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Objective: To develop an accurate and rapid computed tomography (CT)-based
interpretable AI system for the diagnosis of lung diseases.

Background: Most existing AI systems only focus on viral pneumonia (e.g., COVID-19),
specifically, ignoring other similar lung diseases: e.g., bacterial pneumonia (BP), which
should also be detected during CT screening. In this paper, we propose a unified
sequence-based pneumonia classification network, called SLP-Net, which utilizes
consecutiveness information for the differential diagnosis of viral pneumonia (VP), BP,
and normal control cases from chest CT volumes.

Methods: Considering consecutive images of a CT volume as a time sequence input,
compared with previous 2D slice-based or 3D volume-based methods, our SLP-Net can
effectively use the spatial information and does not need a large amount of training data to
avoid overfitting. Specifically, sequential convolutional neural networks (CNNs) with multi-
scale receptive fields are first utilized to extract a set of higher-level representations, which
are then fed into a convolutional long short-term memory (ConvLSTM) module to
construct axial dimensional feature maps. A novel adaptive-weighted cross-entropy
loss (ACE) is introduced to optimize the output of the SLP-Net with a view to ensuring
that as many valid features from the previous images as possible are encoded into the
later CT image. In addition, we employ sequence attention maps for auxiliary classification
to enhance the confidence level of the results and produce a case-level prediction.

Results: For evaluation, we constructed a dataset of 258 chest CT volumes with 153 VP,
42 BP, and 63 normal control cases, for a total of 43,421 slices. We implemented a
comprehensive comparison between our SLP-Net and several state-of-the-art methods
across the dataset. Our proposed method obtained significant performance without a
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large amount of data, outperformed other slice-based and volume-based approaches.
The superior evaluation performance achieved in the classification experiments
demonstrated the ability of our model in the differential diagnosis of VP, BP and
normal cases.
Keywords: deep learning, CT, CNN, ConvLSTM, lung diseases
1 INTRODUCTION

COVID-19, the latest in viral pneumonia diseases, is an acute
respiratory syndrome that has spread rapidly around the world
since the end of 2019, having a devastating effect on the health
and well-being of the global population (1, 2). To diagnose viral
pneumonia (limited to COVID-19 in our work), reverse
transcription-polymerase chain reaction (RT-PCR) has widely
been accepted as the gold standard. However, shortages of
equipment and strict requirements for testing environments
limit the rapid and accurate screening of suspected subjects.
Furthermore, RT-PCR testing is also reported to suffer from a
high false-negative rate (3), with a low sensitivity of only 71%. In
clinical practice, radiological imaging techniques, e.g., X-rays and
computed tomography (CT), have also been demonstrated to be
effective in diagnosis, and also follow-up assessment and
evaluation of disease evolution (4, 5). CT is the most widely
used imaging technique, due to its high resolution and three-
dimensional (3D) view, and its relatively high detection
sensitivity of around 98% (6). For example, the study (5) found
that the dynamic lesion process of viral pneumonia (from
ground-glass opacity in the early stage to pulmonary
consolidation in the late stage) can be observed in CT scans,
and its CT manifestations have been emphasized.

Bacterial and viral pathogens are the two leading causes of
pneumonia, but require very different forms of management (7).
Bacterial pneumonia requires urgent referral for immediate
2

antibiotic treatment, while viral pneumonia is treated with
supportive care. Therefore, accurate classification of different
types of pneumonia is imperative for timely diagnosis and
treatment. However, the imaging features of viral and bacterial
infections are not often compared, and the only imaging feature
that was significantly different between the viral and bacterial
lung infection was the frequency of diffuse airspace disease (8). In
the case of a typical viral pneumonia, in clinical practice, it is
difficult to accurately differentiate viral pneumonia from
bacterial pneumonia. See Figure 1 as an example. In clinical
practice, especially in primary medical institutions, the
consistency of imaging diagnosis of pneumonia pathogens is
poor (9–11). Moreover, it is time consuming for radiologists to
read CT volumes that contain hundreds of 2D slices. As such, it
is of great practical significance to quickly and accurately identify
pathogens to guide individualized anti-infectious treatment and
minimize and delay the occurrence of drug resistance.

As an emerging technology in medical image analysis,
artificial intelligence (AI) has been widely employed for lesion
segmentation, and for clinical assessment and diagnosis of lung-
related diseases via radiological imaging (12, 13). Recently, many
novel AI techniques for viral pneumonia have been presented
(1). For instance, Ouyang et al. (14) proposed a dual-sampling
attention network for the differential diagnosis of COVID-19
from Community Acquired Pneumonia (CAP) (14, 15), and Fan
et al. (16) introduced an automatic COVID-19 lung infection
lesion segmentation method using a deep network. These works
A B

FIGURE 1 | Example axial CT slices of viral pneumonia (A), bacterial pneumonia (B). Accurate classification of different types of pneumonia is imperative for timely
diagnosis and treatment. However, viral pneumonia and bacterial pneumonia display similar appearances in a CT image, which makes it difficult to accurately
differentiate a patient with viral pneumonia from a case of bacterial pneumonia.
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are useful for detecting and controlling of the spread of COVID-
19. However, there are very few studies on differentiating
COVID-19 from other etiological pneumonias, despite success
in using deep learning (DL) approaches to discriminate bacterial
and viral pneumonias in pediatric chest radiographs (17, 18).

1

Further, most existing works make use of 2D CT slices, and
the lack of continuity information makes it impossible to capture
the true spatial distribution of the lesion in the lungs. To this end,
some recent studies have attempted to use entire 3D volumes to
train a 3D classification or segmentation model directly (14, 19) ,
achieving a slightly better performance than the approaches
based on 2D slices. However, these 3D volume based
approaches greatly increase the computational load, and
require much more powerful and expensive hardware
configurations. Additionally, 3D volumes may contain large
portions of redundant information, which leads to great
difficulty in accurately identifying small lesions. The imaging
appearance of viral and bacterial lung infection has considerable
similarity, and that, in any individual case, the viral pneumonia
cannot reliably be distinguished from bacterial infections (8, 20).
For example, viral pneumonia and bacterial pneumonia have
some image features in common, such as ground glass opacities
and interstitial changes in the peripheral zone of lungs, and
accompanied by partial consolidation. The only imaging feature
that was significantly different between the viral and bacterial
lung infection was the frequency of diffuse airspace disease (8).
Precise characterization of the spatial morphology of the infected
regional lesions is essential to distinguish the two infection types
by CT imaging.

In this paper, we treat the spatially continuous 2D CT slices as
a time sequence and proposed a unified sequence-based
pneumonia classification network (SLP-Net) for differentiating
viral pneumonia (VP) from bacterial pneumonia (BP) and
normal control cases. Our network comprises a CNN encoder
and the ConvLSTM module, and sequence attention maps are
used for auxiliary classification. As stated above, the precise
characterization of the lesion is the key to distinguish the
different pneumonia types. The combination of these
components ensures the model pay more attention to spatial
morphology of the lesion during the decision making.
Specifically, the encoder with multi-scale receptive fields is first
used to extract local representations of the sequence. Then we
apply the ConvLSTM to acquire spatial information of these
sequence features, modeling the distribution of the lesion. To
optimize the SLP-Net, we introduce a novel adaptive-weighted
cross-entropy (ACE) loss, with a view to ensuring that as many
valid features from the previous images as possible are encoded
into the subsequent CT image. Given the fact that the final
diagnosis conclusion needs to be made for each patient, case-
based prediction rather than a slice- or sequence-based
prediction is more valuable. To obtain case-based prediction,
in addition to the classification result of the sequence, we also use
sequence attention maps to aid the case-level classification,
aiming to enhance the confidence of the results. We collect a
dataset of 258 chest CT volumes (153 VP, 42 BP, and 63 normal
1https://github.com/HzFu/COVID19.

Frontiers in Oncology | www.frontiersin.org 3
control cases). The experimental results show that the proposed
SLP-Net achieves an accurate classification performance of viral
pneumonia, bacterial pneumonia, and normal control, which
could benefit the large-scale screening and control of viral
pneumonia, and also enable efficient treatment for different
types of pneumonia.

We organize the remainder of this paper as follows. In
Section 2, the existing methods of AI-enpowered viral
pneumonia analysis are briefly reviewed. In Section 3 we give
detailed descriptions of collected datasets. Section 4 introduces
the proposed SLP-Net. In Section 5, we present the experimental
results and discuss the effectiveness, robustness, and efficiency of
the SLP-Net. Section 6 concludes the paper and indicates
directions for future work.
2 RELATED WORK

AI-based medical image analysis plays an essential role in the
global fight against COVID-19, and a considerable number of
approaches have been proposed in the past five months. This
body of work on COVID-19 has focused primarily on two
problems: lesion segmentation (16, 21, 22), and automated
screening (23–31). For example (16), recently introduced a
parallel partial decoder to aggregate high-level features, using
an implicit reverse attention and explicit edge-attention to model
boundaries and enhance representations so as to identify infected
regions from 2D chest CT slices. To alleviate the shortage of
labeled data, a semi-supervised segmentation framework based
on a randomly selected propagation strategy was applied by (21).
They proposed a relational approach, in which a non-local neural
network module was introduced to efficiently learn both visual
and geometric relationships among all convolutional features.

However, automated viral pneumonia (e.g., COVID-19)
screening has attracted even more attention. For instance (32),
introduced a COVID-19 detection method with multi-task DL
approaches, using an inception residual recurrent convolutional
neural network (CNN) with transfer learning. Their detection
model achieved 84.67% accuracy from X-ray images (33).
proposed a deep features fusion and ranking technique to
detect COVID-19 in its early phase. They employed a pre-
trained CNN structure to obtain a set of features, which were
subsequently fused and evaluated with a support vector machine
(SVM) classifier. In the classification task of COVID-19 and no
COVID-19, their proposed method obtained 98.27% accuracy on
their own dataset (34). applied a modified residual network,
called DeepPneumonia, based on ResNet50 for slice-level
classification, and could discriminate the COVID-19 patients
from the bacteria pneumonia patients with an AUC of 0.95 (23).
built multiple deep convolutional neural models for classifying
chest X-ray images into normal and COVID-19 cases, which
obtained 96.1% accuracy (35). proposed a unified latent
representation to explore multiple features describing CT
images from different views, a method that can completely
encode information from different features aspects and is
endowed with a promising class structure for separability.
Performance in diagnosis for COVID-19 and community-
December 2021 | Volume 11 | Article 781798
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acquired pneumonia (CAP) is 95.5% in terms of accuarcy. An
infection size-aware random forest method was introduced by
(15) for the differentiation of COVID-19 from CAP, in which
patients were automatically categorized into groups with
different extensions of infected lesion sizes, followed by
generation of random forests with each group for classification.
The method achieved an accuracy of 89.4% in discriminating
COVID-19 from CAP.

However, all of the above mentioned works are based on 2D
images, the spatial correlation between consecutive CT scans is
neglected by most slice-based methods, despite this being
essential for the screening of lung diseases. A variety of
volume-based methods have been proposed in an attempt to
address this deficiency (19). proposed an attention-based deep
3D multi-instance learning method to screen COVID-19 from
3D chest CT sacns, using a weakly supervised learning
framework that incorporates an attention mechanism into
deep multi-instance learning, achieving an accuracy of 97.9%
(14). proposed a 3D CNN to diagnose COVID-19 from CAP, in
which a novel online attention module is combined with a dual-
sampling strategy. The online attention module focuses on the
infected regions when making diagnostic decisions. The dual-
sampling strategy mitigates the imbalanced distribution in the
sizes of infected regions between COVID-19 and CAP. Their
method was evaluated in private dataset and achieved an
accuracy of 87.5%. These 3D volume based approaches greatly
increase the computational load, and require much more
powerful and expensive hardware configurations. Additionally,
3D volumes may contain large portions of redundant
information, which leads to great difficulty in accurately
identifying small lesions. Overall, 2D slice based methods
cannot take advantage of spatial continuity information and
3D volume based methods require much more expensive
hardware configurations. In order to take advantage of the
complementary information of 2D slices and 3D volumes, we
treat the spatially continuous 2D CT slices as a time sequence,
and divide the volume into multiple different temporal sequences
of consecutive slices as the input.
3 MATERIALS AND METHODS

3.1 Materials
A total of 258 subjects were enrolled into this study, with 258 CT
volumes, corresponding to 43,421 slices. Of the 258 subjects, 42
patients were confirmed positive for BP by clinical diagnosis
(age: 59.5 ± 27.2; male/female: 36/6), 153 patients were positive
for VP, confirmed by RT-PCR (age: 52.3 ± 12.7; male/female: 68/
85), and 63 were control subjects (age: 35.8 ± 11.7; male/female:
33/30). The CT volumes of normal and VP patients were
captured between January 29, 2020 and February 18, 2020, and
the BP data was collected between January 2, 2019 and February
19, 2020. There is no statistically significant difference between
the ages of the VP and BP subjects (P = >0.05), but both groups
are significantly older than patients in the normal group
(P < 0.001). CT examinations of all the enrolled patients were
Frontiers in Oncology | www.frontiersin.org 4
performed on a ScintCare CT16 (Minfound Inc, China) with
standard chest imaging protocols. All the patients underwent CT
scans during the end-inspiration without the administration of
contrast material. Related parameters for chest CT scanning were
listed as follows: field of view (FOV), 360 mm; tube voltage, 120
kV; tube current, 240 mA; helical mode; slice thickness, 5 mm;
pitch, 1.5; collimation 16 × 1.2 mm; gantry rotation speed, 0.5 s/r;
matrix, 512 × 512; software version, syngo CT 2014A;
mediastinal window: window width of 350 HU, with a window
level of 40 HU; and lung window: window width of 1,300 HU,
with a window level of −500 HU.

CT volumes were retrospectively collected according to the
history of laboratory investigations (e.g., sputum culture and
reverse transcription-polymerase chain reaction), which we can
generate the case-level labels. Meanwhile, professional radiologists
(from the Hwa Mei Hospital, University of Chinese Academy of
Sciences, Ningbo, China.) picked out the slice containing the
infected region in each volume for the subsequent automatic
generation of sequence labels: each volume was be divided into
overlapping sequences containing n slices, with k overlapping
slices between two sequences. If a sequence from VP volume
contains the infected slice(s), the label for that sequence is 1; if it is
from BP volume and contains infected slice(s), the label is 2; the
label from normal volume is 0. It is worth noting that k and n are
both hyperparameters, and in Sensitivities to Hyperparameters we
discuss how to choose the values of these, as well as their impact
on the classification results.

The sequences generated from the volume of VP and BP were
not used for training if they did not contain any slices with lesion
regions. If all normal slices from patients are used for training
instead of excluding them, it will increase the proportion of
normal control samples in the training set.The data imbalance
may cause the model to over-fit the normal samples and tend to
predict the samples with the lesion as normal. To avoid this, we
exclude the normal slice from patients. For training and
evaluation of the proposed method, as shown in Table 1, we
split 258 volumes into 168 volumes (95 VP, 30 BP, and 43
normal controls) for training and 90 (58 VP, 12 BP, and 20
normal controls) volumes for testing.

3.2 Proposed Method
The architecture of our SLP-Net is shown in Figure 2, which
consists of two main components: sequence CNNs, and
ConvLSTM. The sequence CNNs with multi-scale receptive
fields are employed to extract more discriminative high-level
features from the CT sequence, while the ConvLSTM captures
the axial dimensional dynamics of features. In addition, a
sequence attention map is utilized as an auxiliary means to
integrate the output of the network and obtain prediction results
with a higher level of confidence. Finally, an adaptive-weighted
cross-entropy (ACE) loss is used to optimize the whole model.

3.2.1 Sequence CNN With Multi-Scale Receptive
Fields
A typical CNN model consists of a stack of convolution layers,
interleaved with non-linear downsampling operations (e.g., max
pooling) and point-wise nonlinearities (e.g., ReLU). The residual
December 2021 | Volume 11 | Article 781798
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shortcut used in ResNet can reduce the over-fitting of the model,
so that the depth of the network can be greater and achieve better
performance. Taking into consideration the problems of
overfitting and parameter cost, we employed ResNet (36) as
our encoder backbone. The first four feature-extracting blocks
are retained, without the average-pooling layer and the fully-
connected layers.

Since VP and BP reveal similar appearances in CT images, we
aim to obtain more discriminative features by employing multi-
scale information, in order to distinguish them more accurately.
Unlike most existing methods (37–39) that improve multi-scale
ability by utilizing features with different resolutions, we apply a
recently proposed multi-scale receptive fields technique (40) to
enhance representation ability at a more granular level.
Specifically, we apply a modified bottleneck with multi-scale
ability, the Res2Net module, to replace a group of 3 × 3 filters
used in the original bottleneck block of ResNet. As shown in
Figure 3, after the 1 × 1 convolution, feature maps are split into s
feature map subsets, denoted by xi. Then, apart from x1, each xi
goes through a corresponding 3 × 3 convolutional operator,
denoted by Ki(·), where yi is the output of Ki(·). The output of
Ki–1(·)is added to xi, then sent to the next group of filters Ki(·).
Thus, yi can be defined as follows:
Frontiers in Oncology | www.frontiersin.org 5
yi =

xi i = 1;

Ki(xi) i = 2;

Ki(xi + yi−1) 2 < i ≤ s :

8>><
>>:

(1)

In order to better integrate the information from different
scales, all outputs yi, where i ∈{1,2, …, s}, are concatenated and
passed through a 1×1 convolution. Such splitting and
concatenation strategies can force the convolution to process
features more efficiently. Note that each 3×3 convolution
operation Ki(·)receives information from all the feature splits
{xj, j ≤ i}. Each time xj performs a 3×3 convolution, the size of the
receptive field will increase. Due to the combinatorial effect, the
output of the Res2Net block contains different combinations of
receptive field sizes/scales.

3.2.2 ConvLSTM With ACE Loss
Although the conventional fully-connected LSTM (FC-LSTM)
can handle sequences of any length and capture long-term
dependencies (41), it contains too much redundancy for spatial
data, which is a critical problem for image sequences. Inspired by
video object detection (42), we apply ConvLSTM (43) to process
the feature sequences from the encoder.
FIGURE 2 | Flowchart of our whole system for differentiating between viral pneumonia and bacterial pneumonia in a chest CT volume. Each volume is divided into
overlapping sequences containing n slices during the training phase, such that the overlapping slices between two sequences are k. When predicting each volume
during the testing phase, in addition to using the model to obtain the classification results of the sequence, we also introduce sequence attention maps for auxiliary
classification to enhance the confidence level of the results. GT, ground truth; ACE, adaptive-weighted cross-entropy loss; FC, fully connected layer.
TABLE 1 | Characteristics of training and testing CT dataset for identifying viral pneumonia (VP) from bacterial pneumonia (BP) and normal controls.

Cohort VP BP Normal controls Total

Volumes Slices Volumes Slices Volumes Slices Volumes Slices

Training set 95 15,931 30 5,068 43 7,310 168 28,309
Testing set 58 7,832 12 3,107 20 4,173 90 15,112
Total 153 23,763 42 8,175 63 11,483 258 43,421
December 2021 |
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As the convolutional counterpart of the FC-LSTM, the
ConvLSTM introduces the convolution operation into the
input-to-state and state-to-state transitions. The ConvLSTM
can model axial dimensional dependencies while preserving
spatial information. As with the FC-LSTM, the ConvLSTM
unit (see Figure 4) includes an input gate it, a memory cell Ct,
a forget gate ft and an output gate ot. The memory cell Ct, acting
as an accumulator of the state information, is accessed, updated
and cleared through self-parameterized controlling gates: it, ot,
and ft. If the input gate is switched on, the new data is
accumulated into the memory cell once an input arrives.
Similarly, the past cell status Ct–1 will be forgotten if the forget
gate ft is activated. The output gate ot further controls whether
the latest memory cell’s value Ct will be transmitted to the final
state Ht. With the above definitions, the ConvLSTM can be
formulated as follows:
Frontiers in Oncology | www.frontiersin.org 6
it = s (Wxi ∗Xt +Whi ∗Ht−1 +Wci Ct−1 + bi),

ft = s (Wxf ∗Xt +Whf ∗Ht−1 +Wcf  Ct−1 + bf ),

Ct = ft  Ct−1 + it   tanh (Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = s (Wxo ∗Xt +Who ∗Ht−1 +Wco Ct + bo),

Ht = ot   tanh (Ct),

, (2)

where ‘*’ denotes the convolution operator, ‘°’ denotes the
Hadamard product, and s is the sigmoid activation function.
Xt andHt are the input and output of the ConvLSTM at time step
t (t indicates the tth frame in a CT image sequence, and slices will
be referred to as frames in the sequel.), and it, ft, and ot indicate
the input, forget and output gates, respectively. bi, bf, and bo are
the bias of the input gate, forget gate, and output gate. A memory
cell Ct stores the historical information. All the gates i, f, o,
memory cell C, hidden state H and the learnable weights W are
3D tensors. Input sequences ? are fed into a ConvLSTM block,
which captures the long and short-term memory of sequences
and contains both axial dimensional information, for use in
implicitly learning axial dimensional dynamics and efficiently
fusing axial dimensional features.

We define Lt as the output of the ConvLSTM layer at time
step t. The output of the ConvLSTM layer is fed to the fully-
connected (FC) layers, which transform the features into a space
that makes the output easier to classify. The outputs of the FC
layers are defined as Ot at time step t. Ideally, the longer the
image sequence, and the more classification information
ConvLSTM processes, the higher the confidence of
classification. From this perspective, it is sufficient to use the
output of the final time step for classification without further
processing. However, in practice, due to differences in the
distribution of lesions on different slices, there may be some
useful information that has not been accumulated in the memory
FIGURE 3 | A Res2Net module is utilized to extract more discriminative features.
FIGURE 4 | ConvLSTM is utilized to implicitly learn axial dimensional dynamics and efficiently fuse axial dimensional features.
December 2021 | Volume 11 | Article 781798
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cell. In order to enchance the memory ablity of ConvLSTM for
CT sequence at different slices and ensure that as much valid
information from the previous slices as possible are encoded, we
propose to use all the intermediate outputs of every time step as
our feature for identification. A better ConvLSTMmeans that the
longer the sequence it processes and the more comprehensive
information it considers, the more confident it identifies the
input. From this perspective, instead of minimizing the loss on
the final time step, we define a new adaptive-weighted cross-
entropy (ACE) loss to use all the intermediate outputs of every
time step weighted by wt:

LACE =
1
no

n

t=1
o
P

p=1
− wt ½yp log (Cp(Ot))�, (3)

where C and p denote the classifier and classification label,
respectively, and n denotes the number of images in a
sequence. Cp(Ot) indicates the classifier C, which correctly
identifies the final output O at time step t, yp ∈{0, 1, 2} are the
label values; and P=3 denotes the total number of labels. Finally,
wt is the weight of each frame in a sequence. weight. We let each
group of two weight items constitute the arithmetic sequence.

Since the importance of the information contained in
different slices is different, it is not reasonable to use the equal
weights. Due to the output of the final time step has taken into
account all other previous slices , it contains the most
information, and the further away from the last output, the
less information it contains. Moreover, the number of slices in a
sequence is a hyper-parameter, we adopt an adaptive weighting
scheme. The output of the final time step should be assigned the
maximum weight, and the farther away from the final time step,
the smaller the weight. Specifically, we let each group of two
weight items constitute the arithmetic sequence: the sum of
which is 1. The first two items are taken as 0.01, namely, w1 =
w2 = 0.01, and the subsequent weights can then be calculated
according to the hyperparameter n and weight w1. The ACE loss
ensures that the features of the previous CT images in the
sequence can be encoded into the later image.
3.2.3 Auxiliary Diagnosis With Attention Maps
Deciding which type (VP, BP, or normal) the entire volume
belongs to based on the prediction results of the sequence is a
critical step in auxiliary diagnosis. For higher confidence, in
addition to using the model to obtain the classification result of
the sequence, we also utilized the Grad-CAM (44) technology to
generate attention maps of the sequence to assist the prediction.
Grad-CAM is a method for producing visual interpretations for
CNNs in the form of class-specific saliency maps. A saliency
map, Lct , is produced for each image input based on the activation
from k filters, Ak

ij, at the final convolutional layer. To make the
method applicable to image sequences, the activations for all
timesteps t in the sequence are considered (Eq. R1).

Lcijt =o
a
wc
ktA

k
ijt ;  wkt =

1
Zoij

∂ Fc

∂Ak
ijt

(R1)
Frontiers in Oncology | www.frontiersin.org 7
where Z is a normalizing constant and Fc is the network output
for the class c. i, j are pixel location of filter Ak. In the
visualization examples shown in Figure 5, stronger class
activation map (CAM) areas are indicated with lighter colors.

During the prediction phase, we can obtain the classification
results of sequences belonging to a volume. In addition, we apply
Grad-CAM to generate the response heat map of each sequence.
A volume containing m sequences will be classified as viral
pneumonia (VP) sample if it meets both of following criteria:
(a) More sequences are classified as viral pneumonia (VP) then
bacterial pneumonia (BP) in this volume; (b) There are two
adjacent sequences with the category of viral pneumonia whose
activation regions have an intersecting area of more than 50%. If
the second criterion is not satisfied for VP, the bacterial type
sequences are checked if there are two adjacent sequences with
an intersecting area of more than 50% of the activation region,
and if so the sample is classified as bacterial type, otherwise it is
classified as normal. Notably, if there are the same number of VP
and BP sequences, the one with the greater average sequence
probability value is treated as the dominant category. The
possibility output of the network dominates the classification
on the volume level, and Attention Map is used as an auxiliary
during the decision making.

3.3 Evaluation Metrics
We employ the commonly used metrics for multi-class
classification to measure performance: e.g., weighted sensitivity
(Sen, also known as recall), specificity (Spe), accuracy (Acc), and
balanced accuracy (B-Acc, a.k.a. balanced classification rate). In
order to reflect the tradeoff between sensitivity and specificity,
and evaluate the quality of our classification results more reliably,
a kappa analysis and F-measure (F1 score) are also provided
following (45). These two measures are more robust than other
percentage agreement measures, as they take into account the
possibility of the agreement occurring by chance. The weighted
sensitivity (Sen), specificity (Spe), accuracy (Acc), and balanced
accuracy (B-Acc) are defined as:

Spe =o
P

i=1
wi

TNi

TNi + FPi
,  Sen =o

P

i=1
wi

TPi
TPi + FNi

,

B − Acc =
(Sen + Spe)

2
,  Acc =o

P

i=1
wi

TPi + TNi

TPi + FNi + FPi + TNi
,

where TPi indicates the number of true positives, TNi—the
number of true negatives, FPi—the number of false positives,
and FNi—the number of false negatives for the i–th classification
label; and wi represents the percentage of images whose ground
truth labels are i. The kappa values and F-measure (F1 score,
a.k.a. Dice score) are defined as follows:

po =o
P

i=1
wi

TPi
n

, pe =o
P

i=1

ai ∗ bi
n ∗ n

,  Pre =o
P

i=1
wi

TPi
TPi + FPi

,

Kappa =
po − pe
1 − pe

,  F1 = 2 ·
Pre · Sen
Pre + Sen

,
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where ai denotes the true sample number of each class, bi denotes
the predicted sample number of each class, n denotes the total
sample number, and P denotes the number of classes. Note that
kappa values between 0.81 to 1.00 indicate almost perfect
agreement, values between 0.61 and 0.80 exhibit substantial
agreement, values of 0.41–0.60 exhibit moderate agreement
and values less than 0.40 exhibit poor to fair agreement. The
F1 score reaches its best value at 1 and worst at 0. We also present
the ROC curves and the area under ROC curve (AUC) for VP
against BP.

3.4 Implementation Details
The proposed method was implemented in the publicly available
Pytorch library. The combination of CNN and ConvLSTM
makes the model more complex. To accelerate convergence, we
first trained a CNN classification network with a labeled 2D slice.
After removing the FC layer, the encoder is used as the
initialization parameter of SLP-Net. During the training phase
of SLP-Net, CNN and ConvLSTM are jointly trained in an end-
to-end manner using Adam optimizer. In practice, we found that
CNN pre-training does speed up the convergence of the model,
but has no effect on the final classification performance. The
learning rate was gradually decreasing starting from 0.0001,
and the momentum was set to 0.9. In addition, online data
enhancement was employed to enlarge the training sequence
data. The same data enhancement was used for all images
Frontiers in Oncology | www.frontiersin.org 8
in a sequence: we implemented data augmentation in a random
way, including brightness, color, contrast, and sharpness
transformation from 90 to 110%. We set a random seed from 1
to 4 for the enhancement.
4 RESULTS

4.1 Classification Performances
To compare the classification performance, we evaluated the
detection ability of the model at both sequence and volume
levels. All the existing pneumonia detection methods are
accomplished using 2D CT slices or 3D volumes. To further
verify whether the features containing both axial dimensional
and spatial information captured by our model could benefit
detection performance, we compared the proposed method to
other classic classification models using 2D slices: AlexNet (46),
VGG19 (47), InceptionV3 (48), ResNet34 (36), and Xception
(49). Due to the lack of sufficient training data and the GPU
memory constraint, we cannot apply 3D CNNs on complete CT
volumes. In order to compare the proposed SLP-Net with other
3D deep learning architectures, we apply CT sequence data,
which can be considered as 3D data, to train 3D models,
including C3D (50), I3D (51), and S3D (52). We report the
detection results for slice/sequence-level and case-level in
Table 2. We applied a similar strategy to that in Auxiliary
A

B

C

FIGURE 5 | Examples of attention maps obtained with Grad-CAM. (A) Viral pneumonia cases. (B) Bacterial pneumonia cases. (C) Normal cases. Lighter colors
indicate the stronger response regions. From the maps, the infected regions receive greater attention.
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Diagnosis With Attention Maps section to determine the
prediction result of a volume when using the 2D models. First,
Grad-CAM was used to generate the activated maps of 2D slices,
and binary activated maps can be obtained through thresholding.
If five consecutive slices in a volume were predicted as indicative
of viral pneumonia, and the intersection area of their activated
area exceeds 50% of the union area, the volume was considered
to be indicative of viral pneumonia.
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As can be observed, the 3D networks achieve higher
performances than the 2D networks, which confirms the
importance of the combination of axial dimensional and spatial
information for accurate detection results. At a slice/sequence
level, our SLP-Net outperformed other methods in terms of
kappa, F1 and Sen by a large margin, as well as achieving the
best performance at a volume level. In addition, Figure 6 shows
the confusion matrices of VGG-19, Resnet34, Xception, C3D,
December 2021 | Volume 11 | Article 781798
TABLE 2 | Classification results for VP, BP and normal controls by different methods.

Method Slice/Sequence-Level Case-level

Kappa F1 B-Acc Sen Spe Kappa F1 B-Acc Sen Spe

AlexNet 0.5207 0.5680 0.6872 0.6375 0.7370 0.6889 0.7381 0.8207 0.8274 0.8140
VGG19 0.6258 0.6574 0.7502 0.7152 0.7853 0.7709 0.8000 0.8571 0.8690 0.8601
ResNet34 0.6767 0.7100 0.7948 0.7783 0.8112 0.8489 0.8598 0.9045 0.9048 0.9043
InceptionV3 0.5177 0.6107 0.7156 0.6978 0.7333 0.7692 0.7976 0.8607 0.8631 0.8582
Xception 0.6802 0.6776 0.7688 0.7252 0.8124 0.8500 0.8631 0.9048 0.9107 0.9061
C3D 0.7382 0.7442 0.8232 0.8013 0.8450 0.8616 0.8729 0.9158 0.9183 0.9132
I3D 0.7437 0.7513 0.8403 0.8302 0.8132 0.8481 0.8952 0.9229 0.9167 0.9290
S3D 0.7525 0.7332 0.8106 0.7696 0.8517 0.8696 0.8796 0.9297 0.9133 0.9157
SLP-Net 0.8280 0.8123 0.8665 0.8397 0.8934 0.9263 0.9291 0.9523 0.9524 0.9521
The best performance of all the methods is highlighted in bold.
A B C

D E F

FIGURE 6 | Confusion matrices of the different methods at slice/sequence level. (A–F) are the results of VGG19, Resnet34, Xception, C3D, S3D and ours,
respectively. The numbers in the confusion matrices denote the percentage (above) and number (below) of the predicted class.
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S3D, and our method over the dataset. These results further
indicate the superiority of the performance of our approach. As
stated in the Introduction section, the difficulty of pneumonia
diagnosis is the differentiation between BP and VP. Accordingly,
we conducted experiments on the dataset contained VP and BP
samples only. Results are shown in Table 3 and Figure 7. Wemay
observe that the proposed method again produces the best
performance compared to the other methods. Table 3 gathers
all the performances of these models. The results show that the
3D-based method is generally better than the 2D-based method,
mainly because the 3D input provides richer spatial information,
which allows the model to learn and extract the subtle differences
in the spatial distribution of different diseases, which is especially
important for difficult samples with similar lesion appearance. In
this regard, our proposed method not only utilizes the 3D
information, but also explicitly focuses on the lesion area in the
decision-making process through attention map, which makes the
classification results more reliable. This idea can be applied to
many different medical image-based classification tasks, since the
similarity of lesion appearance is a problem in many scenarios.

Table 4 summarizes space and time cost of different methods.
For fair comparison of inference time, we test all these models
with PyTorch. Our SLP-Net had the best time efficiency and
achieved smallest model size because it didn’t use 3D
convolution operations.
5 ANALYSIS AND DISCUSSION

5.1 Sensitivities to Hyperparameters
In Table 5 we investigate the sequence settings, i.e., n and k,
denote the number of slices per sequence and the number of
overlapping slices between two sequences, respectively. By
default we set n = 10 and k = 5. As can be observed, the
performance was greatly affected by the value assigned to n.
When n is set very small (n = 5), the kappa and F1 drop by the
considerable margin of 3%, demonstrating that the more axial
dimensional information ConvLSTM encodes, the more the
model benefits. However, when n is greater than 15, the model
performance will decline. This may be due to the fact that as the
slice number increases, there will be less training data, resulting
in the model not being fully trained. Table 5 also shows that our
result is impacted just marginally when k is within a scale of 5-7.
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The performance of the model mainly depends on the
abundance of the information contained in the sequence, that
is, the more information contained in the sequence, the better the
classification performance. Compared to n = 10, the sequence
provide less timing information when n = 5, so the classification
performance will decrease. If n is too large (e.g., n = 20), the
performance will decrease due to fewer training samples.

5.2 Ablation Study
Our SLP-Net employs three main components to form the
classification framework: a sequence CNNs with multi-scale
receptive fields, a ConvLSTM module, and a carefully designed
ACE loss. In this subsection, we analyze and discuss the network
under different scenarios to validate the performance of each key
component of our model, and the results of different
combinations of these modules are reported in Figure 8.

5.2.1 Effectiveness of ConvLSTM
To explore the contribution of the ConvLSTM, we use a
ResNet50 pretrained on ImageNet as the backbone. As shown
in Figure 8, a backbone + ConvLSTM + Res2Net method clearly
December 2021 | Volume 11 | Article 781798
)
)
)
)
)

)

TABLE 3 | Comparison of different methods in classifying viral pneumonia (VP) and bacterial pneumonia (BP), at a slice/sequence level.

Method Acc Sen Spe AUC (p-value)

AlexNet 0.7327 0.8182 0.6650 0.8700 (p <0.001
VGG19 0.7776 0.8197 0.7442 0.8785 (p <0.001
ResNet34 0.7939 0.8305 0.7649 0.8874 (p <0.001
InceptionV3 0.7429 0.8028 0.6955 0.8697 (p <0.001
Xception 0.8170 0.7704 0.8438 0.8874 (p <0.001
C3D 0.8218 0.869 0.7844 0.9129 (p <0.05)
I3D 0.8320 0.8274 0.8356 0.8956 (p <0.001
S3D 0.8361 0.8413 0.8319 0.9035 (p <0.01)
SLP-Net 0.8476 0.8459 0.8490 0.9170
P-value is calculated by Delong’s test.
The best performance of all the methods is highlighted in bold.
FIGURE 7 | ROC curves in classifying viral pneumonia (VP) and bacterial
pneumonia (BP) of the compared models and the proposed method.
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outperformes the backbone + Res2Net, with improvement of
about 6% in F1. This shows that the ConvLSTM is capable of
extracting the axial dimensional and spatial information, thus
memorizing the change in appearance that corresponds to axial
dimensional information, and improving the performance in
identifying and discriminating between VP and BP.

5.2.2 Effectiveness of the Res2Net module
We investigated the importance of the multi-scale sequence
module, i.e., Res2Net. From Figure 8, we observe that a
backbone + ConvLSTM + Res2Net model outperformed the
backbone model in terms of major metrics, i.e., kappa and F1.
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This suggests that introducing the Res2Net module enables the
encoder to capture more discriminative features to accurately
differentiate VP from BP.

5.2.3 Effectiveness of ACE
Finally, we investigate the importance of the ACE loss. From the
results in Figure 8, it may clearly be observed that the ACE Loss
effectively improves the classification performance in our model.
One possible reason is that, with the ACE loss, the ConvLSTM
explores the axial dimensional dynamics of appearance features
in CT sequences, and these features are further aggregated for
classification purposes.
TABLE 4 | Model size and inference time of different methods.

C3D I3D S3D SLP-Net

Model size (MB) 39.2 48.7 42.3 34.4
Time (ms) 41.4 59.0 47.1 39.5
D
ecember 2021 | Volume 11 | Artic
TABLE 5 | Effect of different settings of hyperparameter n and k on the results.

Method kappa F1 Acc B-Acc Sen Spe

n = 5, k = 3 0.7376 0.7469 0.8546 0.8272 0.8096 0.8449
n = 10, k = 3 0.7652 0.7701 0.8684 0.8453 0.8307 0.8599
n = 10, k = 5 0.8241 0.8091 0.9012 0.8641 0.8471 0.8911
n = 10, k = 7 0.8280 0.8123 0.9034 0.8665 0.8397 0.8934
n = 15, k = 5 0.7453 0.7557 0.8577 0.8362 0.8231 0.8493
n = 20, k = 5 0.7329 0.7068 0.8577 0.7930 0.7450 0.8410
le
Here, n and k denote the number of slices in the sequence and the number of overlapping slices between two sequences, respectively.
FIGURE 8 | Ablation studies of our SLP-Net.
TABLE 6 | Ablation study of Attention Map in classifying VP, BP, and Normal controls at the case-level.

Method Kappa F1 B-Acc Sen Spe

Without Attention Map 0.8731 0.9090 0.9167 0.9174 0.9160
With Attention Map 0.9263 0.9291 0.9523 0.9524 0.9521
781798
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5.2.4 Effectiveness of Attention Maps
To investigate the contribution of the Attention Map, we added
an additional experiment—case-level classification without
Attention Map. Specifically, sequence-level classification results
were first obtained using SLP-Net, and if there were VP or BP
sequences in a volume, the type with more number is used as the
category of the whole volume. If it does not contain VP and BP
sequence, it is classified as normal. Notably, if there are the same
number of VP and BP sequences, the one with the greater
average sequence probability value is treated as the dominant
category. Table 6 shows the result, where SLP-Net with
Attention Map as auxiliary achieves better performance than
without Attention Map. This demonstrates that with the aid of
attention map, the distribution of lesions can be considered
simultaneously in the decision-making process, thus improving
the performance of case-level classification.
6 DISCUSSION AND CONCLUSIONS

6.1 Limitations
Although our method achieves better results in the pneumonia
classification task compared to other methods, this work still has
some limitations. Firstly, we used the multiscale feature
technique Res2Net in the feature extraction part, but did not
further explore the hyperparameter settings in it, and although
we believe that careful selection of hyperparameters may further
improve the classification performance, no additional
experiments were conducted in this work to compare the
impact of different hyperparameters since this is not the focus
of our work. Secondly, the model is not evaluated on an external
dataset. To our knowledge, there are no publicly available 3D CT
datasets for different types of pneumonia classification tasks, and
it is difficult to collect compliant data from multiple centers due
to various conditions. We intend to evaluated the performance of
our model on external datasets in the future.

6.2 Conclusion
Hospitals are beginning to use CT imaging in the diagnosis of
viral pneumonia, and it is vital to improve the sensitivity of
diagnostic methods so as to reduce the incidence of false
negatives. AI-empowered image acquisition workflows are
effective, and may also aid in protecting clinicians from viral
pneumonia (e.g., COVID-19) infection. Although several
effective AI-based COVID-19 diagnosis or lesion segmentation
methods have been introduced recently, automated differentiation
of viral pneumonia from other types of pneumonia is still a
challenging task. The motivation of this study was to employ AI
techniques to alleviate the problem posed by the fact that even
radiologists are hard pressed to distinguish VP from BP, as they
share very similar presentations of infection lesion characteristics
in CT images.

In this paper, we have proposed a novel viral pneumonia
detection network, named SLP-Net. By contrast with previous
2D slice-based or 3D volume-based methods, we considered
continuous CT images as time sequences. Our model first
utilized the sequence CNNs with multi-scale receptive fields to
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extract a sequence of higher-level representations. The feature
sequences were then fed into a ConvLSTM to capture axial
dimensional features. Finally, in order to ensure that as many
valid features from previous slice as possible are encoded into the
later CT slices, a novel ACE loss was proposed to optimize the
output of the SLP-Net. Furthermore, during the prediction
phase, we used sequence attention maps for auxiliary
classification to predict each volume, which can enhance the
confidence level of the results. Overall, in order to accurately
distinguish VP from BP and normal subjects, we used the
sequence CNNs with multi-scale receptive fields to extract
more differentiating features, and then applied a ConvLSTM to
capture axial dimensional features of the CT sequence, thereby
obtaining features containing both axial dimensional and spatial
information. The superior evaluation performance achieved in
the classification experiments demonstrate the ability of our
model in the differential diagnosis of VP, BP and normal cases.
Although we only evaluated our method on the CT dataset of
pneumonia, it can be adapted to any other 3D medical image
classification problems, such as lung cancer imaging analysis,
and the identification of Alzheimer’s disease. In future work we
will further validate our models on even larger datasets, and seek
its implementation in real clinical settings.
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