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Abstract

Different species can find convergent solutions to adapt their genome to the same evolution-

ary constraints, although functional convergence promoted by chromosomal rearrange-

ments in different species has not previously been found. In this work, we discovered that

two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum,

acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in

fermentation environments. We found two new heterologous chromosomal translocations in

fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimi-

crobial additive widely used in food production. These are convergent events that share sim-

ilarities with other SSU1 locus chromosomal translocations previously described in

domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chro-

mosomal translocations generate an overexpression of the SSU1 gene and confer

increased sulfite resistance. This study highlights the relevance of chromosomal rearrange-

ments to promote the adaptation of yeast to anthropic environments.

Author summary

It is known that genetically distant species can arrive to similar evolutionary solutions

during the adaptation to a specific environment, a phenomena known as convergent

adaptation, and this frequently occurs after point mutations, gene duplications, or species

hybridizations. In this work, we discovered a new example of convergent evolution in the

adaptation of two wine fermentation yeast species to the presence of sulfite, an antimicro-

bial additive widely used in food production. We observed that two species,
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Saccharomyces cerevisiae and Saccharomyces uvarum, acquired chromosomal rearrange-

ments to convergently adapt to the presence of sulfite in fermentative environments. We

describe new chromosomal translocations in S. uvarum strains that generate an overex-

pression of the SSU1 gene and confer increased sulfite resistance, a similar event that was

already described in S. cerevisiae. Overall, this study describes a new case of convergent

evolution in which the chromosomal rearrangements have a significant role in the adapta-

tion of yeast to an environment created by humans to produce food.

Introduction

Organisms belonging to different lineages can evolve independently to overcome similar envi-

ronmental pressures through different molecular mechanisms. This convergent evolution has

been seen as evidence of the action of natural selection [1,2]. In recent years, comparative

genomics studies have suggested that convergent adaptations occur more frequently than pre-

viously expected [3,4]. For example, species of insects spanning multiple orders have indepen-

dently evolved higher tolerance to toxic compounds produced by plants after different amino

acid substitutions that might lower sensitivity to cardenolides [5] demonstrating that conver-

gent adaptation can occur in nature between organisms belonging to different taxonomic lev-

els. In the case of yeasts, convergent evolution by point mutations has been described both in

evolving yeast species in nature [6] and in short-term evolutionary studies in the species Sac-
charomyces cerevisiae [7], for example in populations evolved under glucose limitation that

increased fitness after alternative mutations in the genes MTH1 and HXT6/HXT7 [8]. Conver-

gent evolution can occur through different mechanisms, including point mutations, gene

duplications, and species hybridizations. Examples of convergent evolution via chromosomal

rearrangements are rare, a single study has suggested that an intrachromosomal translocation

is responsible of a convergent evolution in independent lineages in the case of the major histo-

compatibility complex [9]. A second study has suggested that amylase evolution in fish may

have converged though a putative chromosomal translocation, although this has not yet been

confirmed [10].

The genus Saccharomyces is composed of eight species including the model organism S. cer-
evisiae [11]. There is a substantial nucleotide divergence displayed for example between S. cere-
visiae and the species S. uvarum and S. eubayanus, comparable to the divergence found

between humans and birds [12]. S. cerevisiae has traditionally been associated with food and

beverage fermentations which have been traced back to 5,000–10,000 years ago [13,14]. This

domestication of S. cerevisiae by humans has left footprints that characterize their genome

[15,16,17]. Along with S. cerevisiae, the species S. uvarum is the only natural species of the Sac-
charomyces genus that shows ecological success in human-driven fermentative environments

[18]. S. uvarum coexists and even replaces S. cerevisiae in wine and cider fermentations per-

formed at low temperatures, in particular at regions with oceanic or continental climate [19–

21]. Genomic footprints of domestication, like introgressions, have also been reported in S.

uvarum genomes [22].

During fermentation processes, yeast cells face adverse conditions such as osmotic stress

due to high sugar concentrations, low temperatures, low pH, and the presence of certain toxic

compounds used as preservatives. One of the most common preservatives used in wine and

cider fermentations is sulfite [23]. The most common molecular mechanism to deal with the

presence of sulfite in the media in yeasts involves the sulfite efflux with a plasma membrane

pump encoded by the gene SSU1 [24,25]. The strains lacking this gene showed a higher
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sensitivity to sulfite due to the intracellular accumulation of this compound [26]. The tran-

scription factor encoded by the FZF1 gene has been reported to interact with the upstream

promoter region of the gene SSU1 to increase its transcription [26].

Mutations causing large-scale chromosomal rearrangements often occur in yeast popula-

tions rather than less frequent small-scale changes [27]. Even though most large-scale changes

are deleterious and, therefore, quickly removed from the population, these mutations contrib-

ute to the genetic variation within the population facilitating the rapid adaptation to novel

environments [28,29]. It has been reported that specific chromosomal rearrangements in S.

cerevisiae wine strains generate an overexpression of the SSU1 gene that increases the tolerance

to sulfite [30], although it has been suggested that other unrelated sulfite tolerance adaptations

could be present in the genome of the wine strains [31]. A reciprocal translocation between

chromosomes VIII and XVI replaced the promoter of the SSU1 gene, encoding a sulfite trans-

porter [30]. This modification causes an increased expression of SSU1 and, as a consequence, a

greater resistance to sulfite [30]. After this first evidence, several groups have confirmed both

the presence of this rearrangement in different strains belonging to the S. cerevisiae wine yeast

subpopulation and the advantage that sulfite resistance confers to yeasts during their competi-

tion in wine fermentation [32–34]. Translocation VIIIXVI has been proposed not only to con-

tribute to the ecological differentiation of wine yeasts but also to the partial reproductive

isolation between wine and wild subpopulations of S. cerevisiae [35,36]. Years later, another

translocation event, between chromosomes XV and XVI, was described and associated with an

increase in the expression of the SSU1 gene in S. cerevisiae [37]. Another molecular mechanism

causing the overexpression of this gene found in S. cerevisiae is an inversion in chromosome

XVI [38]. A recent study with hundreds of strains confirmed the dominant presence of these

SSU1 locus rearrangement in the wine strains population, specially in commercial starters

[39].

The promoter region of the SSU1 gene has been demonstrated to be a hotspot of evolution

in S. cerevisiae leading to different chromosomal rearrangements with a common phenotypic

outcome: an increased sulfite tolerance. This work aims to test the evidence of convergent evo-

lution at a higher taxonomic level by using another Saccharomyces species isolated from

human-driven environments, S. uvarum. In this study, several strains of S. uvarum isolated

from a wide range of environments and geographic locations have been used to identify high

sulfite tolerant strains and the underlying molecular mechanisms associated with this trait.

Results

Two new chromosomal translocation events in the SSU1 promoter of S.

uvarum strains

A total number of 21 S. uvarum genomes (S1 Table) were assembled and examined to find

structural variations in the promoter of the SSU1 gene. Assemblies allowed us to identify two

candidate chromosomal rearrangements in the promoter of this gene located at chromosome

XVI (Fig 1A). Annotated and assembled strains were evaluated for synteny conservation and

manual comparison of the annotation of SSU1 gene confirmed different chromosomal loca-

tions in different strains. One of them was found in the genomes of three fermentative strains

(BMV58, CECT12600, and NPCC1417) and involves chromosome VII. The other rearrange-

ment involves chromosome XI and it was found in the strain BR6-2 isolated from a fermenta-

tive environment [22]. Strains CECT12600 and BMV58 were isolated in Spain from wine

fermentations, while BR6-2 and NPCC1417 were isolated from cider fermentations in France

and Argentina respectively. These chromosomal rearrangements changed the genomic context

in the upstream region of the SSU1 gene (Fig 1B). Instead of the NOG1 gene present in the
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ancestral SSU1 promoter strains, the recombinant chromosome VIIIXVI has the BRP1 gene

and the XIXVI has the FBA1 (gene reverse strand) upstream of SSU1. The rearrangement

observed between chromosomes VII and XVI was identified at 339 bp upstream of the SSU1
gene start (Fig 1B) within a microhomology region (Fig 1C) similarly to the VIIIXVI transloca-

tion described in S. cerevisiae strains. The distance between the end of this gene and the

Fig 1. New SSU1 promoter variants found in S. uvarum. Panel A. Ancestral type chromosomes; chromosomes VII and XVI after the reciprocal translocation in

the SSU1 promoter; chromosomes XI and XVI after the reciprocal translocation in the SSU1 promoter. Panel B. Gene context surrounding the SSU1 gene in the

genomes with the ancestral and rearranged chromosomes. The distance between the SSU1 gene and the previous gene is depicted in base pairs, in both the ancestral

and recombinant genomes. Panel C. SSU1 promoter and chromosomal translocation sites described for S. uvarum, in this study, and S. cerevisiae in previous

[30,37]. FZF1 binding site and microhomology sites are shown as well as the sites where the chromosomal translocation events occurred in both species reported.

Panel D. Bar chart showing the tolerance to sulfites of the collection of S. uvarum strains tested by drop test assay. Ancestral strains: 52 strains without any of the

two rearrangements reported; VIIXVI: 10 strains with the chomosome VII and XVI rerrangement; XIXVI: one strain with the chromosome XI and XVI

rearrangement. Tolerance to sulfite is measured by the maximum concentration of MBS in which cells can grow. The bars represent the mean of the maximum

MBS concentration reached by each strain and the arrows represent the standard deviation. A t-test was performed between the strains having the ancestral SSU1
promoter and the strains carrying the VIIXVI rearrangement. We obtained a significant p-value< 0.001.

https://doi.org/10.1371/journal.pgen.1009872.g001
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beginning of the SSU1 gene is 422 bp and 924 bp between the starts of both genes (Fig 1B). In

the assembled genome of the S. uvarum BR6-2 strain, the rearrangement between chromo-

somes XI and XVI occurred at 393 bp upstream of the SSU1 gene start also within a microho-

mology region (Fig 1C). Both SSU1-promoter chromosomal translocation events described in

this study occurred before the FZF1 binding site (Fig 1C), a well-known SSU1 gene transcrip-

tional regulator, indicating that this site has been lost in these strains, as also occurred in the

two chromosomal translocation events described in S. cerevisiae.
To determine the frequency of these translocations in S. uvarum, we designed specific PCR

tests to evaluate a collection of 64 S. uvarum strains obtained from different geographic loca-

tions and sources, including both natural and anthropic environments, such as wine and cider

fermentations (S2 Table). The PCR amplification allowed us to identify if any of these strains

carried any of the two rearrangements identified at the SSU1 promoter. Rearrangements

between chromosomes VII and XVI were found in a total number of 10 strains while the rear-

rangement involving chromosomes XI and XVI, was only identified in the BR6-2 strain (S4

Table and S4–S9 Figs). Southern blot method was used to classify the most frequent chromo-

somal rearrangement (VIIXVI) as a reciprocal chromosomal translocation (S1 Fig). Finally,

PacBio end-to-end genome assembly of BR6-2 revealed that the rearrangement between the

chromosomes XI and XVI also corresponds to a reciprocal translocation (Fig 1A).

Strains carrying the chromosomal rearrangements in the SSU1 promoter

are more tolerant to sulfite

Sulfite tolerance was evaluated by drop test assays in the 64 S. uvarum strains to establish a cor-

relation between the presence of a chromosomal rearrangement and the ability to grow in high

concentrations of sulfite. Sulfite tolerance was tested in plates containing different concentra-

tions of potassium metabisulphite (MBS) ranging from 0 to 0.4 g/l, to compare with typical sul-

fite concentrations in wines (0.1–0.2 g/l) (S11 Fig). The results showed a significantly (t-test;

p<0.001) higher MBS resistance of the strains with the VIIXVI rearrangement in comparison

with the strains with the ancestral type SSU1 promoter (Figs 1D and S11). The strain with the

XIXVI translocation also shows higher value than the stains without translocations. The resis-

tance phenotype observed for the S. uvarum strains is similar to the resistance of the S. cerevisiae
strains, showing significantly higher resistance, in the case of the strains with the chromosomal

translocation, to similar sulfite levels [30,38]. Only the strains carrying any of the two reported

chromosomal translocation events were able to grow in plates with the maximum concentration

of MBS tested, while the maximum tolerable concentration of MBS of strains without the trans-

locations was 0.2 g/l. This phenotypic characterization of the S. uvarum strains, together with

the PCR amplification, allowed us to identify a clear correlation between the presence of a rear-

rangement in the SSU1 promoter and the tolerance to sulfite (Fig 1D and S2 Table).

Structural variations in the SSU1 promoter are responsible for the over-

expression of this gene

To confirm that the chromosomal translocation events in the SSU1 promoter were leading to

an increase of the expression of this gene, qPCR studies were performed with the S. uvarum
strains. Fermentations with and without MBS were conducted with strains carrying the most

frequent translocation (VIIXVI). We compared the SSU1 expression of the wine BMV58 and

CECT12600 strains against the SSU1 expression of two strains with no chromosomal translo-

cations: the strain CBS2986 [40], isolated from wine fermentation, and the natural NPCC1290

strain isolated from an Araucaria araucana tree [21]. Relative expression of the SSU1 gene to

the strain NPCC1314 (SSU1 promoter without chromosomal translocations) was calculated
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(Fig 2 and S5 Table). The experiment was conducted with a low concentration of MBS (15 mg/

l) to allow yeast to growth in contrast to the sulfite tolerance tests performed at higher concen-

trations (0 to 0.4 g/l). In this experiment, we observed a clear over-expression of the SSU1 gene

in the two strains with the translocation VIIXVI when compared to the wild strain

(NPCC1290) but also to the wine strain (CBS2986). This suggests that the chromosomal trans-

location at the SSU1 promoter is a specific adaptation to sulfite presence rather than an adapta-

tion to the wine environment. We also observed that the over-expression of the SSU1 gene is

not dependent on the presence of sulfite in the media. We performed a two-way analysis of

variance (ANOVA) and both BMV58 and CECT12600 strains showed significantly higher

expression levels than the other strains in the two conditions analyzed (with and without

MBS), although expression was higher with MBS for all the strains, especially during the first

two days of fermentation (Fig 2).

A second fermentation experiment was conducted to measure the SSU1 expression of both

BMV58 (VIIXVI) and BR6-2 (XIXVI). Besides, to demonstrate the effect of the two different

chromosomal translocation events in the SSU1 gene expression, we obtained two modified

versions of the S. uvarum type strain CBS7001, where the wild type SSU1 promoter was substi-

tuted with the BMV58 or BR6-2 SSU1 promoters. SSU1 gene expression was also measured in

these mutants together with the wild type CBS7001 (Fig 3).

Fig 2. Relative SSU1 expression and growth in S. uvarum strains during fermentation. Expression of the SSU1 gene was studied during wine

fermentation in synthetic must with or without sub lethal sulfite (MBS) concentration (15 mg/l) for two strains with the VIIXVI translocation

(BMV58 and CECT12600) and two with the ancestral chromosomes (NPCC1290 and CBS2986). Daily samples were taken until day four and,

after mRNA extraction, SSU1 gene expression was quantified by qPCR. Two constitutive genes (ACT1 and RDN18) were used to normalize

qPCR data. All expression measures were relativized to the SSU1 expression in the NPCC1314 strain (ancestral SSU1 promoter) grown under

the same fermentation conditions.

https://doi.org/10.1371/journal.pgen.1009872.g002
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Fig 3. Relative SSU1 expression in S. uvarum wild type and edited strains grown in a fermentation experiment. Expression of SSU1
gene was studied during wine fermentation in synthetic must with or without sub lethal sulfite (MBS) concentration (15 mg/l) for a

strain with the wild type chromosomes (CBS7001), a strain with the VIIXVI translocation (BMV58), a strain with the VIIXVI translocation

(BR6-2), a modified version of the CBS7001 type strain with the BM58 SSU1 promoter (CBS7001pBM58) and a modified version of the

CBS7001 type strain with the BR6-2 SSU1 promoter (CBS7001pBR6-2). A schematic representation of the different SSU1 promoters is

presented for each strain. Daily samples were taken until day four and, after mRNA extraction, SSU1 gene expression was quantified by

qPCR. Two constitutive genes (ACT1 and RDN18) were used to normalize qPCR data. All expression measures were relativized to the

SSU1 expression in the CBS7011 wild type strain grown under the same fermentation conditions.

https://doi.org/10.1371/journal.pgen.1009872.g003
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First, we confirmed that both types of chromosomal translocations generated SSU1 overex-

pression compared to the wild-type strain (CBS7001). We observed that the BR6-2 SSU1 pro-

moter (in the CBS7001(prBR6-2) strain) produced an over-expression of SSU1 not

significantly different (t-test; p<0.05) than that observed for the strain BR6-2, except for time

point 96 h with MBS. In the other case, the promoter of BMV58 (strain CBS7001(prBMV58))

generates a clearer over-expression in the SSU1 levels compared with the CBS7001 strain, spe-

cially after the first 24 hours of fermentations. The overexpression of SSU1 in the edited strain

CBS7001(prBMV58) showed no significantly different values (t-test; p<0.05) compared to the

strain BMV58 except at the 24 h time point without MBS and at 24 h and 72 h time points

with MBS when the transcriptions levels were significantly lower when compared to the

BMV58 strain. Although is clear that the new promoter of CBS7001(prBMV58) strain pro-

duces a significant overexpression of SSU1 compared to the CBS7001 strain, these latter results

suggest that other factors as the chromosomal context or other unknown upstream/down-

stream elements, not transferred to CBS7001(prBMV58) could have further influenced SSU1
expression in the BMV58 strain. A similar trend was observed when we tested sulfite resistance

of the recombinant strains (S10 Fig) since CBS7001(prBR6-2) reached a similar resistance

than BR6-2 whereas CBS7001(prBMV58) showed higher resistance than the CBS7001 strain

but not that much of BMV58 strain. It has to be noted that there is an appreciable difference in

the expression of BMV58 between Figs 2 and 3 that correspond to a certain degree of variabil-

ity observed in the SSU1 expression data combined with the different normalization of the

data but, in fact, unnormalized data showed no statistical differences between both datasets

except time point 24 h in the experiment without MBS.

Phylogenetic reconstruction and the origin of the SSU1-promoter

chromosomal translocation events

A total number of 11 strains were found to have the chromosomal translocations described

above. These strains were all isolated from wine or cider fermentations (S2 Table), anthropic

environments where sulfite is commonly used as an antimicrobial preservative. Two of these

strains were also isolated from Argentinean cider fermentation (as the strain NPCC1417). No

chromosomal translocation events were found in the South American strains isolated from

natural environments, neither in the ones isolated from chicha, a beverage performed in tradi-

tional fermentation with no sulfite addition.

To unravel the origin of the new chromosomal translocations discovered in this study we

performed a phylogenetic analysis using whole-genome sequencing data from 21 strains. The

selected strains represent different origins, populations, and SSU1 promoter versions (ances-

tral, VIIXVI, or XIXVI) (Fig 4). The phylogeny revealed that strains carrying chromosomal

translocations in the SSU1 promoter are located at different branches in the tree and they did

not constitute a monophyletic group (Fig 4). It also revealed that the strains with translocations

were not located at branches belonging to S. uvarum strains from Australasia or South Amer-

ica B populations, previously described by Almeida et al. [22].

South American and European strains appear as intermixed, including those South Amer-

ica A and Holarctic strains described by Almeida et al. [22]. Most of these branches showed

low support values, indicating that other relationships are possible.

To further investigate the origin of the chromosomal rearrangement shared between the

Argentinean NPCC1417 strain and the European wine strains, we estimated pairwise nucleo-

tide divergences for the genes surrounding the SSU1 promoter between BMV58 and

NPCC1417, which share translocation, and between BMV58 and NPCC1309 and between

BMV58 and NPCC1313, two other Argentinian strains without translocation, isolated in the
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same geographic location as the NPCC1417 and they were closer in the phylogenetic tree. This

analysis (S2 Fig) revealed that NPCC1417 and BMV58 share an identical segment of 117 kb,

including 21 genes from the SSU1 gene towards the right side (until YPL068C gene) and 33

genes from the SSU1 gene towards the left side (until the YGL044C gene), which is divergent

in the other Argentinian strains without translocation. In the reciprocally translocated chro-

mosome (S3 Fig) the results showed a clearly shorter region of low genetic divergence around

the breakpoint, which supports the action of selection on the new SSU1 allele. The presence of

this conserved segment of linkage disequilibrium is indicative that the translocations present

in NPCC1417 and BMV58 share a common origin. To study how frequent was in the

NPCC1417 genome to find genomic regions containing consecutive conserved genes with the

BMV58, we randomly selected 1,000 windows of twenty genes along the genome of the

NPCC1417 and calculated genetic distances against the BMV58 orthologous genes. A window

of 20 genes containing all its pairwise distances equal to zero resulted significantly different

from the distribution created from the 1,000 randomly selected windows (p-value< 0.05;

Whitney-Wilcoxon test).

Discussion

In this work, we present a case of a convergent adaptation of S. uvarum strains, isolated from

fermentation environments, to grow in sulfite containing media, a preservative usually added

Fig 4. Phylogenetic analysis of the S. uvarum sequenced genomes. Phylogeny obtained with ASTRAL-III for 1265 unrooted individual gene trees shared among the 21 S.

uvarum strains. Branch-support values, ranging from 0 to 1, are located at the nodes and represent the support for a quadripartition. The tree was rooted using ZP962 and

ZP964 from the Australasian population as outgroups. A heatmap next to the branch labels shows the sulfite tolerance of the strains, SSU1 promoter variant, and the

isolation source. Sulfite tolerance was measured by drop test assay and it is color-coded from minimum (0 g/l) to maximum (0.4 g/l) MBS concentration. Strains were

divided according to their isolation source taking into account whether the isolation environment contained sulfite used as a preservative or not. Finally, ancestral SSU1
promoter strains (strains without any translocation in the promoter) and the two different chromosomal translocation events found are shown.

https://doi.org/10.1371/journal.pgen.1009872.g004
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in industrial processes such as wine or cider fermentation. This is the first example reported in

which different chromosomal rearrangements originated by two different chromosomal trans-

location events resulted in the over-expression of the SSU1 gene and, therefore, an increase of

the sulfite tolerance in the strains carrying the translocations.

In S. cerevisiae, different cases of structural variations have been described in the promoter

of the SSU1 gene. These variations include chromosomal [30,34,37], which involve different

chromosomes than those reported for S. uvarum, and a chromosomal inversion [38]. These

SSU1 promoter variants described for S. cerevisiae have been reported to cause the overexpres-

sion of this gene being those strains much more tolerant to the presence of sulfites in the cul-

ture media. This is the first time that a chromosomal translocation event in the SSU1
promoter, providing an adaptive value, is described for another Saccharomyces species, differ-

ent from S. cerevisiae.
As far as we know, our work describes the first example of a phenotypic convergence pro-

duced by independent chromosomal rearrangements in two of the most divergent Saccharo-
myces species, S. cerevisiae, and S. uvarum (20% of nucleotide divergence). In fact, the last

common ancestor existed 20 million years ago [12]. Strains of both species exhibit rearrange-

ments at different locations in the promoter of the SSU1 gene that allows adaptation to tolerate

high sulfite concentrations. It is well known the enormous adaptive role that exerts the overex-

pression of the SSU1 gene in industrial strains [35,36]. This effect would explain why it has

been favored the appearance of molecular mechanisms, as the chromosomal translocation at

the SSU1 locus, resulting in a phenotypic convergence. Interestingly, the four chromosomal

translocation events described so far are independent, produced at different locations of the

SSU1 promoter, and involving reciprocal translocations between chromosome XVI and differ-

ent partners. Our results, including several complementary approaches, confirm the strong

selection pressure that the antimicrobial effect of sulfite imposes on yeasts in human-driven

fermentations, as well as remarks on the role of chromosomal rearrangements as a source of

variation to promote yeast adaptations in fast-evolving environments.

The molecular mechanisms that produced the overexpression of the SSU1 gene remains

unclear. The regulation mechanism of the SSU1 gene known until now is mediated by the five-

zinc-finger transcription factor codified by the FZF1 gene. This gene acts as a positive regulator

of the SSU1 by binding directly to its upstream promoter [26]. The Fzf1p binding sequence has

been described as 5’-CTATCA-3’. This sequence is present at many sites throughout the

genome but SSU1 is the only demonstrated target. We have identified the binding sequence in

the ancestral promoter SSU1 version of strains without chromosomal rearrangements. Inter-

estingly, both rearrangements described in this work, occurred before the FZF1 binding site,

like in S. cerevisiae, hence, the SSU1 promoter region lost the Fzf1p binding site due to the

chromosomal rearrangements. Our main hypothesis is that FZF1 is not regulating the expres-

sion of the SSU1 gene in these S. uvarum strains. Instead of that, this gene could be possibly

constitutively active or being regulated by another of several transcription factors that have not

been identified yet. We can also conclude from our experiments that the overexpression effect

of the SSU1 gene is not dependent on the presence of sulfite in the media as this gene is highly

expressed from the early stages of fermentation with and without sulfite.

The XIXVI translocation was found in a unique European strain isolated from a cider fer-

mentation while the VIIXVI translocation event is shared among European and South Ameri-

can strains. Previous population analyses performed on the S. uvarum species classify them

into four differentiated populations: Australasian, South America B, South America A, and

Holarctic [22]. In a recent study [41], the existence of South America A population, genetically

differentiated from the Holarctic population has been questioned and the authors suggest that

these strains are the result of the genetic admixture of Holarctic and South America B strains.
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This fact, together with the high incongruence observed in our phylogenic reconstruction,

leads us to think that they should not be properly considered as two different populations

because they are, indeed, a mixed population. This idea is supported by the shared chromo-

somal rearrangement described in this study between strains isolated in Europe and Argen-

tina. We hypothesize that these strains probably coexisted at the same location. This

rearrangement was spread by sexual reproduction among different strains and it became fixed

later in those strains grown in human-related environments where sulfite is used as a microbial

preservative. Our data suggest that the VIIXVI recombination had a unique and recent origin

in a European strain, and then, it was inherited by these South American strains due to hybrid-

izations between European and South American strains. This premise is supported by the con-

served region observed in the SSU1 surrounding gene sequences of NPCC1417 with respect to

the translocated regions of the European strains. The conservation of this large segment could

be due to a reduction of the recombination rate between the translocated and the standard

chromosome alleles in the regions flanking the translocation point or to genetic hitchhiking in

the surroundings of the translocated SSU1 gene as the target of selection. However, the fact

that the conserved region surrounding the reciprocal translocation site is significantly smaller

does not support a lower recombination rate in the regions flanking the translocation points

and, hence, is compatible with the presence of a large, linked region swept along with the selec-

tively favored recombinant SSU1 allele.

Finally, our discovery highlights the role of the SSU1 gene promoter as a hotspot of evolu-

tion at different taxonomic levels. S. cerevisiae is the predominant species in sulfite-containing

environments as wine, cider, and other fermented beverages. However, S. uvarum can be also

dominant in certain types of fermentation, especially those performed at lower temperatures

[19,20,42]. This abundance can explain the detection of the SSU1 locus chromosomal translo-

cation events exactly in those species, as an adaptation to sulfite. Other species such as Hanse-
niospora uvarum, Metschnikowia pulcherrima, Bretanomyces sp. among others can be found in

relatively high numbers in those environments at the beginning and even at more advanced

stages of fermentations [43,44]. Future studies should examine chromosomal rearrangements

involving the gene responsible for sulfite detoxification in these species.

Materials and methods

Yeast strains, media, and fermentations

Information about the yeast strains used in this study is summarized in S2 Table. Strains were

maintained and propagated in GPYD media (5 g/L yeast extract, 5 g/L peptone, 20 g/L glu-

cose). Wine fermentations were carried out in 100 mL bottles filled with 90 ml of synthetic

must (100 g/L glucose, 100 g/L fructose, 6 g/L citric acid, 6 g/L malic acid, mineral salts, vita-

mins, anaerobic growth factors, 300 mg/L assimilable nitrogen) that simulates standard grape

juice [45]. Fermentations were inoculated at 5.0 × 106 cells/ml density from overnight precul-

tures determined by measuring OD600. Bottles were closed with Muller valve caps and incu-

bated at 25˚C with gentle agitation. Fermentation progress was followed by daily measuring

bottle weight loss. In the fermentations with MBS, after preliminary tests, a sub-lethal concen-

tration (15 mg/l) of MBS that allow the four strains used (BMV58, CECT12600, NPCC1290,

and NPCC1314) to grow was selected. All wine fermentations were performed at least in inde-

pendent triplicates.

Edited strains construction

To modify SSU1 promoters in the CBS7001 strain we used the CRISPR-Cas9 technique as

described by Generoso et al. [46]. Primers used are listed in S3 Table. The plasmid pRCCN
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(Addgene) was used to target the SSU1 promoter to integrate the recombinant fragments,

amplified from BMV58 or BR6-2 strains. The protospacer sequences were chosen according to

Doench et al. [47] using CBS7001 genome sequence as reference to avoid selecting unspecific

gRNA. Then we amplified by PCR the plasmid pRRC-N, which carries the natMX resistance

marker, with primers carrying the protospacer sequence at their 5’ ends [46]. The PCR was

carried out with Phusion High-Fidelity Polymerase following the provider instructions using

the primers listed in S3 Table. Before addition to the transformation mix, we treated 30 μL of

the PCR product with 10 U of DpnI restriction enzyme (Thermo Scientific) for 3 h to guaran-

tee the degradation of pRRC-N template. To ensure the reparation by homologous recombina-

tion we used PCR amplified fragments of the SSU1 promoter from BMV58 or BR6-2 strains

whose 40 nucleotides of each side are homologous to both upstream and downstream

sequences of the target sequence [48]. 1 mmol of the PCR fragment was added to the transfor-

mation mix, performed following Gietz and Schiestl method [49]. Transformants were selected

in ClonNat (Sigma) GPY agar plates and verified by PCR using diagnostic primers (S3 Table)

and sanger sequencing. Finally, the positive strains were cured of the pRCCN vector.

Genome sequencing, assembly, and annotation

Strains were sequenced by Illumina HiSeq 2000 with paired-end reads of 100 bp long at the

Genomics section from the Central Service of Experimental Research Support (SCSIE), Uni-

versity of Valencia. SPAdes [50], with default parameters, was used for de novo assembly.

BR6-2 strain and NPCC1314 were sequenced using PacBio sequencing Single Molecule,

Real-Time (SMRT) DNA sequencing technology (platform: PacBio RS II; chemistry: P4-C2

for the pilot phase and P6-C4 for the main phase). The raw reads were processed using the

standard SMRT analysis pipeline (v2.3.0). The de novo assembly was done using Flye (version

2.7) with 3 polishing iterations and default parameters [51].

MUMmer [52] was used to get the homology between the strains sequenced in this study

and the reference S. uvarum strain CBS7001 [53]. This information was used to get scaffolds

into chromosome structure (note that, in Scannel et al. [53] annotation, chromosome X was

mislabeled as chromosome XII and vice-versa). Annotation was performed as described in

[54]. We used a combination of two approaches including transferring the annotation from

the S. cerevisiae S288c based on synteny conservation. The annotated assemblies were used to

identify the ultrascaffolds containing the SSU1 gene and the surrounding annotated genes. We

identified the position of the SSU1 gene and then we selected for further investigation those

assemblies whose SSU1 gene position and surrounding genes does not match with the refer-

ence strain position (chromosome XVI).

Phylogenetic analyses

Annotated genomes sequenced in this study as well as collected data from previous studies

[22,53] were used for phylogeny reconstruction. A list of the genomes used in this analysis can

be found in supplementary S1 Table. Introgressed genes from other Saccharomyces species

were removed from the analysis. A total number of 1265 orthologous genes were found among

the 21 S. uvarum strains. Nucleotide sequences were translated into amino-acids and aligned

with Mafft [55]. Aligned protein sequences were back-translated into codons. Maximum-Like-

lihood (ML) phylogeny reconstruction was performed for each gene using RAxML [56] with

the GTRCAT model and 100 bootstrap replicates. ML-trees were concatenated to infer a coa-

lescence-based phylogeny using ASTRAL-III, version 5.6.3 [57]. Tree was visualized using

iTOL [58].
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Analyses of the origin of the shared chromosomal rearrangement among

BMV58, CECT12600, and NPCC1417 strains

Gene sequences upstream and downstream of the SSU1 gene were extracted to calculate genetic dis-

tances among the strains BMV58, CECT12600, and NPCC1417. Distances were calculated using

the “dist.dna” function from the ape R package [59] under the “K81” model [60]. This method was

repeated to calculate pairwise genetic distances using the BMV58 as a reference against NPCC1309

and NPCC1314 strains. An in-house python script was used to select 1,000 random windows of 20

genes within BMV58 and NPCC1417 genomes to calculated pairwise genetic distances.

Southern blot analysis

We performed Southern blot analyses with karyotyping gels. Pulsed-field gel electrophoresis

was performed under these conditions: 60 seconds during 12 h and 120 seconds during 14 h

with an angle of 150˚ and a velocity of 6V/cm. The strains included were BMV58,

CECT12600, NPCC1290, and NPCC1314. DNA was transferred to a nylon membrane Amer-

sham Hybond -N+ (GE Healthcare Europe GmbH, Barcelona, Spain) according to manufac-

tures protocol. We construct the probes using the primers listed in S3 Table and the PCR DIG

Probe Synthesis Kit (Roche Applied Science, Mannheim, Germany). Each Southern blot analy-

sis was done with high stringency conditions to be sure of the specificity of the probe. Hybrid-

ization was prepared with DIG Easy Hyb Granules (Roche Applied Science), following

recommendations of the manufacturer for prehybridization, hybridization, and post hybrid-

ization washes. For washing, blocking, and detection of DIG-labeled probes DIG Wash and

Block Buffer Set (Roche Applied Science) was used. For the detection of DIG-labeled mole-

cules an Anti-Digoxigenin-AP, Fab fragment (1,10.000) (Roche Applied Science), was used.

Finally, CDP-Star Set (Roche Applied Science), a chemiluminescent substrate for alkaline

phosphatase was used at 1:100 dilution, and images were stored after 30 min of exposition.

Gene expression determination

For each culture, a 10–20-ml sample was taken each day of wine fermentation. The cells were

quickly collected by centrifugation, washed, and frozen with liquid N2. Then, frozen cells were

homogenized with a FastPrep-24 (MP Biomedicals, Santa Ana, USA) device with acid-washed

glass beads (0.4 mm diameter; Sigma-Aldrich, Madrid, Spain) in LETS buffer (10 mm Tris pH

7.4, 10 mM lithium-EDTA, 100 mM lithium chloride, 1% lithium lauryl sulfate) for 30 s alter-

nating with ice incubation six times. The phenol:chloroform method with minor modifica-

tions [61] was used to extract and purify total RNA. Then, cDNA was synthesized from the

RNA and the expression of SSU1 genes was quantified by qRT-PCR (quantitative real-time

PCR). cDNA was synthesized in 13 μl using 2 μg of RNA mixed with 0.8 mM dNTP’s and 80

pmol Oligo (dT). The mixture was incubated at 65˚C for 5 min and in ice for 1 min. Then, 5

mM dithiothreitol (DTT), 50 U of RNase inhibitor (Invitrogen, Waltham, USA), 1 × First-

Strand Buffer (Invitrogen), and 200 U Superscript III (Invitrogen) were added in 20 μl mixture

and this was incubated at 50˚C for 60 min and 15 min at 70˚C. qRT-PCR gene-specific primers

(200 nM), designed (S3 Table) from consensus sequences between the different strains, were

used in 10 μl reactions, using the Light Cycler FastStart DNA MasterPLUS SYBR green (Roche

Applied Science) in a LightCycler 2.0 System (Roche Applied Science). All samples were pro-

cessed for DNA concentration determination, amplification efficiency, and melting curve

analysis. To obtain a standard curve, serial dilutions (10−1 to 10−5) of a mixture of all samples

was used. The average of ACT1 and RDN18-1 constitutive genes was used to normalize the

amount of mRNA and to safeguard repeatability, correct interpretation, and accuracy [62].
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Sulfite tolerance assay

Sulfite tolerance was tested in YEPD +TA (tartaric acid) agar plates as described by Park et. al.

[63]. YEPD (2% dextrose, 2% peptone and 1% yeast extract) was supplemented with L- tartaric

acid at 75 mM buffered at pH 3.5 and potassium metabisulfite (K2S2O5, MBS) was added to

each plate to a final concentration of 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 or 0.40, g/L. Yeast

precultures were grown overnight in GPY medium. Cell cultures were diluted to OD600 = 1.

Then, serial 1:5 dilutions of cells were inoculated in MBS YEPD plates and incubated at 25˚C

for a week.
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