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Abstract

Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and

can be accompanied by acidification of extracellular pH, which may activate acid-sensing

ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protec-

tive in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Par-

kinson disease. To complement these findings we determined MPTP toxicity in mice

deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in

doses of 30 mg per kg on five consecutive days. We determined the number of dopaminer-

gic neurons in the substantia nigra, assayed by stereological counting 14 days after the last

MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the con-

centration of catecholamines in the striatum. There was no difference between ASIC1a-

deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are

involved in MPTP toxicity. The difference might relate to the subacute MPTP model we

used, which more closely resembles the pathogenesis of Parkinson disease, or to further

targets of amiloride.

Introduction

Parkinson disease (PD) is a neurodegenerative movement disorder characterized by progres-
sive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and
cytoplasmic inclusions of misfolded alpha-synuclein termed Lewy bodies. The cause of cell
death in PD is not known and there is currently no causal treatment for PD. Consequently,
diverse changes observed in PD are investigated for their potential as a base for neuroprotective
treatment strategies.

Inflammation is an important part of the PD pathogenesis. Activation of microglia and
increased pro-inflammatory cytokines have been described in PD patients [1–5] and in animal
models of PD [6]. Moreover, medication with anti-inflammatory drugs can reduce the risk of
developing PD [7]. Inflammation leads to extracellular acidification, and vice versa [8]. Accord-
ingly, an increased concentration of lactate has been observed in PD patients using magnetic
resonance spectroscopy [9]. This indicates that pH might be more acidic in PD brain.
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Administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
induces a PD-like pathology in several species, including mice and primates [10, 11]. The con-
sequences of MPTP administration that mimic PD pathogenesis include the inhibition of com-
plex I in the mitochondrial respiratory chain, selective death of dopaminergic neurons,
inflammation and an apoptotic cell death mechanism. Interestingly, MPTP administration also
leads to lactic acidosis [12].

Acid-sensing ion channels (ASICs) are neuronal, proton-gated cation channels activated by
low extracellular pH [13, 14]. ASICs are trimers [15, 16] and in the brain are composed primar-
ily of homomeric ASIC1a, and heteromeric ASIC1a/2a and ASIC1a/2b [17–19]. Consequently,
neurons from animals deficient for ASIC1a showed virtually abolished acid-induced currents
[20].

Given the evidence for tissue acidification in PD, it is plausible to hypothesize that ASICs
might be involved in the pathogenesis of PD. Two studies indeed found that pharmacological
inhibition of ASICs reduced neurodegeneration in animal models of PD. In an acute MPTP
mouse model, degeneration of dopaminergic neurons was reduced by the nonselective ASIC
inhibitor amiloride. Amiloride reduced the degeneration of dopaminergic axon terminals in
the striatum and the degeneration of dopaminergic neurons in the SNc in a dose-dependent
fashion [21]. The more specific but less tissue permeable ASIC inhibitor psalmotoxin-1
(applied into the cerebral ventricles) slightly reduced the degeneration of dopaminergic axon
terminals in the striatum as determined by radiography of the dopamine transporter, but did
not rescue the concentration of striatal dopamine, and the degeneration of dopaminergic neu-
rons in the SNc [21]. In addition, amiloride and psalmotoxin-1 (applied intranasally) pre-
vented the progressive degeneration of dopaminergic neurons and axon terminals occurring
after intrastriatal injection of 6-hydroxydopamine [22]. ASIC inhibitors have also shown pro-
tective effects in models of cerebral ischemia [23, 24], and in models of autoimmune inflamma-
tory disease [25].

To complement these findings with pharmacological inhibitors, we determined MPTP tox-
icity in mice deficient for ASIC1a, the most important ASIC subunit in neurons of the brain.

Methods

Animals and procedures

All mice were housed and handled according to guidelines from the Federation for European
Laboratory Animal Science Associations (FELASA). Mice were housed in a pathogen-free facility
in a temperature-controlled room (20–24°C) with a 12 h light/dark cycle and with food and
water ad libitum. The animal experiments were approved by the Animal Care Committee of the
RWTH Aachen University and by the District Government of North Rhine Westphalia in Reck-
linghausen, Germany (No 84–08.05.2013.A056). For all experiments male 10-12-week old ASIC-
1a null mutants (ASIC1a-/-) and wildtype littermates (ASIC1a+/+) were used. The generation of
the ASIC1a-/- mice was described previously [20]. ASIC1a-/- mice were backcrossed to C57BL/6
background for more than 8 generations. Mice received either MPTP hydrochloride in 0.9%
saline or saline alone. MPTP was administered at a dose of 30 mg free base per kg body weight i.
p. at 24 h intervals over 5 consecutive days. MPTP handling and safety measures were in accor-
dance with published guidelines [26]. During the experiment, mice were monitored daily for
physical condition and weight loss. All animals that started the experiment survived with<20%
weight loss and were included into the analysis. Fourteen days after the last MPTP injection ani-
mals were sacrificed by cervical dislocation and brains were prepared for HPLC analysis of cate-
cholamines and immunostaining: After decapitation the left striata were rapidly dissected on ice,
quick-frozen in liquid nitrogen, and stored at -80°C until striatal catecholamine concentrations
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were measured via electrochemical detection. The right striata and the posterior parts of the
same brains were fixed for 24 h in 4% PFA, cryoprotected in 30% sucrose for 2 days at 4°C, frozen
by immersion in isopentane (-45°C) and then stored at -80°C.

Immunohistochemistry and quantification

The posterior parts of the brains, including the SN, were serially cut into 30 μm coronal sec-
tions. Every third section spanning the SN was stained for tyrosine hydroxylase (TH). The
free-floating brain sections were washed three times in Tris-buffered saline (TBS) with 0.1%
TritonX (TBS-T). Endogenous peroxidase was blocked to reduce unspecific background by
incubation with 0.3% H2O2 in TBS-T for 30 minutes followed by three washing steps with
TBS-T. The primary anti-TH antibody (rabbit polyclonal, Merck Millipore) was incubated
overnight at 4°C in a dilution of 1:1,000 in TBS-T containing 3% normal goat serum (Vector
Laboratories). The sections were washed again with TBS-T and secondary antibody (biotiny-
lated goat anti-rabbit IgG, Vector Laboratories) was incubated in a dilution of 1:200 in TBS-T
for 30 minutes. Subsequently, the sections were washed and incubated with Avidin-Biotin
Complex (Thermo Fisher) for 30 minutes, followed by an additional washing step. Visualiza-
tion of antibody binding was performed via diaminobenzidine (DAB, Vectastain1ABC-Kit
Standard PK-4000, Vector Laboratories) in a dilution of 1:20 in PBS for 10 minutes. Sections
were mounted on microscope slides. Nissl-counterstaining was performed with haemalaum
(VWR) and after dehydration sections were coverslipped with Entellan (Merck Millipore).

TH-positive (dopaminergic) and Nissl-positive (neuronal) cells in the lateral SNc of the
right hemisphere were stereologically counted using the optical fractionator method (StereoIn-
vestigator v11, MicroBrightField) as described previously [27]. In brief, neurons were manually
indentified in 50 x 50 μm counting frames presented by the software using an Axioskop 2
microscope (Carl Zeiss Vision) and an oil immersion 63x objective (NA 1.4). Grid size was 50
x 50 μm, and every third section was analyzed. Counts were performed blinded for genotype
and treatment.

Catecholamine analysis

Catecholamines were measured by HPLC with electrochemical detection as described previ-
ously [27–29]. Striatal tissue was homogenized in 50 μl of 0.1 M perchloric acid per mg of stria-
tal tissue. Cell debris was pelleted by centrifugation (17,000 x g for 20 min at 4°C). 20 μl of
supernatant was injected onto a C18 reverse-phase column (Prontosil 120-3-C18, Thermo
Fisher). The mobile phase consisted of 85 mM sodium acetate, 35 mM citric acid, 0.5 mM
octane sulfonic acid, 0.15 mM EDTA solution and 10% methanol (pH 4.3). Flow rate was 0.8
ml/min. Electrochemical detection of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid)
and homovanillic acid concentrations was carried out at 800 mV. Calibration was achieved by
comparison with external standards run after every third sample and Chromeleon 6.80 soft-
ware (Thermo Fisher Scientific). Values are represented as ng catecholamine per mg wet
weight tissue.

Statistical analyses

Data are presented as mean ± SEM with "n" equal to the number of animals. Statistical analyses
were performed using GraphPad Prism 5.0 (GraphPad Software). The statistical test for com-
parison of treatment and genotype was 2-way ANOVA followed by Bonferroni posthoc test or
by unpaired t-test as indicated in the text. The null hypothesis was rejected at the 0.05 level.
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Results and Discussion

We first compared the dopaminergic system of mature, age-matched ASIC1a-/- and ASIC1a+/+

mice not receiving MPTP. There was no difference in the number of dopaminergic neurons in
the SNc, as identified by staining for tyrosine hydroxylase (TH), between the two genotypes
(ASIC1a+/+ 1090 ± 56, ASIC1a-/- 1186 ± 25; p = 0.19, unpaired t-test; Figs 1A, 1C and 2A). Fur-
thermore, there was no difference in the concentration of striatal dopamine between ASIC1a+/+

and ASIC1a-/- mice (ASIC1a+/+ 19.17 ± 2.8 ng/mg wet weight, ASIC1a-/- 21.75 ± 2.75 ng/mg wet
weight; p = 0.54, unpaired t-test; Fig 3A). Taken together, genetic depletion of ASIC1a had no
impact on the number of dopaminergic neurons in the SNc and on dopamine levels in the stria-
tum of C57BL/6 mice.

To model PD we chose the subacute MPTP paradigm with 5 injections of 30 mg per kg,
applied i.p. 24 h apart. Animals were analyzed 14 days after the last MPTP injection. There was a
robust decline in the number of dopaminergic neurons in ASIC1a-/- and ASIC1a+/+ animals (Figs
1B, 1D and 2A). The decline was similar in both genotypes with (34% and 32%; Fig 2A; 2-way
ANOVA: significant effect of MPTP, n.s. interaction, n.s. difference between genotypes). To
demonstrate that the decline in TH positive neurons really results from cell death and not merely
from downregulation of TH, we also quantified the number of Nissl-positive neurons in the SNc.
The results were similar as for TH-positive neurons (reduction by 26% and 25%; Fig 2B).

Similar to the number of TH-positive neurons, striatal dopamine was strongly reduced in
ASIC1a-/- and ASIC1a+/+ animals 14 days after MPTP administration (79% versus 83%, Fig
3A). Again there was no difference between the two genotypes (2-way ANOVA: significant
effect of MPTP, n.s. interaction, n.s. difference between genotypes). Dopamine deficiency was
partially compensated by an increased amount of the dopamine metabolites homovanillic acid
(HVA) and 2,4-dihydroxyphenylacetic acid (DOPAC) relative to dopamine (Fig 3B). There
was a trend for more metabolites in ASIC1a-/- mice, which could indicate a requirement for
more dopamine turnover, but this effect was not statistically significant (Fig 3B).

Fig 1. MPTP-induced loss of TH positive neurons in the substantia nigra pars compacta. (A-D) Representative images of dopaminergic neurons

stained for tyrosine hydroxylase (TH) in coronal midbrain sections of ASIC1a+/+ and ASIC1a-/- mice 14 days after MPTP or saline treatment. The framed

area of the lateral SNc represents the area analyzed by the stereological countings depicted in Fig 2. Scale bar 100 μm. (A´-D´) Higher resolution images of

A-F.

doi:10.1371/journal.pone.0165235.g001
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The similarity between ASIC1a-/- and ASIC1a+/+ animals in the MPTP model was unex-
pected given the protective effect of amiloride in previous studies [21, 22]. In our experiments,
both genotypes showed a reduction of dopaminergic neurons and striatal dopamine, which
was similar in extent to the reduction in previous work with the same paradigm [27, 29], indi-
cating that the MPTP model was induced successfully. Currents elicited by acidic pH are nearly
abolished in the ASIC1a deficient mice we used [20], making it unlikely that other ASIC sub-
units compensated for the deficiency of ASIC1a. However, compensatory changes in ASIC1a
deficient mice cannot be ruled out entirely.

Fig 2. Loss of ASIC1a did not affect neurodegeneration after MPTP. Mice received either subacute MPTP treatment or

saline only. Dopaminergic (TH-positive) cells (A) and Nissl-positive cells (B) were stereologically counted in one hemisphere of

the SNc after 14 days. Results were analyzed by two-way ANOVA followed by Bonferroni post hoc tests; ns = non significant.

Number of animals: NaCl ASIC1a+/+: n = 3; NaCl ASIC1a-/-: n = 3; MPTP ASIC1a+/+: n = 5; MPTP ASIC1a-/-: n = 4.

doi:10.1371/journal.pone.0165235.g002

Fig 3. Loss of ASIC1a had no impact on striatal catecholamines after subacute MPTP treatment. Striatal concentration

of dopamine (A) and the metabolite ratio (B) were determined by HPLC. Results were analyzed by two-way ANOVA followed by

Bonferroni post hoc tests; ns = non significant. Number of animals: NaCl ASIC1a+/+: n = 3; NaCl ASIC1a-/-: n = 3; MPTP

ASIC1a+/+: n = 5; MPTP ASIC1a-/-: n = 4.

doi:10.1371/journal.pone.0165235.g003
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Amiloride not only blocks ASICs, but also a number of other membrane proteins that
might be involved in neurodegeneration in the MPTP mouse model, including the Na+/Ca2+

exchanger (NCX) [30]. NCX could be involved in the degeneration of dopaminergic neurons
following MPTP administration given the important role of calcium homeostasis in this model
[31–33] and the involvement of NCX in a variety of disease states [34]. Indeed, SEA0400, a spe-
cific NCX inhibitor was recently shown to reduce dopaminergic neurotoxicity in the MPTP
model [35]. Yet, the inhibition of NCX by amiloride cannot explain the protection of dopami-
nergic neurons in the 6-hydroxydopamine model by psalmotoxin-1, a specific inhibitor of
ASIC1a homomers [22].

Furthermore, the discrepancy may result from differences between the PD models used.
Arias and colleagues used a single dose of MPTP (40 mg/kg) administered two hours after
amiloride, whereas a subacute MPTP regimen (5x30 mg/kg) was used in this study. Oxidative
stress, excitotoxicity and non-apoptotic cell death are more pronounced in the single dose
MPTP paradigm [36, 37], whereas apoptotic cell death predominates in the subacute paradigm
[38, 39]. It is possible that ASICs are more relevant in the acute MPTP paradigm than in the
subacute MPTP model we used. Since PD is a chronic disease with apoptotic cell death, the
subacute MPTP paradigm more closely resembles disease pathogenesis. Consequently, our
findings could not confirm that ASICs are a promising therapeutic target for PD.
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