA1, and infiltrating immune cells on the basis of Spearman correlation analysis results. p value <0.05 indicated statistical significance.
(d) Correlation between the TIDE score and VSIG4 expression. (e) Differences in expression of VSIG4 to immunotherapy response.
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5. Conclusions

After WGCNA and PPI network analysis of DEGs in glioma
samples, a series of multiple databases were screened. Six
hub genes related to glioma diagnosis and prognosis were
identified, including RAB3A, TYROBP, SYP, CAMK2A,
VSIG4, and GABRA1. 2ese genes may help to identify
potential therapeutic targets and diagnostic and prognosis
biomarkers. We identified VSIG4 for immunotherapy re-
sponse in patients with glioma, demonstrating utility for
immunotherapy research.
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