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Simple Summary: Liver cancer has a high mortality rate. Here, we retrospectively discuss the
current progress and dilemmas in the clinical research and treatment of liver cancer. We primarily
focus on microRNAs because of their extremely high value in applications and research. We discuss
whether microRNAs can be used for the development of better biomarkers and/or therapeutic drugs,
and address the difficulties, requirements for improved diagnostic technologies, and side effects
related to microRNA-based drugs.

Abstract: Liver cancer is the leading cause of cancer-related mortality in the world. This mainly
reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are
a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here,
we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and
miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer
cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss
whether these microRNAs can be used for better clinical diagnosis and/or drug development. With
the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research
has become a new mainstream approach. However, the clinical application of microRNA-based
markers has been limited by the high sequence similarity among them and the potential for off-target
problems. Therefore, researchers particularly value microRNAs that are specific to or have special
functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-
34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment
drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but
their side effects have not yet been overcome. Future research is needed to address these weaknesses
and establish a feasible microRNA-based treatment strategy for liver cancer.

Keywords: liver cancer; microRNA; clinical

1. Introduction

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality in
Taiwan. One of the key challenges in therapy is the lack of an efficient assay system that
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can detect HCC at the early stages to allow timely treatment. Other than alpha-fetoprotein
(AFP), no suitable diagnostic markers are available for HCC. However, other physiolog-
ical factors often interfere with the detection of AFP, and its accuracy is insufficient to
correctly reflect the risk of liver cancer. MicroRNAs are small non-coding RNAs that
affect the stability and post-transcription of mRNAs through binding the 3′ untranslated
regions (3′UTR) of target genes to regulate their expression, consequently influencing
multiple cellular functions, including migration, proliferation, angiogenesis, and apop-
tosis. Relative to coding RNAs, microRNAs have high value in clinical testing and as
therapeutic biomarkers for numerous diseases. Accumulating clinical evidence indicates
that microRNAs are encompassed by extracellular bodies, such as exosomes, that affect the
surrounding environment and cells. Furthermore, microRNAs have been shown to retain
stability in transformed serum. In view of their simultaneous effects on multiple target
genes and strong correlations with clinical parameters and patient survival, microRNAs
present a valuable tool for non-invasive detection of diseases. MicroRNAs are currently
under investigation as clinical drugs for several diseases, including liver cancer. In this
review, we discuss the roles of microRNAs in liver cancer and highlight the importance
of specific microRNAs in liver cancer progression. We further review the development of
microRNA-based clinical formulations (biomarkers and therapeutic drugs) and compare
them with traditional protein-based approaches. We discuss challenges in the development
and clinical application of microRNAs and explore why the current miRNA drugs aimed
at treating liver cancer have not progressed smoothly in clinical trials. Finally, we offer
suggestions and guidelines that could facilitate future progress in this field.

2. Pathological Characteristics and Clinical Development of HCC

Hepatocellular carcinoma (HCC) is the second most common malignant cancer type
in terms of fatality ranking [1]. Since the 1970s, the incidence of liver cancer has gradu-
ally increased, spreading from the Asian countries to several Western countries and the
Northern hemisphere. Moreover, HCC is more common in males aged 40–50 years than
women [2].

The occurrence of HCC is a continuous and slow process. The majority of cases
of HCC are initially caused by hepatitis, non-alcoholic fatty liver disease, and alcohol-
related fatty liver disease [3], induced when liver cells are exposed to risk factors that
cause long-term damage, including chronic hepatitis B (HBV virus-induced) or hepatitis
C (HCV virus-induced), excessive drinking, fatty liver due to various metabolic factors,
and toxins produced by food spoilage (such as chrysanthemum toxin or aristolochic
acid) [4]. During the process of repeated damage and repair of liver cells, the instability of
chromosomes increases, resulting in mutation and loss of control of both oncogenes and
tumor suppressor genes. In normal cells, oncogenes and tumor suppressor genes are in
a balanced state, each performing its own function to maintain cell growth. Upon loss of
this balance, abnormally regulated genes promote aberrant signal transmission in the cell,
in turn triggering dysregulation of metabolism, uncontrolled growth, immune imbalance,
inflammation, and other malignant tumor-like changes that lead to the development of
tumors over time. Various mechanisms, including epigenetics, exosomes, autophagy,
metabolic regulation, and immune suppression, are under investigation in association with
HCC, resulting in the gradual functional characterization of several uncontrolled genes [5].

In addition to risk factor exposure and metabolic problems, the performance of certain
genes/proteins is also considered to be a key factor affecting whether a person is at risk
for liver cancer. Understanding the genetic background of HCC will be crucial for the
development of new therapies aimed at selected targets. With the help of human genomics
technology, researchers have uncovered some gene expression patterns that are characteris-
tic of liver cancer [6,7]. The genes that are altered under liver cancer can be roughly divided
into two categories: The first category comprises genes that are altered by or related to
risk factors, such as TP53 mutations caused by aflatoxin exposure and KRAS mutations
related to vinyl chloride exposure. The second category comprises genes that are involved
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in etiologically unspecified changes, such as activation of the WNT/CTNNB1 pathway
through mutations in CTNNB1 and/or axis inhibition protein (AXIN), and inactivation of
the retinoblastoma and insulin-like growth factor 2 receptor (IGF2R) pathways through
inactivation of retinoblastoma 1 (RB1) [8]. These novel findings and the readily available
genetic resources and analytical tools may be keys to unraveling the molecular basis of
HCC. Clinically, multiple strategies have been developed for the different stages of the
disease although the staging methods of HCC vary across countries. The commonly used
methods are Cancer of the Liver Italian Program (CLIP) score, Barcelona Clinic Liver Cancer
(BCLC) staging, Tumor/Node/Metastasis (TNM) classification system, and Hong Kong
Liver Cancer (HKLC) staging [9]. According to the management consensus guideline for
HCC, different stages of HCC should be addressed by different treatment strategies, such as
surgery, local ablation, transarterial therapies (including transarterial chemoembolization
(TACE)), systemic treatment, radiotherapy, and prevention [10]. However, we currently
lack an effective systemic chemotherapy, immunotherapy, or targeted therapy for patients
with advanced HCC. Even the approved targeted drug, sorafenib, does not significantly
improve the survival rate of patients [11].

Traditional treatment strategies for HCC include surgical resection, liver transplan-
tation, minimally invasive locoregional therapies (percutaneous ablation, transarterial
chemoembolization (TACE), and transarterial radioembolization (TARE)), and systemic
chemotherapy drugs, such as etoposide, doxorubicin, cisplatin, 5-fluorouracil, and leucov-
orin [12,13]. The novel concept of targeted drugs has emerged in recent years. The majority
of these drugs are used for patients with advanced HCC, such as sorafenib, lenvatinib, re-
gorafenib, nivolumab, cabozantinib, and ramucirumab [9]. However, the current outcomes
of HCC treatment remain unsatisfactory. Although the underlying reasons are complex,
the poor results may be mainly attributable to consistently late diagnosis due to a lack of
good clinical practice and biomarkers that can accurately predict risk of disease in the early
stages, missing the optimal treatment period.

3. The Biosynthesis and Action Mechanisms of MicroRNAs

The first miRNA, lin-4, was discovered in Caenorhabditis elegans in 1993. Since then,
the field of molecular biology has undergone drastic changes. Today, new miRNAs are still
being discovered, and the roles of microRNAs in gene regulation are well recognized [14].
MicroRNAs were initially identified during exploration of targets that could be potentially
applied as disease biomarkers. MicroRNAs (miRNAs) are 17–22 nt non-coding, single-
stranded RNA molecules that play key roles in post-transcriptional gene regulation [15].
Primary miRNAs (pri-miRNAs) are transcribed by RNA polymerase II. From the pri-
miRNA, a stereotypical stem-loop hairpin precursor miRNA (pre-miRNA) is cleaved in the
nucleus by a complex consisting of the RNA-binding protein, DiGeorge syndrome critical
region 8 (DGCR8), and the ribonuclease III enzyme, Drosha [16], which cleaves the pri-
miRNA duplex at the base of its characteristic hairpin structure. The generated pre-miRNA
is exported to the cytoplasm by the Exportin 5 complex. In the cytoplasm, the RNase III
enzyme, Dicer, cleaves the pre-miRNA by removing the terminal loop, thereby generating
the mature miRNA, which is then released from pre-miRNA. The biologically active mature
miRNA strand is ATP-dependently loaded to a protein of the Argonaute (AGO) family,
which, along with the guide strand, forms the miRNA-induced silencing complex (miRISC).
The target specificity of miRISC is due to its interaction with complementary sequences
in the 3′ untranslated regions (3’UTRs) of the target mRNAs, called miRNA response
elements (MREs). The degree of MRE complementarity determines whether there is AGO2-
dependent slicing of the target mRNA or miRISC-mediated translational inhibition and
target mRNA decay [17]. A fully complementary miRNA–MRE interaction induces AGO2
endonuclease activity and targets mRNA cleavage (Figure 1) [14,18]. Recent research
has gradually clarified the relationships between miRNAs and other non-coding RNAs
(ncRNAs) [19]. These ncRNAs use the characteristics of their nucleic acid sequences to
affect gene expression in cells, from stacking into different three-dimensional structures
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(scaffold) to adsorbing transcription factors, even affecting chromosomal modification.
The mechanism of action of miRNAs involves using the complementary characteristics
between nucleic acids, which, in turn, affects their post-transcriptional effects. NcRNAs are
also nucleic acid sequences that bind miRNA [20]. Following the discovery of miRNAs in
plants, further studies gradually revealed that miRNAs extensively regulate more than 60%
gene expression in the human genome and strongly participate in various physiological
phenomena essential to maintain life, such as differentiation, proliferation, apoptosis, and
development. Notably, dysregulation of miRNAs is significantly associated with various
diseases, including muscular dystrophy, diabetes, and several cancer types [21].
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Figure 1. The biosynthesis and action mechanisms of microRNA.

The biosynthesis of miRNA begins at nuclear chromosomes, where the primary
miRNA (pri-miRNA) is transcribed by RNA polymerase II and then sheared by the nuclear
RNase III enzyme, Drosha, and its co-factor to form a precursor miRNA (pre-miRNA).
The pre-miRNA is sent out of the nucleus via Exportin 5, and the mature miRNA is
formed by Dicer and other cytoplasmic complexes. The mature miRNA combines with
Argonaute (AGO) to form an RNA-induced silencing complex (RISC), which interacts with
the 3′-untranslated region (3′UTR) of a target mRNA. There, sequence complementarity
determines whether the target mRNA will be destabilized or degraded, thereby affecting
the performance of genes.

4. The Important Roles and Functions of MicroRNAs in HCC

Since miRNAs can affect cell physiology, they play unique roles in cancer cells at
different stages. In-depth knowledge of various miRNAs can improve the likelihood of
identifying those with clinical diagnostic or therapeutic value [22]. One basic strategy
is to characterize specific miRNAs that are dysregulated in tumors. Further studies are
required to establish whether miRNAs circulating in human body fluids could serve as key
biomarkers [23].

MicroRNA-122 (miR-122) is a representative liver-specific miRNA candidate with
potential clinical significance. MiR-122 can be used to not only distinguish between healthy
individuals and liver cancer patients but also liver cancers induced by different virus
types [24], based on its distinct effects on hepatitis C virus (HCV) and hepatitis B virus
(HBV). Specifically, miRNA-122 increases the rapidity of HCV replication while suppressing
HBV replication [25]. Recent studies have demonstrated that interactions of miR-122 with
HCV RNA induce conformational changes in the 5′UTR internal ribosome entry site (IRES)
structure to form a stem loop II structure (SLII) and trigger hijacking of the translating 80S
ribosome through binding of SLIII to the 40S subunit, leading to efficient translation [26].
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At the same time, viral protein R-mediated regulation of HCV replication depends on the
host protein DDB1-Cul4 associate factor 1 (DCAF1), supporting the involvement of DCAF1
in the replication of HCV. Measurement of the expression levels of miR-122 and target
CAT-1 mRNA revealed that miR-122 was downregulated following DCAF1 repression.
Furthermore, overexpression of miR-122 rescued impairment of HCV replication induced
by DCAF1 repression, suggesting that DCAF1 is involved in HCV replication through
regulation of miR-122 [27]. Several studies suggest that miR-122 is necessary for RNA
replication of HCV in the liver [28]. In earlier phase II clinical trials, treatment of HCV
patients with oligonucleotides sequestering miR-122 resulted in a significant loss of viral
RNA [29]. Therefore, miR-122-related treatment guidelines have been a long-term focus of
research into the therapeutic options for HCC patients infected with HCV. In comparison,
studies on the role of miR-122 in HBV-infected HCC are relatively rare. However, the data
obtained to date consistently indicate that miR-122 is downregulated in patients with HBV-
associated HCC and related to tumor size, lymph node metastasis, TNM stage, pathological
type, differentiation grade, liver cirrhosis, AFP, and HBV DNA [30,31]. These converse
effects further support the potential clinical utility of miR-122 in effectively distinguishing
between HBC- and HCV-infected patients with HCC.

In addition to miR-122, several reports suggested that some miRNAs, such as miR-21,
miR-125, and miR-199 family members, are implicated in HCC [30,32]. MiRNA 199a/b-3p,
the third most highly expressed miRNA in liver, is consistently downregulated in patients
with HCC associated with HBV infection, HCV infection, and alcohol consumption [33].
Furthermore, expression of miR-199 family members is suppressed in HCC tumors and
cell lines [34]. Low miR-199a/b-5p expression is also associated with poor overall survival
of HCC patients. MiR-199a/b-5p overexpression in HCC cell lines has been shown to
inhibit cell proliferation, migration, and invasion, both in vitro and in vivo [35]. A strong
correlation exists between miR-199a-5p and miR-199a-3p in HCC specimens and miR-199a-
5p additionally contributes to E-cadherin regulation, underlying the complex network of
interactions involving miR-199a and its influence on tumor aggressiveness. These findings
support the restoration of physiologic levels of miR-199a-3p as a possible therapeutic
strategy for HCC [36]. In terms of the molecular mechanism of action, regulators of G-
protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity and
RGS17 plays an important regulatory role in cancer cell proliferation, migration, and
invasion. Overexpression of miR-199 significantly suppresses HCC cell proliferation,
migration, and invasion, which may be achieved via inhibition of RGS [37].

MiR-21 is one of the most frequently upregulated miRNAs in liver diseases, such
as NAFLD and HCC, and associated with poor overall survival. MiR-21 is reported to
promote nonalcoholic steatohepatitis-related HCC (NAHCC) and other liver diseases via
several mechanisms, such as inducing increases in Phosphatase and Tensin Homolog B
(PTENB), Peroxisome Proliferator-Activated Receptor alpha A (PPARAA), and activation of
the PI3K/AKT pathway. Additionally, miR-21 is reported to induce hepatic inflammation
through promotion of inflammatory gene expression via the STAT3 signaling pathways,
leading to liver disease [38]. High miR-21-3p levels are positively associated with advanced
tumor stages [39]. MiR-21-3p promotes metastasis of HCC cells and upregulation of Yes-
Associated Protein 1 (YAP1) expression via direct inhibition of SMAD7, which represents
a major epigenetic mechanism in the pathogenesis of HCC [39]. High-Mobility Group
Box 1 (HMGB1) and Cluster Differentiation 44 (CD44) additionally play critical roles in
HCC progression. Activation of RAGE/JNK signaling by extracellular HMGB1 underlies
overexpression of miR-21 [40].

MiR-214 is an interesting miRNA that functions either as an oncogene or tumor sup-
pressor in different cancer types [41]. MiR-214 has been clearly identified as a tumor
suppressor in HCC [42] that can prevent tumor development through β-catenin suppres-
sion, which presents a novel option for HCC therapy [43]. Additionally, miR-214 suppresses
cell proliferation, migration, and metabolism via targeting Pyruvate Dehydrogenase Kinase
Isoform 2 (PDK2) and PHD Finger Protein 6 (PHF6) in HCC [41]. In addition to the coding
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genes, miR-214 affects long non-coding RNAs (lncRNA). In HCC, the long non-coding
RNA, PVT1, is linked to malignancies and may serve as a deleterious therapy target. MiR-
214 has been identified as a crucial negative regulator of PVT1. High miR-214 levels were
found to be significantly correlated with diminished PVT1 expression in HCC specimens
and silencing of PVT1 via ectopic miR-214 or siRNA markedly inhibited the viability and
invasive ability of HCC cells [44].

MiR-29 acts as a tumor suppressor in HCC. Expression of miR-29 is significantly
reduced in HCC tissues and cell lines and low miR-29 levels are associated with disease
progression and shorter patient survival times [45]. Thus, miR-29 has been highlighted as
a potential biomarker for non-invasive diagnosis of NAFLD [46]. In terms of mechanism of
action, the miR-29 family functions as tumor suppressors by targeting Ribosomal Protein
S15a (RPS15A) and regulating the cell cycle in HCC [47]. Moreover, miR-29b has been
identified as a negative regulatory target gene of the lncRNA HLA Complex P5 (HCP5),
which plays a tumor suppressor role to prevent proliferation, migration, and invasion of
HCC cells [48].

Unlike the coding RNAs inhibited by microRNAs, many ncRNAs can interfere with
binding of microRNAs to their target genes, thereby producing the opposite effect, based
on the mechanism utilized by miRNAs of using the complementary characteristics of the
nucleic acid sequences and target genes to affect the stability of their RNA or efficiency
of translation. A combination of ncRNA with microRNA reduces the likelihood of a
particular microRNA directly acting on its target gene, typically designated a ‘microRNA
sponge’ [20].

Colorectal Neoplasia Differentially Expressed (CRNDE) is an upregulated lncRNA in
HCC positively correlated with poor clinical outcomes. Suppression of CRNDE has been
shown to induce a marked decrease in HCC cell proliferation, migration, and chemoresis-
tance. CRNDE interacts directly with Enhancer of Zeste Homolog (EZH2), Suppressor of
Zeste 12 (SUZ12), and Suppressor of Variegation 3-9 Homolog 1 (SUV39H1) and mediates
their inhibition of tumor suppressor genes [49]. CRNDE is additionally reported to promote
proliferation and metastasis by acting as a miR-539-5p sponge to regulate POU Class 2
Homeobox 1 (POU2F1) expression in HCC [50].

Expression of the lncRNA H19 decreases after birth in the majority of tissues, but is
re-expressed in many cancer types. Notably, H19 expression is higher in women than men.
H19 is positively related to liver cirrhosis and negatively correlated with the survival rate
of HCC [51]. Furthermore, H19 has been shown to have an adverse effect on sorafenib
therapy for liver cancer, inhibiting the sensitivity of liver cancer cells to sorafenib via
upregulation of miR-675 [52]. The miR-200 family plays a key role in regulating the
epithelial–mesenchymal transition (EMT) of cells. Moreover, miR-200 is highly related to
tumorigenesis and significantly inhibited in HCC [53]. A microRNA sponge relationship
between miR-200 and H19 has been reported. H19 promotes HCC bone metastasis by
reducing osteoprotegerin (OPG) expression, which is mediated by Protein Phosphatase 1
Catalytic subunit alpha (PPP1CA)-induced inactivation of the p38/MAPK pathway along
with sponging miR-200b-3p [54].

While specific clinical treatments for HCC are lacking, a number of chemotherapy
drugs show significant benefits for a proportion of patients with advanced disease [55].
Genetic heterogeneity plays an important role in the effectiveness of drugs against cancer
cells. For this reason, identification of high-quality biomarkers is valuable in the diag-
nosis of cancer. At the same time, a choice of different drugs is urgently required [56].
Accumulating evidence of the participation of numerous miRNAs in the drug resistance
process of cancer cells highlights the importance of a comprehensive understanding of
their physiological functions (Figure 2) [57].
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In HCC cells, miRNAs are widely involved in various mechanisms related to drug
resistance through elimination of drugs from the ABC transporters in the cell, lysosomes
and autophagy that degrade drugs within the cell, or EMT and CSC that directly affect
cell morphology.

Dysregulation of autophagy is a double-edged blade in cancer. Upon exposure of
normal cells to adverse environments and damage, autophagy is activated to reduce
stress for avoiding mutations and generating cancer cells. However, under conditions
where cancer cells are formed, autophagy can induce EMT, regulate metabolism, and
mediate drug resistance. Multiple genes, RNA molecules, proteins, and specific drugs exert
antitumor effects by inhibiting autophagy-mediated drug resistance [58]. For instance, miR-
541 is downregulated in HCC and associated with malignant clinicopathologic phenotypes
(growth, metastasis, and autophagy), recurrence, and survival of patients with HCC [59,60].
Dysregulation of miR-541 through the autophagy-related gene 2A (ATG2A) and Ras-related
protein Rab-1B (RAB1B) axis plays a critical role in patient responses to sorafenib treatment.
Manipulation of this axis may benefit survival of patients with HCC, especially in the
context of highly pursued strategies to eliminate drug resistance [60].

Expression of miR-26b-5p is decreased in HCC and associated with poor survival [61].
Zinc ribbon domain-containing 1 (ZNRD1) is frequently upregulated in HCC compared
with non-tumor tissues. High ZNRD1 expression in HCC tissues is positively associ-
ated with advanced tumor stage and poor prognosis. MiR-26b directly inhibits the tran-
scriptional activity of ZNRD1 and Wnt/β-catenin signaling to suppress HCC develop-
ment [62]. Moreover, miR-26b has been shown to enhance HCC cell sensitivity to doxoru-
bicin through suppressing Ubiquitin Specific Peptidase 9 X-Linked (USP9X)-mediated p53
de-ubiquitination caused by DNA-damaging drugs and autophagy regulation [63]. Ex-
pression of miR-223-3p is markedly lower in cancer tissues relative to their non-cancerous
counterparts in HCC. Serum miR-223-3p has been identified as an independent prognostic
factor of overall survival in HBV-related HCC [64]. Furthermore, miR-223 overexpression
is reported to inhibit doxorubicin-induced autophagy by targeting Forkhead box class O
3a (FOXO3a) and reverse chemoresistance in hepatocellular carcinoma cells [65].

Several factors underlie chemotherapy resistance in cancer. In addition to autophagy,
ABC transporters related to membrane transporters can promote drug resistance. In ad-
dition, other factors through inducing changes in cell morphology, such as EMT and
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cancer stem cells, are implicated. Changes in drug resistance triggered by these different
mechanisms are significantly related to microRNAs [66].

Multi-drug resistance (MDR) is a major obstacle in cancer treatment. The primary mech-
anism underlying acquired chemoresistance is overexpression of adenosine triphosphate-
binding cassette (ABC) transporters. Dysregulation of miRNA is another common factor
contributing to this phenotype [67]. For instance, miR-122 is an important microRNA in
nature that affects drug resistance. Mechanistically, miR-122 modulates the sensitivity of
cells to doxorubicin through downregulation of MDR-related genes, ABCB1 and ABCF2,
and inhibits HCC growth by inducing cell cycle arrest [68]. Additionally, miR-122 inhibits
MDR1 (ABCB1) expression via suppression of the Wnt/β-catenin pathway, thereby enhanc-
ing HCC sensitivity to oxaliplatin (OXA) [69]. Expression of another microRNA, miR-491,
in HCC tissues is significantly lower than that in tumor-adjacent tissues and correlated
with malignant clinicopathological features [70]. MiR-491 is additionally involved in the
ABCB1-mediated doxorubicin and vinblastine resistance of HCC. Specifically, miR-491
downregulates ABCB1 and its transcription factor Sp3 through direct targeting of their
3’UTR regions [71]. p21-Activated Kinase 5 (Pak5) contributes to sorafenib resistance of
HCC via regulatory effects on the β-catenin/ABCB1 signaling and miR-138-1-3p is down-
regulated in sorafenib-resistant HCC cell lines. Earlier studies indicate that miR-138-1-3p
reduces protein expression of PAK5 by directly targeting its 3’UTR [72].

Epithelial–mesenchymal transition (EMT) refers to the process of critical morphologi-
cal transformation of cancer cells during metastasis. EMT is achieved through alternation
of epithelial and mesenchymal forms, including changes in apical–basal polarity and in-
tracellular junctions and gain of mobility through increasing or decreasing the number of
genes directed by a small number of transcription factors. Accumulating studies suggest
that in addition to the risk of metastasis, the type of EMT is related to drug resistance
of cancer cells [73]. EMT has additionally been implicated in stem cell properties and
therapeutic resistance of cancer cells [74]. The lncRNA POIR was initially identified dur-
ing a study on sorafenib resistance. Further research disclosed that POIR has a miRNA
sponge effect through direct binding to miR-182-5p, leading to promotion of EMT changes
and a strong ability to resist sorafenib therapy [75]. MiR-32 is associated with tumor
progression and poor prognosis in several diseases, including HCC [76]. This miRNA
downregulates phosphatase and tensin homolog (PTEN) through direct targeting of its
3’UTR, affecting proliferation, migration, and invasion of HCC cells via the PTEN/Akt
signaling pathway [77]. Using a similar mechanism, miR-32 promotes resistance of HCC
cells to 5-Fluorouracil through EMT and angiogenesis [78]. Other miRNAs, such as miR-
138 and miR-9, interact with their respective target genes in HCC, specifically, Enhancer
Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) and Eukaryotic Translation
Initiation Factor 5A2 (EIF5A2), to affect EMT and induce cisplatin sensitivity [79,80].

Cancer stem cells (CSC) are also considered tumor-initiating cells (TIC). Recent studies
suggest that their strong resistance to chemotherapy is related to recurrence of cancer,
mainly based on the ability of CSCs to self-renew and differentiate into heterogeneous
lineages [81]. MiR-124 acts as a tumor suppressor through regulation of cyclin D1 and
cyclin-dependent kinase 6 (CDK6), which may serve as a potential therapeutic target in
HCC [82]. This miRNA is downregulated in liver CSC and associated with prognostic
survival in HCC. Functionally, miR-124 inhibits the self-renewal ability of liver CSC and
reduces tumor occurrence. In particular, miR-124 has been shown to promote response to
sorafenib by regulating the performance of the target gene Caveolin-1 (CAV1) [83]. Another
miRNA, miR-206, inhibits tumor progression in HCC, reducing proliferation, invasion, and
migration and promoting apoptosis of tumor cells through regulatory effects on Protein
Tyrosine Phosphatase 1B (PTP1B) and cMET [84,85]. In addition, miR-206 expression
is reduced in both chemoresistant and recurrent HCC cases. Mechanistically, miR-206
inhibits liver CSC expansion by suppressing dedifferentiation of HCC cells and attenuating
self-renewal of liver CSCs through direct targeting of Epidermal Growth Factor Receptor
(EGFR) [86]. Another similar miRNA, miR-194, has a lower performance in cells with
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higher chemical resistance and affects the self-renewal ability of CSC through targeting
Ras-related C3 botulinum toxin substrate 1 (RAC1), consequently affecting sensitivity to
sorafenib [87].

5. Application of MicroRNAs to Clinical Technology

The traditional methods of miRNA detection include Northern blotting, microar-
ray, quantitative real-time polymerase chain reaction (qRT-PCR), and next-generation
sequencing (NGS). Research in recent years has focused on the use of qRT-PCR and NGS
or the development of related or extended detection methods based on these technologies
(Figure 3) [88]. The traditional miRNA detection methods have considerable drawbacks.
For example, Northern blotting requires the detection of large amounts of RNA and has
high technical thresholds. At the same time, it is impossible to detect differences in signals
from RNA molecules of the same molecular weight. However, qRT-PCR is limited by the
accuracy of the primer design and RNA samples need to undergo complex processing for
conversion into reactive cDNA, which greatly increases the chances of error. However,
modern NGS technology faces some issues, such as the length of time required, robustness
of the database, and influence of the structure and composition (secondary structure or GC
content) of RNA [89]. For clinical application of miRNAs, solutions to address these techni-
cal deficiencies, such as isothermal amplification, paper-based, oligonucleotide template
reaction, nanobead-based, electrochemical signaling-based, and microfluidic chip-based
strategies, are under development [90]. Because of the high diagnostic value of miRNAs,
to achieve specific applications in practice, the development of highly accurate, rapid,
and low-cost detection methods continues to be a focus of research. In addition, miRNAs
hold significant promise as blood-borne and circulating biomarkers for numerous diseases.
However, the reliability of such liquid biopsies is significantly affected by problems as-
sociated with the handling of biological liquids in the pre-analytical stages of biomarker
processing [91].
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In the clinic, RNA (including miRNA) is isolated and extracted from a patient’s
tissue sample or body fluid. In addition to direct analysis of RNA using a hybridizing
probe (Northern blot analysis), the RNA may be reverse transcribed to form cDNA. Real-
time quantitative reverse-transcription PCR (qRT-PCR) uses transcript-specific primers to
amplify the cDNA and assess the presence and level of gene expression. Next generation
sequencing (NGS) is a high-throughput technology that can be used to analyze cDNA
sequences, compare detected sequences, and obtain data on differences in gene expression.

6. The Advantages of MicroRNAs for the Diagnosis and Treatment of HCC

Precise and personalized therapy is a major trend in current and future medicine.
Appropriate medical strategies and risk assessments can be formulated based on specific
biological parameters and comparative analysis of clinical information. For this reason,
biomarkers have become a major focus of research. The ideal characteristics of cancer-
related biomarkers are as follows: specific responses to carcinogen-related pathological
changes, sufficient expression in the body for easy detection, and adequate specificity to
avoid excessive possibility of blurring the focus. In clinical oncology, biomarkers for early
diagnosis are critical for not only preventing the incidence of cancer but also establishing
effective therapeutic strategies [92].

Early research to develop biomarkers based on proteomics was limited by the evolu-
tion of technology, with disappointing advances in the development of diagnostic equip-
ment. Proteosome-related biomarkers have several shortcomings, including limitations
in analysis of complex biological materials and inherent statistical challenges in high-
dimensionality data sets populated by comparatively few samples. Moreover, selection
of protein-type biomarkers for research and development is difficult. The main technical
problem clearly lies in the inability to amplify the product for operation. Immunoaffin-
ity capture is the most effective procedure for detection and quantification of protein
biomarker candidates present at or below the nanogram/milliliter levels in blood, where
many disease-specific biomarkers are located. However, the comprehensiveness of anti-
body and other protein profiling arrays, even for unmodified proteins, does not currently
begin to approach what is available for transcriptional profiling, rendering this approach
unsuitable for true de novo discovery efforts (Figure 4) [93]. Protein biomarkers, such
as AFP and CEA, are mainly used to detect the risk of HCC and not applied alone for
evaluation owing to their lack of specificity [94,95].
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The development and use of RNA as HCC biomarkers has significant advantages
compared with protein. Regardless of the preparation and analysis of clinical specimens,
RNA has higher economic value and can be used in multiple technologies.

RNA is an important component of the central dogma and can transmit genetic infor-
mation by participating in transcription and post-transcriptional regulation events, reliably
reflecting various physiological phenomena. During the search for biomarkers, inclusion
of the RNA system for development was naturally considered. However, application of
RNA has a number of difficulties, the most typical being serious instability derived from its
single-stranded structure. In terms of advantages, RNA can be detected, even at very low
levels, and effectively used as a biomarker with high-throughput technology for various
diseases. RNA is also widely present in various biological fluids, such as serum, saliva, and
urine, and therefore has the advantage of non-invasive detection, which can be applied to
monitor tumor progression and response to treatment. Compared with protein biomarkers,
RNA biomarkers are more specific and sensitive. RNA can also be amplified with PCR
along with other technologies. In terms of cost, each protein biomarker needs to use the
corresponding antibody for operation while RNA biomarkers only require the relevant
primers and are therefore more affordable. Moreover, compared to DNA biomarkers, RNA
biomarkers have the added advantage of providing dynamic insights into the cellular
states and regulatory processes [96].

Since RNA instability is a significant challenge, miRNAs may enhance the application
value of RNA-based markers. Previous studies indicate that miRNAs are remarkably
stable in plasma and serum as well as extreme pH and multiple freeze–thaw cycles, as
well as being resistant to RNase activity [97]. The cell specificity, richnessm and stability
of miRNA molecules enhance their clinical value. Notably, about 10% of circulating
miRNAs are secreted in extracellular bodies and other parts bind specific proteins to
form complexes, such as Argonaute 2 (Ago2), nucleophosmin 1 (NPM 1), and high-density
lipoprotein (HDL). Compared with other RNAs, the stability of miRNAs is therefore greatly
increased and these molecules can effectively avoid degradation by RNases. Clarification
of the precise origins and functions of various miRNAs may facilitate diagnosis and
treatment of different cancer types [98]. MiRNA-guided diagnostics provide a powerful
molecular approach for evaluating clinical samples. MiRNA biomarkers offer a useful
tool for assessing cancer development owing to their essential roles in nearly all cellular
pathways governing human malignancies, such as carcinogenesis, cancer progression, cell
invasion and metastasis, cell survival, and response to therapeutic drugs [99].

7. The Disadvantages of MicroRNAs in the Diagnosis and Treatment of HCC

In clinical applications, miRNAs circulating in the body display a high degree of
specificity and sensitivity as biomarkers and are valuable for diagnosis and monitoring
of recovery. However, miRNA-based strategies pose a number of problems that need to
be overcome. First, the same specific miRNA biomarkers have been frequently detected
in patients diagnosed with different types of cancer. In particular, miRNAs expressed in
tumor tissues are more serious than those circulating in the body. Several miRNAs are
reported to be abnormally expressed in tumor tissues but cannot effectively distinguish
between benign and malignant tissues. For instance, miR-21-5p is strongly correlated with
multiple types of cancer but cannot discriminate between malignant tumors and benign
polyps in colorectal cancer (CRC). At the same time, miRNAs may have distinct functions
and expression patterns in different cancer tissues. In patients with non-small cell lung
cancer (NSCLC), HCC, and gastric cancer, miR-21-5p is reported to be upregulated and,
conversely, downregulated in patients with breast cancer, signifying different contributory
roles in distinct cancer types [100,101].

Compared with RNA, miRNAs are more suitable as biomarkers owing to their sta-
bility based on associations with extracellular vesicles, which facilitates avoidance of
RNase-mediated digestion, along with the convenience of non-invasive testing. However,
extraction and analysis of miRNAs from extracellular vesicles present considerable chal-
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lenges. During the storage period, miRNAs are released from blood cells, which could
lead to false results that significantly differ depending on whether plasma or serum is
used. Therefore, the protocols should be standardized for sample collection, storage, and
processing. EDTA, citrate, and heparin are commonly used anticoagulants for plasma
collection. Some anticoagulants, such as heparin, are known to inhibit reverse transcriptase
and DNA polymerase activities [101].

MiRNA detection technology has several limitations that need to be addressed. In gen-
eral, miRNA detection is performed via qRT-PCR, droplet digital PCR (ddPCR), microarray,
and miRNA sequencing. For example, qRT-PCR analysis is classified into absolute and
relative quantification methods. However, no constant standards are available for equaliza-
tion calculation in plasma or blood, leading to difficulties when performing quantitative
actions. Conventionally, relative expression of miRNAs mainly relies on small nuclear
(e.g., U6) or small nucleolar (e.g., SNORD44) RNAs for normalization. However, analysis
procedures for numerous well-known miRNAs are unavailable, such as miR-16, miRs-10b,
miR-30a, miR-30d, miR-103, miR-148b, miR-191, and miR-192 [101].

Using RNA interference technology, expression levels of proteins can be regulated.
This system is a breakthrough that has resulted in the identification of excellent protein
targets considered “undruggable” in the past due to technological or other reasons. While
microRNAs have unique advantages in clinical diagnosis, significant challenges need
to be overcome for use in therapeutic drug development. Oligonucleotide therapeutics
have since been developed to specifically silence, restore, or modify the expression of
disease-causing or disease-associated genes in cancer and genetic disorders [102]. Several
difficulties exist with this type of application, such as degradation of nucleases by biological
systems, poor permeability to cell membranes, the need to increase the binding force for
complementary sequences, optimization of the delivery method to target tissue, and the
occurrence of off-target and unwanted toxicities [103]. Over time, a number of solutions
have been developed, including the use of different chemical modifications (phosphodiester
linkages, ribose backbone, 2′-O-(2-methoxyethyl), 2′-O-methyl, 2′-locked nucleic acid, and
2′-fluoro) to improve stability and different delivery vehicles to improve transportation
(liposomes, polymers, and viruses) [104].

8. The Current Clinical Application of MicroRNAs in HCC

In view of the participation of miRNAs in various physiological functions, one docu-
mented theory is the exploitation of these molecules for disease screening and treatment
development [105]. Biomarker selection should primarily be driven by an attempt to
resolve specific clinical issues, such as causative relationship with the disease state [106].
In clinical diagnosis of liver cancer patients, the choice of biomarker is dependent on easy
detection (non-invasive) and reflection of different pathological phenomena (tumor stage,
size, invasion degree, and patient survival rate) and consideration of specificity is also a
significant challenge. AFP, currently the most commonly used clinical biomarker in liver
cancer, has inadequate specificity. Biomarkers not only have application value in terms
of correlation with pathological phenomena but also aid in selecting and monitoring the
effects of drugs for different treatment methods. Based on their intrinsic characteristics, a
number of miRNAs have been selected for clinical application in HCC therapy.

MiR-122 is one of the most highly selected candidate miRNAs for HCC owing to
its liver specificity [107]. Clinically, miR-122 plays an important role in viral liver cancer
and is used to select treatment strategies based on HCV or HBV infection [108]. In ad-
dition, miR-122 aids in reducing the shortcomings of AFP detection errors caused by
insufficient specificity. By combining the detection of different biomarkers at the same
time, more accurate analysis of the different stages and types of liver cancer or hepatitis
can be achieved. For instance, combination of serum AFP expression with two potential
biomarkers, Glypican-3 (GPC3) and miR-122, shows diagnostic potential for HCV-related
early-stage HCC [109], while potent biomarker-based panels comprising serological AFP,
miR-122, and circulating telomerase reverse-transcriptase (TERT) promoter mutations can
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be efficiently used for screening HBV-related HCC [109]. In the selection of treatment
strategies, the performance of miR-122 is also used to make an informed choice. Sorafenib
is the only first-line treatment approved for advanced HCC. Since many patients experi-
ence drug resistance, the development of more effective strategies represents an unmet
clinical need [110]. To clarify the molecular mechanisms underlying sorafenib resistance
in HCC cells, a miRNA microarray was conducted [111], which revealed a significant
reduction in liver-specific miR-122 expression in sorafenib-resistant HCC cells. Further
reports suggest that activation of Insulin-like growth factor 1 receptor (IGF-1R) via miR-122
downregulation contributes to RAS signaling associated with drug resistance [111].

In addition to miR-122, miR-21 and miR-192 have been highlighted as candidate clini-
cal biomarkers. MiR-21, miR-122, and miR-192 are reported to be differentially expressed
among subgroups and positively correlated with AFP levels in HBV-related HCC. Together
with AFP, the three miRNAs (miR-21, miR-122, miR-192) may serve as effective biomarkers
to improve diagnostic therapy for HCC in HBV-positive patients, in particular, HBV-related
liver cirrhosis with normal AFP levels or HCC with small tumor sizes [112]. Similar to
miR-122, miR-192 is a specific microRNA located in the liver [113]. MiR-192-5p is abundant
in liver tissue where it promotes development of the liver and cellular differentiation and
coordinates energy metabolism [114]. Recent studies have demonstrated the involvement
of miR-192-5p in several human diseases, especially various tumor types, including lung,
HCC, and breast cancer. Notably, miR-192-5p is abundant in biofluids, such as serum and
urine, and exosomal levels in the circulation can be used in the diagnosis and prognosis of
various diseases, such as chronic hepatitis B infection [115]. Other liver-specific microRNAs
include miR-130, miR-183, miR-196, miR-209, and miR-96, potential indicators of liver
injury (apoptosis, necrosis, and necroptosis), or hepatitis that display variable expression
during acute/fulminant or chronic liver failure, liver fibrosis/cirrhosis, and HCC [116].

In recent years, extensive studies have identified small extracellular vesicles (EV,
designated ‘exosomes’) as carriers of various molecules, in particular, miRNA. HBV and
HCV use exosomes to spread viral RNA complexes to neighboring human liver cells. Due
to their activity in transmitting effector molecules and signals between cells, including
RNA, proteins, ncRNA, and DNA fragments, exosomes have attracted significant interest
for potential application in the clinic [117]. In addition to the advantages of specificity,
non-invasive detection, and stability, miRNAs present in exosomes also have research
value [118], such as the clinical candidate mentioned earlier, miR-122. Exosomal miR-
122 has been shown to play an important role in HCC and alterations in this miRNA
are associated with predictive ability in HCC patients with liver cirrhosis treated with
transarterial chemoembolization (TACE). Exosomal miRNAs were isolated from serum
samples collected before and after TACE in an earlier study. Expression of this miRNA
was significantly decreased after TACE and its expression before TACE was markedly
correlated with tumor diameter and Child–Pugh score. According to the median relative
expression of miR-122 after and before TACE in liver cirrhosis patients, patients with a
higher miR-122 ratio had significantly longer disease-specific survival [119]. In addition to
miR-122, miRNAs detected in exosomes in serum with clinical significance are miR-148a
and miR-1246, which are more abundantly expressed in HCC relative to the liver cirrhosis
and normal control groups [120]. MiR-519d is also considered an excellent candidate
biomarker for early diagnosis. Initially, in patient groups with liver cirrhosis, miR-939, miR-
595, and miR-519d were shown to successfully discriminate between cirrhotic patients with
and without HCC. Further analysis of patient serum miRNAs in the exosome disclosed
miR-519d, miR-21, miR-221, and miR-1228 and a correlation between circulating and tissue
levels of miR-519d, miR-494, and miR-21 in HCC patients. Among these, miR-519d could
be used to distinguish cirrhotic patients without HCC and with early-stage HCC [121].
Earlier studies have evaluated 11 well-known reference genes from circulating exosomes
across healthy controls, hepatitis B patients, and HCC patients. A combination of miR-
221, miR-191, let-7a, miR-181a, and miR-26a represents an optimal gene reference set to
normalize the expression of liver-specific miRNAs for comprehensive investigation into the
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progression of chronic hepatitis B to HCC, which may be valuable for monitoring hepatitis
progression and as a biomarker of early-stage HCC [122]. In addition, the miR-125b and
miR-638 levels in exosomes are associated with tumor number, encapsulation, and TNM
stage, along with reduced time to recurrence and overall survival. These results support
the utility of exosomal miR-125b as a promising prognostic marker for HCC [123,124].

Both antagonists and mimics have been developed as miRNA-based therapeutic
approaches for cancer. MiRNA antagonists are single-stranded oligonucleotides that
hybridize to miRNA complementary sequences and disrupt miRNA activity or processing,
with a resultant increase in expression of the target genes (tumor suppressors). MiRNA
mimics play a converse role by overexpressing miRNA, leading to downregulation of the
target genes (oncogenes; Table 1) [103].

MRX34, a liposomal formulation of miR-34a, is potentially the first class of miRNA
mimic cancer therapy. MiR-34a is a naturally occurring tumor suppressor lost or expressed
at reduced levels in a broad range of tumor types. Retrospective clinical studies have
demonstrated a negative correlation of low miR-34 expression with survival in a number
of cancer types. In normal tissue, miR-34a is implicated in the downregulation of over
30 unique oncogenes, including, but not limited to, MET, MYC, PDGFR-α, CDK4/6,
and BCL2. Genes involved in tumor immune evasion, such as PD-L1 and DGKζ, are
additionally regulated by miR-34a. Exogenous introduction of miR-34a mimics in vitro
is reported to suppress cell proliferation, migration, and invasion. Synergistic effects
have been observed upon combination of miR-34a mimics with anti-cancer therapies.
In pre-clinical animal models, miR-34a delivered by a variety of vehicles inhibited primary
tumor growth, blocked metastasis, and improved survival. Moreover, orthotopic mouse
models of hepatocellular carcinoma (HCC) displayed significant growth inhibition and
tumor regression in more than a third of MRX34-treated animals. Unfortunately, the first
human clinical trial of miRNA-based therapy was terminated due to unexpectedly severe
immune-mediated toxicity, which resulted in the death of four patients from expansion
cohorts [125].

Miravirsen (SPC3649), a 15-nucleotide nucleic acid (LNA) containing phosphoroth-
ioate modifications, is the first anti-miRNA antisense oligonucleotide (ASO) entered for
clinical trials. The modified ASO for treatment of HCV infection targets miR-122, a highly
abundant miRNA expressed in the liver that regulates HCV replication [126]. In phase 1
clinical trials, high doses of Miravirsen monotherapy resulted in undetectable HCV RNA
levels in some cases. Since Miravirsen is a modified RNA, it naturally accumulates in the
liver and does not require a special delivery strategy. Miravirsen is currently undergoing
multiple phase 2 clinical trials [127].

Another product developed to target miR-122 in HCV-infected hepatocytes is RG-101,
an N-acetyl-D-galactosamine-conjugated RNA antagomiR. Similar to Miravirsen, RG-101
shows considerable efficacy in patients displaying undetectable HCV RNA levels. However,
major adverse events, such as severe jaundice, were reported in a recent clinical trial and the
FDA has recommended putting the study on hold until clarification of the situation [127].

MiR-103 and miR-107 levels are upregulated in the liver of obese animals and serum
of human NAFLD patients. In animal models, miR-107 and miR-103 are reported to
regulate insulin sensitivity through direct interactions with caveolin-1 [128]. Recently,
RG-125 (AZD4076), a microRNA-103/107 antagonist, entered a phase 1 clinical trial for
non-alcoholic steatohepatitis (NASH) treatment [129]. However, this drug has since been
associated with a jaundice-related side-effect (known as hyperbilirubinemia) and its devel-
opment program faces termination.
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Table 1. MiRNA-based clinical drugs for HCC.

Name microRNA/Role Phase Status Diseases Therapeutic
Agent

Regulation
Gene Side Effect Reference

MRX34 miR-
34/Suppressor

Phase1
(terminated) HCC miR-34 mimic

SMAD4,
SATB2,
PDGFR,

c-MET, Axl

Immune-mediated
toxicity [130–135]

Miravirsen
(SPC3649)

miR-
122/Oncogene

Phase2
(suspended) HCV Anti-miR-122 Ago2, DCAF1,

CAT-1, NIK,
LPL, NS5B

No clear side
effects [27,136–141]

RG-101 miR-
122/Oncogene

Phase2 (dis-
continued) HCV Anti-miR-122 Jaundice [142,143]

RG-125
(AZD4076)

miR-
103/Oncogene

miR-
107/Oncogene

Phase1 NASH Anti-miR-103/
107

HMGB1, P120,
ZO-1, LATS2,

RGS4,
HMGCS2

Hyperbilirubinemia [144–150]

9. Challenges and Solutions for the Clinical Application of microRNAs

Even though miRNAs have many potential benefits for clinical applications in theory,
there are still many challenges to be solved before they can be applied in practice. For
example, although the detection of circulating miRNAs in patients’ body fluids would
embody a non-invasive mode of analysis, researchers must first address the problem of
miRNAs being affected by other substances in the specimen. Since miRNAs circulating
in body fluids may be coated by microvesicles, targeted purification methods would
also be needed [151]. In addition, many miRNAs become unstable and degraded in
the environment within 24 to 72 h in 4 ◦C or −20 ◦C, leading to inaccurate detection
results [152]. Deviations between tests need to be carefully evaluated.

The total amount of miRNA circulating in body fluids is rarely (if ever) high, which
limits the applicability of the analytical methods traditionally used to detect miRNAs, such
as qRT-PCR, microarray analysis, and NGS. Although qRT-PCR can amplify the signal of a
target sequence, its performance is limited by the basic content of the input. Microarray
analysis is not suitable for identifying miRNAs with short sequences and high similarity.
High-throughput NGS seems to be the best solution. Although the price is higher, it is
suitable for NGS to consider [98,153].

Regarding the use of miRNAs for targeted therapy, the main approach applied to
date has been to use an anti-miRNA to silence a target miRNA. However, this strategy
has encountered issues related to off-target effects and delivery issues. Among the more
than 2000 known miRNAs, only about 200 are considered to have sufficient content and
physiological significance to be potentially useful in clinical diagnosis and/or treatment.
Moreover, an miRNA comprises only ~20 nucleic acids, of which only ~7 nucleic acids (the
so-called seed sequence) can meaningfully combine with a target mRNA. Therefore, many
miRNAs have the same target. For example, members of the miR-17 and let-7 families of
miRNAs have the same seed sequence. Therefore, even if scientists manage to increase
the binding force of an anti-miRNA to a target miRNA, to reduce the influence of other
miRNAs by anti-miRNA will be a fundamental problem [154].

Some modifications have been proposed to reduce the chance of an anti-miRNA bind-
ing to a non-target miRNA. For example, the 2’-OMe-modified miR-93 inhibitor exhibits
a reduced chance of mis-binding to miR-106b [155]. Moreover, 2′-MOE-modified LNA,
unlocked nucleic acid, and glycol nucleic acid have been shown to efficiently suppress the
immune stimulation by anti-miRNA and enhance specificity to reduce off-target induced
toxicity [156]. The miRNA that has received the most attention in liver cancer, miR-122,
has also been addressed in modification studies [157,158].

Regarding delivery-related issues, many miRNAs have different functions in different
tissues, meaning that it would be important to deliver miRNA-based drugs to the right loca-
tion(s). Although abnormally expressed miRNAs may cause tumors, the same miRNAs can
have necessary functions in normal tissues. For example, abnormally high performance of
the miR-17–92 cluster can cause lung cancer; however, the lack of this cluster under normal
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circumstances can cause immune cell dysfunction and developmental disorders [159–161].
The current mainstream approach for targeted delivery is to pair a miRNA with a ligand,
peptide, or antibody that reacts with a specific antigen on the surface of the target tumor
or tissue cells. These targeted delivery approaches can minimize potentially deleterious
effects in normal tissues [162–164]. Delivery system design must also consider the affinity
of the target tissue for the drug. Fortunately, liver tissue is generally amenable to the
direct delivery of drugs designed using the basic antisense oligonucleotide (ASO) method,
without the need for special carriers [165].

10. Discussion

HCC is the most common primary cancer of the liver with extremely high fatality
rates. From a clinical viewpoint, the main underlying factor is the lack of an effective
and easy-to-implement biomarker for early clinical diagnosis of HCC, which often leads
to inadequate treatment outcomes. The suitability of biomarkers is dependent on their
accuracy and specificity. Suitable biomarkers should reduce the difficulty of operation and
increase patient compliance in addition to being economical. The mainstream biomarker
for HCC is AFP. However, a major problem with using AFP for detection is that this protein
does not actually reflect the occurrence of HCC, suggesting that AFP is not adequately
specific for a diagnosis. A number of previous studies demonstrated no elevation of AFP
levels in patients with HCC. Conversely, patients who were not diagnosed with HCC but
displayed cirrhosis, cholangiocarcinoma, or other tumors were shown to contain elevated
AFP [166,167].

In the search for optimal biomarkers, the concept of RNA-based strategies has gradu-
ally emerged due to the evolution of biotechnology. Compared with traditional protein
biomarkers, the advantages of this method are clear. Clinical samples are difficult to obtain
and patient samples should therefore be used cautiously for analysis. However, protein-
based biomarkers cannot be employed due to technical limitations. In view of detection
sensitivity and amplification properties from a biological viewpoint, the physiological
significance of RNA is higher than that of protein. However, the instability of RNA is yet
another problem that hinders its application. Based on the theory that non-transcribed
RNAs play important physiological roles, the clinical value of miRNAs with a fragment
size of only 17–22 nucleic acids has gradually been revealed. Compared with traditional
RNA, miRNAs have higher stability and a key ability to simultaneously regulate different
genes. At the same time, miRNAs are secreted into human body fluids in different ways,
supporting their high potential in non-invasive detection. Nevertheless, a number of
problems need to be overcome for optimization of miRNAs as biomarkers for HCC and
other diseases in the future. For example, miRNAs have a high degree of tissue specificity.
Furthermore, the same miRNAs may play distinct roles in multiple tissue types. The main
advantages of miRNA technology include the development of more effective and faster
detection methods. However, for methods such as qRT-PCR, several problems exist, such
as the need to undergo reverse transcription or inadequate fragment length for effectively
identifying differences between similar types of microRNAs.

In addition to traditional treatments, such as chemotherapy and surgery, the ther-
apeutic options that have received attention in recent years are targeted drugs, such as
sorafenib, lenvatinib, and regorafenib [168]. However, HCC is a remarkably heterogeneous
disease [169]. Tumor heterogeneity in HCC, such as that found in second primary tumors
after curative treatment, synchronous multifocal tumors of different clonality, or intratumor
heterogeneity, poses severe challenges for the development and administration of systemic
molecular targeted therapies [170]. Considering the problems related to poor efficacy and
heterogeneous individual responses to targeted therapy, miRNA expression profiles have
been linked to the development of anticancer drug resistance. Therefore, the therapeutic
potential of miRNAs may be successfully exploited for overcoming drug resistance in vari-
ous cancer types. MiRNAs are additionally considered a suitable tool to resolve the issue
of resistance to chemotherapy [171]. Research to date suggests that restoring the balance of
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specific miRNAs in drug-resistant cancer cells should aid in re-establishing sensitivity to
drugs. These findings support the potential of miRNAs as co-adjuvants in anticancer ther-
apy. Successive studies have also highlighted abnormalities in numerous microRNAs in
patients resistant to sorafenib, such as miR-486, miR-21, and miR-122, which are currently
under evaluation [110,172,173]. The clinical potential of miRNAs is undeniable and their
paramount roles in drug resistance could be exploited as alternative strategies to manage
treatment responses in addition to their utility as predictive circulating biomarkers [174].

Nonetheless, challenges remain in efforts to use miRNAs as a treatment strategy.
The most fundamental issue is too many targets for a miRNA effect [175], which is also
relevant to the following two failed miRNA drugs. MRX34 is a miR-34a mimic drug for
which phase I clinical trials were terminated due to the occurrence of five serious immune-
related adverse events [175]. KEGG Orthology-Based Annotation System (KOBAS) analysis
revealed that the numerous target genes of miR-34a include many immune pathway-related
genes, such as those encoding cytokines and interleukins [175]. This surprising observation
likely explains why MRX34 induces such serious immune-related side effects. Another
example is the anti-miR-122 drug, RG-101, which progressed to a phase II trial before
being discontinued because it induced hyperbilirubinemia in some subjects [175]. As
miR-122 is uniquely expressed in the liver, it would seem to be a potentially valid choice
for development of a drug that could have few side effects. The target genes of miR-122
include only few genes that are predicted to be related to hyperbilirubinemia. Although
this correlation is not sufficient to explain the small amount of hyperbilirubinemia induced
by RG-101, it could explain why only a few subjects had side effects until phase II. This
highlights the potential impact of the off-target problem. In fact, miRNAs can even act
on genes that have incomplete complementation to their seed sequence. Therefore, when
selecting miRNAs for drug design, researchers should comprehensively evaluate whether
actions on other target genes will induce undesirable side effects. Future efforts could also
involve the use of chemical modification and nano packaging materials to increase the
binding and accumulation of miRNA drugs within specific tissues [175–177].

Although the design of clinical liver cancer drugs based on microRNAs is an interest-
ing concept, numerous issues need to be resolved before clinical realization. In combination
with existing target drugs, miRNA technology may provide superior results in the future.

11. Conclusions

MiRNAs have an extremely high potential value in clinical applications. In the
biomarker context, circulating miRNAs are often coated with extracellular vesicles and
exhibit high stability, and thus can be targeted for non-invasive detection. MiRNAs also
participate in maintaining the physiological characteristics of various cancer cells, and their
levels can reflect the clinical information of many patients. In practical terms, miRNA-
based strategies offer technical and cost advantages over traditional protein-based detection
technologies. While miRNAs have high clinical value, a number of factors need to be con-
sidered to ensure their effective usage as biomarkers, including improving the separation
and sampling of extracellular capsules, detection technology, consideration of the appro-
priate quantitative reference genes, selection of miRNAs that can be clearly detected in
body fluids as targets, and development of oncogenic miRNAs that are upregulated in
cancer. Ultimately, a panel of selected miRNAs may be more effective in the identification
of biomarkers specific for a cancer type. At the same time, further exploration of the basic
functions of various miRNAs should be continued to ensure breakthrough prospects [101].

Although there has not yet been a successful case of miRNA-based liver cancer
treatment, this is still an area of vigorous development. Future research efforts should
involve identifying additional miRNAs that are specifically expressed in the liver, to reduce
the chance of off-target side effects, as well as the use of chemical modifications, carriers,
and/or nanomaterials to improve drug delivery. Moreover, researchers should return to
basic research on miRNAs, seeking to understand the many miRNAs whose functions
and target genes are not yet known, with the goal of finding more suitable targets for
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development. Novel miRNA biomarkers could also be used to implement the vision
of personalized medicine and provide suitable treatment strategies, thus reducing the
unnecessary pain and suffering of patients and achieving more efficient diagnoses and
management. The HCC Institute should focus on these guidelines in the future [168].
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