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Risks and benefits of consuming edible seaweeds

Paul Cherry, Cathal O’Hara, Pamela J. Magee, Emeir M. McSorley, and Philip J. Allsopp

Recent interest in seaweeds as a source of macronutrients, micronutrients, and bio-
active components has highlighted prospective applications within the functional
food and nutraceutical industries, with impetus toward the alleviation of risk factors
associated with noncommunicable diseases such as obesity, type 2 diabetes, and
cardiovascular disease. This narrative review summarizes the nutritional composi-
tion of edible seaweeds; evaluates the evidence regarding the health benefits of
whole seaweeds, extracted bioactive components, and seaweed-based food prod-
ucts in humans; and assesses the potential adverse effects of edible seaweeds,
including those related to ingestion of excess iodine and arsenic. If the potential
functional food and nutraceutical applications of seaweeds are to be realized, more
evidence from human intervention studies is needed to evaluate the nutritional
benefits of seaweeds and the efficacy of their purported bioactive components.
Mechanistic evidence, in particular, is imperative to substantiate health claims.

INTRODUCTION

Edible seaweeds (macroalgae) have the potential to pro-

vide a rich and sustainable source of macronutrients
and micronutrients to the human diet, particularly in

regions where seaweed makes a significant contribution
to regular meals, eg, in Japan, where approximately

one-fifth of meals contain seaweed.1–3 Inclusion of sea-
weeds in Western diets has traditionally been limited to

artisanal practices and coastal communities but has
gained wider consumer interest in recent years, cour-

tesy of the health-food industry.4 The recent surge of in-
terest in seaweed is fueled by attention on the bioactive

components of seaweed, which have potential applica-
tions in the lucrative functional food and nutraceutical
industries, with impetus toward the alleviation of meta-

bolic risk factors such as hyperglycemia, hypercholester-
olemia, and hyperlipidemia.5 The candidate bioactive

components of interest to industry include isolated pol-
ysaccharides (eg, alginate, fucoidan), proteins (eg, phy-

cobiliproteins), polyphenols (eg, phlorotannins),
carotenoids (eg, fucoxanthin), and n-3 long-chain poly-

unsaturated fatty acids (eg, eicosapentaenoic acid).
Scientific experiments and human studies to date have

focused predominantly on brown seaweeds and deriva-
tives, largely because of their commercial abundance

and perceived sustainability.
Despite the nutritional attributes of red seaweeds

such as Porphyra spp (also known as nori) and
Palmaria palmata (dulse), which have a high protein

content, relatively few investigations have focused on
red seaweeds as a source of bioactive components.

Current understanding of the health-promoting activi-
ties of red seaweeds derives from an abundance of

in vitro studies and in vivo animal studies. There are
only limited reports of green seaweeds contributing to
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dietary intake of either essential nutrients or bioactive

components, despite the potential for transient algal
blooms to be exploited.6

Aquaculture is recognized as the most sustainable
means of seaweed production and accounts for approxi-

mately 27.3 million tonnes (96%) of global seaweed pro-
duction per annum, yet the growing demand for
seaweed-based food ingredients calls for more estab-

lished guidelines and regulations to ensure sustainabil-
ity.7 Future considerations for stakeholder management

include resource ownership; best practices for cultiva-
tion; harvesting rights/licensing; certification/validation

of origin; overexploitation; biomass regrowth; environ-
mental impacts; and the development of a sustainable

value chain within the agrifood sector.2

An abundance of commercially available seaweed

products, including both whole seaweed and seaweed
extracts, are marketed both directly and indirectly as

value-added products for the promotion of health in the
supplement market. The health claims associated with

seaweed products are often based on insufficient (or
completely absent) evidence from human intervention

studies to substantiate such statements. Furthermore,
there are considerable safety concerns related to poten-

tial adverse events associated with seaweed consump-
tion, particularly in light of the variable and potentially

dangerously high concentrations of iodine and heavy
metals (including arsenic species) in certain seaweeds.8,9

There is currently limited legislation to require food or
supplement companies to disclose mineral, heavy metal,

or iodine content of seaweed products or to provide
guidance on a safe portion size of certain whole sea-

weeds in order to prevent excess intakes.4 Ultimately, if
seaweeds are to contribute to future global food secu-

rity, either in their whole form or via extraction of their
nutrients, the industry should develop a sustainable

heavy metal/iodine monitoring program or, alterna-
tively, identify novel processing technologies to ensure

that unsafe components such as arsenic are minimized
to safe levels, thus protecting the food chain.2,10–14

The health benefits of seaweed, beyond the provi-

sion of essential nutrients, have been supported by
in vitro studies and some animal studies; however,

many of these studies have inappropriate biomarkers to
substantiate a claim and have not progressed to suitably

designed human intervention trials to evaluate efficacy.
The limited evidence that does exist makes some sea-

weed components attractive as functional food ingre-
dients, but more human evidence (including

mechanistic evidence) is needed to evaluate both the
nutritional benefit conferred and the efficacy of pur-

ported bioactives and to determine any potential ad-
verse effects. Through an evaluation of the nutritional

composition of edible seaweeds, this review summarizes

the available evidence and outlines the potential risks

and health benefits of consuming whole seaweeds,
extracted bioactive components, and seaweed-based

food products in humans. Additionally, it identifies fu-
ture opportunities for functional food and nutraceutical

applications.

NUTRITIONAL COMPOSITION OF EDIBLE SEAWEEDS

A number of edible seaweeds are recognized as novel

foods in Europe, although the nutritional composition
of brown, red, and green seaweeds varies between spe-

cies, season, and ecology of the harvesting location.15

Therefore, there is a need to characterize the composi-

tion of seaweeds in relation to the influence of location
and seasonality on seaweed content. Current efforts to cat-

alog information on the variability of nutritional composi-
tion will facilitate the identification of optimal harvesting

periods and/or locations for a given species. Such informa-
tion would aid the functional food industry in targeting

optimal conditions for isolating specific bioactive compo-
nents.16–18 Table 1,17,19–32 Table 2,19–22,26,27,29–31,33–42 and

Table 319–24,26,27,29,30,36,43–53 present the macronutrient
content of multiple brown, red, and green seaweeds,

respectively, and consider a 5-g serving relative to
reference nutrient intakes. To provide a basis for

comparison, Tables S1 and S2 in the Supporting
Information online present the same nutritional in-

formation for a selection of dried seaweed products
commercially available throughout the United

Kingdom and the Republic of Ireland.

Protein

The protein content of seaweed has gained considerable
attention, given the emerging challenges to improve

food security by identifying alternative and sustainable
protein sources.54 As outlined in Tables 1, 2, and 3, the

protein content ranges from 5.02% to 19.66% in brown
seaweeds; from 0.67% to 45.0% in red seaweeds; and
from 3.42% to 29.80% in green seaweeds. A 5-g portion

of dried brown, red, and green seaweed corresponds,
respectively, to a maximum of 1.97%, 4.5%, and 2.98%

of the Reference Nutrient Intake for protein. On a
gram-for-gram basis, seaweeds have protein and amino

acid contents comparable to those of beef; however, sea-
weeds are consumed in much smaller quantities.55 It

should also be noted that the protein content of seaweed
is often derived from total nitrogen by using a conver-

sion factor of 6.25 (Kjeldahl method), which likely pro-
duces an overestimate, given the nonprotein sources of

nitrogen in seaweed. Hence, species-specific conversion
factors ranging from 3.57 to 5.72 have been proposed

for seaweed.56 The amino acid composition of proteins
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is critical to determining the value of proteins to the hu-

man diet, particularly in achieving an adequate intake
of essential amino acids. However, the digestibility of

seaweed protein within the gastrointestinal tract will
significantly affect the nutritional value of the protein,

with protein–polysaccharide interactions reducing di-
gestion efficiency considerably.

An overview of the amino acid contents of several

brown, red, and green seaweeds is presented in Tables
S3, S4, and S5 in the Supporting Information online.

Seaweeds are a source of lysine,58,59 an essential amino
acid often present in limited quantities in terrestrial

plant protein sources such as corn, maize, soy, rice, and
wheat.57 An 8-g portion of Palmaria palmata contains

up to 21.9% of the recommended daily intake of cyste-
ine, yet the total protein content of Palmaria palmata

varies seasonally.58 For example, protein content was
reported as 21.9% in winter/spring and as 11.9% in

summer/autumn, with essential amino acids constitut-
ing 26% to 50% of the protein.60 Thus, exploiting sea-

weeds as nonanimal protein sources may be possible
through harvesting plans that optimize protein and

amino acid contents.
The digestibility of protein in species of edible sea-

weeds, estimated by in vitro methods, is reported as fol-
lows: Fucus vesiculosus, 14.7%; Laminaria digitata,

16.9%; Undaria pinnatifida, 28.0%; Chondrus crispus,
45.0%; Porphyra tenera, 69.4%61; Palmaria palmata,

56.0%60; and Porphyra columbina, 74.3%.41 The digest-
ibility of protein from Undaria pinnatifida and

Porphyra tenera in rodents is reported as 86.1% and
86.2%, respectively, while the digestibility of Undaria

pinnatifida protein in humans is reported as 70.0%,
which is similar to the digestibility of protein from ter-

ranean plants.62,63 Although data on in vivo digestibility
suggest that seaweed protein is bioaccessible, protein–

polysaccharide interactions within the seaweed matrix
could prevent the formation of enzyme–substrate com-

plexes and hinder proteolysis of seaweed proteins.
Indeed, enzymatic treatment with xylanase and cellulase
polysaccharidases improved Palmaria palmata protein

bioaccessibility 1.7-fold and 3-fold, respectively.65 This
may favor the use of seaweed protein extracts to provide

the maximal protein and amino acid content, with pos-
sible food, feed, supplement, and nutraceutical applica-

tions.63,64 Methods for extracting protein from brown,
red, and green seaweeds are described comprehensively

elsewhere; for example, the use of proteolytic and sac-
charolytic enzymes such as Celluclast or Shearzyme are

reported to improve both protein extraction yield and
endogenous digestion.66–69

Up to now, the bioactivities reported in the litera-
ture pertained to peptides extracted from red seaweeds

such as Palmaria palmata and Porphyra spp and from
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brown seaweeds such as Undaria pinnatifida and were

associated with antihypertensive, antioxidant, and anti-
diabetic effects.70 Among the effects reported are cardi-

oprotective effects such as reduced blood pressure via
inhibition of angiotensin-converting enzyme,71–74 anti-

diabetic activity via inhibition of dipeptidyl-peptidase 4,77

and promotion of iron absorption.76 The potential appli-
cation of seaweed peptides, which have antioxidant prop-

erties,75 as food preservatives has also been suggested.72

Therefore, protein extracts from seaweeds hold promise

as a protein source, providing their bioactivity is vali-
dated in humans.

It is estimated that 56 million metric tonnes of al-
gae will be required per annum as an alternative protein

source by 2054, which will represent 5.94% of global
protein demand.78 Given the variability of both the con-

tent and the bioavailability of protein from whole sea-
weeds, protein extracts may contribute substantially to

nonanimal protein sources in the future.

Dietary fiber

Many populations are failing to meet daily require-
ments for dietary fiber intake.79,80 The potential func-

tional properties of dietary fiber are associated with the
viscous and water-binding properties of fiber within the

gastrointestinal tract.82 As a result, fiber has been sug-
gested to promote satiety and weight loss; delay gastric

emptying to improve glycemic control; enhance stool
bulking to reduce gut transit time and increase defeca-

tion frequency; and enhance bile acid excretion, result-
ing in reduced low-density lipoprotein cholesterol

(LDL-C) in blood.81–83 Dietary fiber components are
also suggested to improve health via their fermentation

by the colonic microbiota, which can favorably alter gut
microbial composition and enhance the production of

health-associated volatile fatty acids such as acetate,
propionate, and butyrate. The fiber-induced alterations

to the microbiota composition and the associated
metabolites produced are increasingly associated with
the promotion of gastrointestinal, cardiometabolic, im-

mune, bone, and mental health.84

Owing to the range of proposed beneficial health

effects associated with consumption of dietary fiber,
there is increasing interest from the food industry in

identifying sustainable, alternative sources of dietary
fiber.81,83 Seaweed, with its high fiber content, is a

promising candidate. However, the contribution of
whole seaweed to the currently recommended intake of

dietary fiber, ie, 25 g/d, is limited, with a 5-g serving of
brown, red, or green seaweed contributing up to

14.28%, 10.64%, or 12.10% of dietary fiber intake, re-
spectively (Tables 1, 2, and 3).79 This has led to increas-

ing interest in the industrially applicable extraction and

isolation of individual fiber components from seaweed.

Seaweeds contain a diverse range of fiber components.
Brown seaweeds contain alginate,85 laminarin,86 and

fucoidan polysaccharides89; red seaweeds contain agar,
carrageenan, porphyran, and xylan88,90; and green sea-

weeds contain ulvan, xylan, and cellulose.87

While some seaweed-derived fibers (alginate, carra-
geenan, and agar) have been used for decades for their

emulsifying, stabilizing, and thickening characteristics
to improve the sensory properties of food, there is lim-

ited interest in their application as functional dietary
fibers. The existing widespread use of these seaweed-

derived fibers in the food industry ensures they are safe
for human consumption, according to the European

Food Safety Authority (EFSA) and the US Food and
Drug Administration. Thus, alginate isolated from

brown seaweeds, long used by the food industry, is a
leading candidate for application in the functional food

market.91–93 Fucoidan was recently classified by the
EFSA as a novel food,94 making it an another candidate

for an emerging functional food ingredient, while sug-
gestions that low-molecular-weight carrageenan com-

ponents (< 50 kDa) may negatively impact health (on
the basis of proinflammatory properties) have tempered

interest in the potential use of carrageenan as a func-
tional ingredient.95 Other seaweed fibers, such as xylan,

laminarin, and ulvan, have not received official EFSA
approval, and thus more research is needed to ascertain

whether these carbohydrates are safe for human con-
sumption. Once these seaweed-derived fiber compo-

nents have been deemed safe, they will likely be
marketed as nutritional ingredients, provided the asso-

ciated health claims are substantiated.
The majority of research on the health benefits of

seaweed-derived dietary fiber components in humans
has focused on potential antiobesogenic effects, includ-

ing improved satiation, delayed nutrient absorption,
and delayed gastric emptying, but the effects of whole

seaweeds containing alginate appear to be limited.85,96,97

Several placebo-controlled intervention trials in
humans have shown alginate consumption to signifi-

cantly impact appetite and food intake. An acute study
by Peters et al98 showed that an alginate drink enhanced

self-reported satiety and reduced the feeling of hunger
in a dose-dependent manner when compared with pla-

cebo. Another parallel study in overweight men showed
that consumption of an Ascophyllum nodosum–

enriched (4%) bread reduced energy intake by 109 kcal
and 506 kcal at 4 hours and 24 hours post consumption,

respectively, compared with an isocaloric placebo.99

Similar results were reported when consumption of a

preload alginate drink reduced energy intake by 44 kcal
following an ad libitum lunch.100 A crossover study

reported that daily energy intake was reduced by

314 Nutrition ReviewsVR Vol. 77(5):307–329



135 kcal when participants consumed alginate

(1.5 g/100 mL) prior to meals,101 but no significant ef-
fect of a preload alginate drink on measures of energy

intake or concentration of satiety hormones in over-
weight/obese individuals was reported elsewhere.102

Alginate appears to affect appetite and food intake, yet
research is needed to the characterize the action of algi-
nates by examining both the relationship between struc-

ture and function (particularly molecular weight and
the ratio of guluronate to mannuronate) and the role of

the gelling capacity of alginate. Research into the mech-
anism of action of alginate is required, given that algi-

nate does not seem to affect gastric emptying.100,102 The
formulation of alginate food products organoleptically

acceptable to the consumer is another consideration for
industry. Longer-term studies are required to demon-

strate the effects of alginate on appetite control and
weight management.

There is also considerable interest in the effect of
alginate on glycemic control, particularly its impact on

postprandial glucose absorption. A review of the evi-
dence by the EFSA concluded that sodium alginate

failed to reduce postprandial glycemic responses with-
out a disproportionate increase in postprandial insuli-

nemic responses, and thus a health claim was
rejected.83,103 Other fibers, such as beta glucan, have re-

ceived favorable EFSA opinions for their ability to re-
duce postprandial glucose absorption by slowing the

rate of gastric emptying.83 The effect of alginate on glu-
cose metabolism, particularly the postprandial insuline-

mic response, needs to be further investigated.
The recent designation of fucoidan as Generally

Recognized as Safe (GRAS) by the US Food and Drug
Administration104 and as a novel food by the European

Union,94 along with accumulating in vitro and in vivo
evidence of fucoidan’s potential antiobesogenic

effects,105 make fucoidan an attractive ingredient for the
functional food industry.106 Nevertheless, only 1 human

study has investigated the antiobesogenic effects of
seaweed-derived fucoidan. A randomized, double-
blind, parallel, placebo-controlled trial in an over-

weight/obese cohort showed that participants who con-
sumed fucoidan (500 mg/d) for 3 months had

significantly reduced diastolic blood pressure and LDL-
C compared with those who received placebo.107 No

changes in weight, waist circumference, body mass in-
dex (BMI), adiposity, systolic blood pressure, total cho-

lesterol, high-density lipoprotein cholesterol (HDL-C),
blood glucose, or blood triglycerides were observed;

however, blood insulin and homeostasis model assess-
ment of insulin resistance (HOMA-IR) were increased

in the fucoidan group compared with baseline values,
but not compared with the placebo group. The authors

suggested that fucoidan consumption downregulated

expression of the transcription factor peroxisome

proliferator-activated receptor-c (PPARc) to suppress
adipocyte differentiation and insulin signaling.

Conversely, evidence from animal models of obe-
sity and diabetes suggests that low-molecular-weight

fucoidan could ameliorate dyslipidemia and improve insu-
lin sensitivity through the activation of insulin signaling
pathways in adipocytes and hepatocytes.105,108–111 Further

evidence from human intervention trials is required to
understand how dietary fucoidan may modulate host

glucose and lipid metabolism to exert antiobesogenic
and antidiabetic effects. This may also require an un-

derstanding of how the molecular weight of fucoidan
affects bioactivity.

Fucoidan is also reported to have anticoagulant
properties, serving as a catalyst for antithrombin-

mediated and heparin cofactor II–mediated inhibition
of thrombin.112–114 Oral administration of Undaria pin-

natifida extract (9 g/d) with 75% fucoidan (molecular
weight � 713 kDa) for 12 days increased activated par-

tial thromboplastin time, decreased thrombin time, and
increased antithrombin-III compared with placebo, al-

though the authors concluded the improvements were
small and the impact of oral delivery may be limited.112

Another study investigated oral administration of fucoi-
dan (extracted from Laminaria japonica, molecular

weight � 300 kDa) at a dosage of 400 mg/d for 5 weeks
and reported a significant reduction in thrombus lysis

time, although a fucoidan-specific monoclonal antibody
enzyme-linked immunosorbent assay failed to detect

fucoidan in the blood of study participants.115 This sug-
gests fucoidan may not be bioavailable in humans, al-

though in vitro and in vivo experiments have
demonstrated fucoidan to be absorbed through the

small intestine.116 The anticoagulant properties of
fucoidan are gaining the attention of the pharmaceutical

industry, but the use of fucoidan as a food ingredient
will require much more human evidence to verify safe

and efficacious doses, particularly in individuals receiv-
ing anticoagulant therapy.

There is also a wealth of evidence to support an an-

ticancer function of fucoidan, but the majority of evi-
dence is from in vitro or animal studies and is reviewed

elsewhere.117 A recent clinical trial in colon cancer
patients investigated the effect of an oral fucoidan sup-

plement (4 g twice daily) administered in conjunction
with chemotherapy.118 Patients who received fucoidan

had a significantly better disease control rate compared
with placebo control patients but showed no change in

overall response rate, progression-free survival, overall
survival, adverse effects, or quality of life. While the ef-

fect on disease control rate is a notable benefit, the role
of fucoidan in cancer treatment remains unknown.

Advertisement of cancer treatments is prohibited in the
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United Kingdom,119 although legislation regarding ad-

vertisement of cancer prevention is less clear.120

Furthermore, marketing fucoidan as a food ingredient

with cancer-preventive effects is extremely difficult to
substantiate and may prove very difficult within the

existing regulatory environment.
There is increasing interest in the potential prebi-

otic effect of seaweed-derived fiber, which can modulate

the composition and metabolism of the colonic micro-
biota, as well as growing interest in the effect of fiber

fermentation on human health. Several in vitro fecal
batch culture studies have demonstrated the ferment-

ability of seaweed fiber components, noting increased
production of short-chain fatty acids and modulation of

gut microbial communities.121–125 Modulation of the
gut microbiota and production of short-chain fatty

acids have been observed in animal studies employing a
seaweed fiber–containing diet.86,126 However, thus far,

the only health benefit associated with the prebiotic
effects of seaweed fibers is the slowing of weight gain in

animals on a high-fat diet.127 There is a lack of human
intervention trials investigating the fermentability of

seaweed fiber components and their potential to affect
health outcomes.84

Fat

The fat content of seaweed tends to be low relative to

total dry weight. Percent fat content is highest in winter
and lowest in summer, and fatty acid composition

varies by season.16,40,128 For example, both the lipid
concentration and the polyunsaturated fatty acid

(PUFA) content of Saccharina latissima grown in inte-
grated multitrophic aquaculture were highest in March

and November, yet lowest in January.129 Moreover,
seaweed-derived lipids are highly digestible. For exam-

ple, up to 98% of the fat content of Undaria pinnatifida
(1.5% dry weight) is digestible in adults.128

Tables 1, 2, and 3 present the total fat content of
several brown, red, and green seaweeds, respectively,
while Tables S6, S7, and S8 in the Supporting

Information online present a breakdown of the lipid
content. Total lipid content ranges from 0.29% in

Sargassum polycystum30 to 8.88% in Porphyra spp.26

Porphyra spp have the lowest saturated fatty acid (SFA)

content (17.4% of total fatty acids), whereas Plocamium
brasiliense has the highest (74% of total fatty acids).40

Monounsaturated fatty acid content relative to total
fatty acid content ranged from 3.3% in Ochtodes secun-

diramea to 47.1% in Fucus vesiculosus.19 The PUFA
content of total fatty acids ranges from 6.7% in Ulva lac-

tuca51 to 69.1% in Undaria pinnatifida.28 Undaria pin-
natifida also has the highest PUFA:SFA ratio (3.39). As

shown in Table S7 in the Supporting Information

online, Palmaria spp had the lowest ratio of n-6 to n-3

fatty acids,19,28 whereas Gracilaria gracilis had the
highest.35

Dietary reference values have not been established
for PUFAs collectively, but an intake of 4% of total en-

ergy is recommended for n-6 linoleic acid.130 Foods
with a greater ratio of PUFAs to SFAs may be favorable
for maintaining blood LDL-C within normal concentra-

tions,83 although more human intervention studies are
needed to confirm the efficacy of PUFAs in managing

dyslipidemia and attenuating low-grade
inflammation.131

Evidence of bioactivity specific to seaweed lipids is
limited, although male KK-Ay mice treated with 1%

Undaria pinnatifida lipid showed a significant reduc-
tion in body weight after 4 weeks when compared with

controls, while total weight of white adipose tissue was
reduced in mice who consumed both the Undaria pin-

natifida lipid and n-3 PUFA-rich scallop phospholi-
pids.132 Other anti-inflammatory activities of seaweed

lipids include the inhibition of lipopolysaccharide-
induced inflammation in human THP-1 macrophages

by lipids derived from the red seaweeds Porphyra dio-
ica, Palmaria palmata, and Chondrus crispus.133 Lipids

extracted from Gracilaria spp also inhibited
lipopolysaccharide-induced nitric oxide production in

murine RAW 264.7 macrophage cells and decreased the
viability of human T-47D breast cancer cells and of

5637 human bladder cancer cells.134 Lastly, a C18 fatty
acid extracted from Ulva lactuca was reported to exert

an anticancer effect via activation of the Nrf2-ARE
pathway to promote scavenging of reactive oxygen

species.135

Given that consumption of whole seaweed, which

has a low lipid content, is unlikely to contribute signifi-
cantly to dietary fat intake, macroalgae may offer a sus-

tainable sources of extractable PUFAs that can be
further investigated for their anti-inflammatory effects

on obesity and obesity-associated comorbidities. These
extractable PUFAs may have prospective applications as
dietary supplements or nutraceutical products.

Polyphenols

Polyphenols are highly complex, structural components
of the cell wall. They are often bound to cell wall poly-

saccharides, protecting against oxidative damage.136

Brown seaweeds contain diverse flavonoid and phloro-

tannin polyphenols that vary in structure, molecular
weight, and level of isomerization.137,138

The purported bioactivities of seaweed polyphenols
include potential anticancer141 and antioxidant activi-

ties.140,142,143 Inhibition of digestive enzymes, which
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may prevent lipid absorption and help maintain glucose

homeostasis, has also been suggested.138,139

The bioavailability of polyphenolic compounds in

food varies greatly but is known to be low.144

Information about the bioavailability of seaweed-

derived polyphenolic compounds is limited, but a re-
cent human intervention trial that investigated the bio-
availability of polyphenols extracted from Ascophyllum

nodosum provided initial indications of interpersonal
variation in polyphenol uptake. Polyphenols detected in

serum ranged from 0.011 to 7.757 mg/mL, while the to-
tal concentration of urinary phlorotannin and its

metabolites ranged from 0.15 to 33.52 mg/mL.145 The
authors concluded, on basis of the absorption rate

(6–24 hours), that the gut microbiota–mediated metab-
olism of the polyphenols could be a major contributor

to the apparent interpersonal variation in polyphenol
absorption. Consequently, more human studies are

needed to investigate the bioavailability of polyphenols
from ingested whole seaweeds, as there is potential for

seaweed-derived fermentable fibers and polyphenols to
exert synergistic effects on the gut microbiota and the

host. Additional fundamental research to determine the
extent to which the gut microbiota’s metabolism of

phlorotannins impacts the reported health benefits is
also warranted.

There is considerable evidence from animal studies
to support a role for an effect of seaweed polyphenols

on glucose and lipid digestion and metabolism, giving
rise to suggestions that these polyphenols may have po-

tential in preventing diabetes and obesity-associated
complications. Diabetic rats fed an ethanol extract (150

and 300 mg/kg) or a water extract (300 mg/kg) from
Sargassum polycystum showed significant reductions in

blood glucose, glycated hemoglobin, total cholesterol,
blood triglycerides, and plasma atherogenic index.146,147

Polyphenols from both Ecklonia stolonifera149 and
Ascophyllum nodosum148 have been shown to favorably

alter glucose and insulin metabolism in diabetic mouse
models, while Ecklonia cava polyphenols significantly
reduced serum and liver triglycerides and total choles-

terol in a diabetic mouse model.150 Another study
showed that a Gelidium amansii phenolic-rich extract

reduced blood glucose and serum insulin and protected
against the adverse effects of diet-induced obesity in

mice via decreased blood triglycerides and total choles-
terol.151 The mechanism of action is unknown, but cur-

rent evidence supports a role in the inhibition of
digestive enzymes, including a-amylase, a-glucosidase,

and lipase.97,148,152,153

There is limited evidence that seaweed polyphenols

may exert antiobesogenic effects or may play a role in
maintaining glucose homeostasis in healthy humans.

For example, consumption of 500 mg of seaweed extract

containing at least 10% polyphenols did not improve

the postprandial glucose concentration after a 50-g car-
bohydrate load (bread) compared with placebo, but it

did lower the plasma insulin incremental area under the
curve in healthy adults (n¼ 23).154 Elsewhere, neither a

500-mg nor a 2000-mg dose of Fucus vesiculosus
polyphenol-rich extract reduced postprandial glucose or
insulin responses beyond that of the cellulose placebo

after a 50-g carbohydrate load (white bread) in healthy
adults (n¼ 38).155

In Korean adults with increased cholesterol, how-
ever, a significant reduction in total cholesterol, LDL-C,

and C-reactive protein was observed compared with
baseline values following treatment with Ecklonia cava

polyphenol extract at a dosage of 400 mg/d for
12 weeks.156 Potential mechanisms of action may be as-

sociated with the inhibition of adipogenesis, as the
phlorotannin dieckol has been shown to downregulate

AMP-activated protein kinase (AMPK) signaling in
3T3-L1 preadipocytes.157

A recent meta-analysis concluded that polyphenol-
rich marine extracts could reduce fasting blood glucose,

total cholesterol, and LDL-C in humans, but the few
interventions conducted in humans have reported in-

consistent findings for the effect of seaweed polyphenols
on other biomarkers associated with risk of type 2 dia-

betes and cardiovascular disease, including postprandial
blood glucose, fasting insulin, HDL-C, and

triglycerides.158

With Ecklonia cava phlorotannins deemed safe for

use as food supplements in the European Union,159 fur-
ther evidence in healthy and at-risk human populations

is required to ascertain the bioactivities of seaweed pol-
yphenols.155 Efforts to optimize polyphenol extraction

procedures will be crucial for maximizing the potential
of seaweed polyphenols as food ingredients.160–162

Fucoxanthin

Carotenoids are a group of tetrapenoid compounds in
seaweeds that contribute to photosynthesis. Their anti-

oxidant properties facilitate protection from UV dam-
age. In seaweeds, the main carotenoid with potential

application in the food industry is fucoxanthin,
extracted from brown seaweeds.163,164 Evidence sug-

gests that fucoxanthin, through its antioxidant activity,
may have potential as a food preservative to prevent

lipid peroxidation in meat.165

Previous research on fucoxanthin has focused on

its potential as a functional food ingredient to reduce
the risk of diabetes and obesity, although the evidence is

derived predominantly from in vitro and animal
studies. Fucoxanthin is thought to exert its effects

by inhibiting the digestive enzymes a-amylase and
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a-glucosidase, which in turn affects lipid metabolism by

modulating leptin and adiponectin, resulting in down-
regulation of lipogenesis and upregulation lipoly-

sis.166,167 In several in vivo animal studies, fucoxanthin
supplementation was shown to reduce blood glucose,

plasma insulin, body weight gain, and accumulation of
lipid in the liver; to decrease insulin resistance; and to
improve the plasma lipid profile.168,169 Results of studies

investigating the impact of fucoxanthin on cholesterol
metabolism in mice have differed. Beppu et al170

reported increased serum HDL-C, non-HDL-C, and to-
tal cholesterol, while Jeon et al108 reported decreased se-

rum cholesterol and increased fecal cholesterol
following fucoxanthin diets.

The antiobesogenic effects of fucoxanthin have
been reported in a human intervention trial in which

consumption of fucoxanthin over 4 weeks significantly
decreased BMI, body weight, and visceral fat area in

mildly obese adults (BMI, 25–30 kg/m2), with no ad-
verse events reported.171 However, mixed tocopherol

and kelp extract components (the composition of which
was undefined) were included in each capsule. Abidov

et al172 found evidence to support a role for a proprie-
tary product containing brown seaweed fucoxanthin, n-

3 fatty acids, and punicic acid to exert antiobesogenic
effects. Premenopausal woman with nonalcoholic fatty

liver disease and premenopausal women with normal
liver fat who consumed the fucoxanthin product over

16 weeks showed a significant reduction in body weight,
by 5.5 kg and 5 kg, respectively, compared with the pla-

cebo group. Furthermore, statistically significant
improvements in liver fat content, systolic and diastolic

blood pressure, and C-reactive protein were observed in
both cohorts that consumed the fucoxanthin product,

but not in the placebo group, while significantly re-
duced waist circumference and serum triglycerides

were observed only in the intervention group with non-
alcoholic fatty liver disease. Interpretation of the role of

fucoxanthin in this study is confounded by the addi-
tional components (omega-3 fatty acids, punicic acids
derived from pomegranate seed oil) present in the treat-

ment, and thus further study is needed to verify the
effects of fucoxanthin alone.

More research in healthy human participants is
needed to determine whether fucoxanthin plays a role

in altering lipid metabolism or in reducing the risk of
obesity. Other carotenoids present in red seaweeds,

such as lutein, b-carotene, and zeaxanthin, as well as
carotenoids present in green seaweeds, such as lutein,

b-carotene, echinenone, violaxanthin, and neoxanthin,
warrant investigation for their potential antiobesogenic,

antidiabetic, or antioxidant bioactivities.33,48,173–175

As with polyphenols, cost-effective and scalable ex-

traction protocols must be developed to produce

quantities of fucoxanthin sufficient to assess bioactive

efficacy and mechanisms of action in clinical trials and
to assess prospective applications as food ingredients or

in supplements.

Micronutrients

Several studies indicate that seaweed consumption con-

tributes to dietary mineral intake,1,176 and a higher in-
take of foods containing seaweed has been associated

with sufficient calcium intake to prevent osteoporosis in
Korean postmenopausal women.177 In contrast, 1 report

indicates no meaningful contribution to dietary intakes
of sodium, potassium, magnesium, phosphorus, cal-

cium, iron, manganese, zinc, selenium, or copper when
considering a daily portion of 5 g (dry weight) of 17

brown seaweed and 17 red seaweed food products
sourced from China, Japan, and South Korea.178 This

suggests wide differences in mineral content between
sources, as shown by the data presented in Tables S9,

S10, and S11 in the Supporting Information online.
Seaweed may be an important source of iron, as

Sargassum spp are reported to contain 156.9 mg of iron
per 100 g of dry weight, and the addition of this seaweed

to both wheat- and maize-based bread increased the
proportion of absorbed iron.179 Elsewhere, Sargassum

spp improved iron absorption from a rice meal, with
the iron content of the Sargassum spp used ranging

from 81 to 290 mg/100 g of dry weight over 12 months
(highest iron content in July, and lowest content in

January).180

Seaweeds are also considered a rich source of mag-

nesium, but the bioaccessibility of magnesium varies
between seaweeds. The magnesium content of Ulva per-

tusa, Laminaria japonica, and Gloiopeltis furcata is
10.47 mg/kg (41.8% bioaccessible), 6.55 mg/kg (60.8%

bioaccessible), and 8.18 mg/kg (72.5% bioaccessible),
respectively, under simulated gastrointestinal condi-

tions.181 A subsequent mouse study found that magne-
sium from Laminaria japonica was absorbed most
efficiently, which indicates that magnesium intake from

seaweed will vary between sources.

Vitamins

Multivitamin supplements are commonly used in the
general population to achieve recommended daily

intakes, but seaweeds may represent an abundant
source of both fat- and water-soluble vitamins, as out-

lined in Tables S12, S13, and S14 in the Supporting
Information online. For example, the vitamin A content

(retinol equivalents of carotenoid content, determined
by high-performance liquid chromatography) of a 5-g

portion of dried seaweed varies from 14.5 lg (2% of
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Reference Nutrient Intake [RNI]) in Ulva rigida53 to

70.5 lg in Fucus spiralis (10% of RNI).26 The vitamin C
content varies from 0.41 mg (1% of RNI) in

Ascophyllum nodosum to 9.24 mg (23% of RNI) in
Undaria pinnatifida.1 Reported folate (vitamin B9) con-

tent varies from 7.5 lg (3.75% of RNI) in Ulva spp1 to
5400 lg (2700% of RNI) in Ulva rigida.53 Both seasonal
and geographical variations may explain such wide vari-

ation within the same genus.
Only 1 study to date has analyzed the vitamin D3

content of seaweeds, reporting amounts of 0.83 mg/
100 g of dry weight in Fucus spiralis and 1.05 mg/

100 g of dry weight in Porphyra spp.26 This equates
to 41.5 lg (415% of RNI) and 63.5 lg (635% of RNI)

in a 5-g dried portion of Fucus spiralis and Porphyra
spp, respectively.182 Further characterization studies

are required to corroborate these findings, which
suggest seaweed is a valuable dietary source of

vitamin D.
Seaweed is one of the few nonanimal sources of

vitamin B12. Enteromorpha spp and Porphyra spp are
reported to contain 63.58 lg and from 32.26183 to

133.8 lg184 per 100 g of dry weight, respectively. This
equates to 3.18 lg (212% of RNI) and from 1.6 lg

(107% of RNI) to 6.69 lg (446% of RNI) in a 5-g dried
portion of Enteromorpha spp and Porphyra spp, re-

spectively. Other studies reporting the vitamin B12

content of seaweeds do not specify whether the vita-

min B12 is present in the active form that can be
absorbed and utilized in humans. Seaweeds contain-

ing active vitamin B12 may be useful for individuals
following a vegan diet, who are at risk of vitamin B12

deficiency.185 For example, the authors of a cohort
study in children following a vegan diet for 4 to

10 years attributed healthy vitamin B12 status to nori
consumption (Porphyra spp).186 Other seaweeds ex-

amined in this study, such as hijiki, wakame, and
kombu, are understood to contain limited amounts of

vitamin B12 or to contain vitamin B12 analogs that,
because of structural differences, do not have vitamin
B12 activity in humans.187 It has also been reported

that the drying of Porphyra spp inactivates vitamin
B12; therefore, processing methods may impact vita-

min bioavailability.188

In summary, seaweeds are a source of both fat- and

water-soluble vitamins. Seaweed consumption may im-
prove vitamin status; however, characterization of the

vitamin content of seaweed is required to improve the
development of seaweed supplements, as vitamin con-

tent varies with seaweed species, time of harvesting, and
geographical location. Moreover, only a limited number

of studies in humans, with few participants, have inves-
tigated the bioavailability and activity of vitamins

obtained from seaweeds.

Salt

According to the assessment of dietary sodium in the

UK National Diet and Nutrition Survey, adults aged 19
to 64 years consume, on average, 7.8 g, 8.0 g, and 8.6 g

of salt per day in Scotland, England, and Northern
Ireland, respectively, intakes that far exceed the RNIs

for salt (6 g/d) and sodium (1.6 g/d).189 Of the dried
seaweed products shown in Tables S1 and S2 in the

Supporting Information online, Laminaria digitata and
Palmaria palmata have a ratio of sodium to potassium

that may be favorable for their application as condi-
ments to replace salt (1.03 and 0.84, respectively).29

However, small portion sizes of seaweed may be re-
quired to prevent excessive salt intake, given that a 5-g

portion of Laminaria digitata can provide up to 0.35 g
of salt and 0.26 g of sodium, while Palmaria palmata

may provide up to 0.27 g of salt and 0.15 g of sodium.
These amounts exceed salt and sodium quantities in an

equivalent amount of bacon (0.144 g of salt and 0.0575 g
of sodium), which is considered a high-salt food.190

Iodine

Iodine is a trace element required for the synthesis and

function of triiodothyronine (T3) and thyroxine (T4)
thyroid hormones. In Japan, where approximately 20

different types of seaweed are consumed, the majority
being wakame (Undaria spp), kombu (Laminaria spp),

and nori (Porphyra spp), iodine intake varies from 0.1
to 20 mg/d (average intake, 1–3 mg/d), which can ex-

ceed the upper tolerable limits of 600 mg/d (EFSA) and
1100 mg/d (World Health Organization).191–193

The epidemiological evidence detailing the risks
and benefits of iodine intake from seaweeds remains in-

conclusive. Seaweed consumption was associated with
increased risk of papillary carcinoma of the thyroid in

Japanese postmenopausal women but not premeno-
pausal women.194 However, another study found no as-
sociation between seaweed consumption and total

thyroid cancer risk or papillary carcinoma in premeno-
pausal or postmenopausal women.195 Iodine-induced

hypothyroidism is reported in iodine-sufficient, kelp-
consuming populations of Japan,196 yet iodine-induced

hyperthyroidism is also reported in individuals who
consume kelp.197,198 The use of seaweed supplements is

not recommended for pregnant women, owing to the
variability and excessive iodine content of seaweeds,

with kelp-based products being of particular con-
cern.199,200 Synergy between iodine supplementation

and exposure to heavy metals in seaweed, such as mer-
cury, may also impair thyroid function through the

reduction of total T3.201
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The iodine content of the seaweeds shown in

Tables S9, S10, and S11 in the Supporting Information
online ranges from 0.06 mg/100 g of dry weight (Ulva

lactuca) to 624.5 mg/100 g of dry weight (Laminaria
digitata), but many characterization studies do not

quantify iodine. Desideri et al176 found that 3.3 g of
Laminaria digitata would provide 4017% of the tolera-
ble daily intake for iodine and suggested that habitual

intake of seaweed with an iodine content exceeding
45 mg/kg of dry weight could impair thyroid function.

Given that Laminaria spp are widely abundant, cur-
rently used as food ingredients, and have such a high io-

dine content, characterization of iodine in Laminaria-
containing products is warranted. In contrast, a 5-g

portion of Porphyra tenera is reported to provide only
80mg of iodine.202

Static in vitro digestion studies have reported the
bioavailability of iodine in seaweed as follows:

Laminaria spp (17%–28%), Sargassum fusiforme (12%),
Palmaria palmata (10%), Undaria pinnatifida (2%–

12%), Himanthalia elongata (4%), Porphyra spp (5%),
Ulva rigida (2%), and cooked Himanthalia elongata and

Sacchoriza polyschides (below the limit of detec-
tion).203,204 Boiling has been shown to reduce the iodine

content of Alaria esculenta (from 670 mg/g to 165 mg/g),
Palmaria palmata (97 mg/g to 66mg/g), and Ulva intesti-

nalis (92 mg/g to 79mg/g), information that may be ben-
eficial for industry to provide to consumers.204

In humans, urinary excretion of iodine following
Ascophyllum nodosum ingestion was reported as only

33% (excretion of potassium iodide control ¼ 59%).205

The reduced iodine bioavailability was attributed to re-

duced release of iodine from the seaweed food matrix
(ie, iodine bound to proteins, polysaccharides, polyphe-

nols, and pigments). In a Caco-2 and HT29-MTX
coculture, iodine uptake following in vitro digestion

was only 4% to 6% (hijiki), 2% to 4% (kombu), and 4%
to 7% (wakame),203 which also suggests limited libera-

tion of iodine species, limited solubility of iodine, or
limited absorption of iodine.206–208

Urinary excretion of iodine from Gracilaria verru-

cosa and Laminaria hyperborea was reported as 101%
and 90%, respectively, in an iodine-sufficient popula-

tion, yet as 85% and 61.5% in an iodine-deficient popu-
lation.209 Reduced urinary iodine excretion in the

deficient cohort was attributed to increased iodine stor-
age in the thyroid210; thus, seaweed consumption may

improve iodine status in those at risk of iodine defi-
ciency, as demonstrated in vegan populations.211,212

Iodine absorption from Laminaria japonica is esti-
mated as 57% to 71%, although serum thyroid-

stimulating hormone (TSH) was significantly increased
above the normal limits in 4 of 6 participants who con-

sumed 15 g of Laminaria japonica daily for 7 to 10 days,

in 4 of 14 who consumed 30 g/d for 7 to 10 days, and in

1 of 3 who consumed 15 g/d for 55 to 87 days.213 These
findings corroborate previous evidence that kelp sup-

plementation increased serum TSH over 4 weeks.214

Urinary iodide excretion increased 30-fold and 44-fold

from baseline (in subgroups that received 15 g and 30 g,
respectively), but returned to baseline 7 to 40 days after
seaweed consumption ceased. Furthermore, iodine in-

take was improved without compromising thyroid
function when 500 mg of Ascophyllum nodosum con-

taining 356 mg of iodine was given to healthy women
for 14 days.215 Urinary iodine concentrations increased

significantly, reflecting sufficient intake and subsequent
renal excretion. Plasma concentrations of T3, T4, free

T3, and free T4 were unchanged between pre- and post-
intervention, while serum TSH increased significantly,

albeit within the normal range.
Some have suggested that future human interven-

tion studies should quantify the iodine content of a sea-
weed food ingredient or supplement during product

development, so that urinary iodine concentrations
could be measured as a biomarker of iodine intake and

bioavailability at time points throughout
interventions.216,217

Strategies to prevent excessive iodine intake from
seaweed food products include the disclosure of iodine

content and the provision of cooking instructions on
product labeling. Disclosure of iodine content on food

labeling was reported for only 22 of 224 seaweed-
containing food products on sale in the United

Kingdom, while estimated content was provided for 40
products.4 Some 26 products had the potential to pro-

vide iodine in excess of the tolerable upper intake level
of 600 mg/d when serving suggestions were applied, but

for the remaining 162, this was unknown. Guidance
about an individual’s iodine status and how seaweed

consumption may benefit the individual could also en-
sure consumer safety.

The myriad variations in iodine concentration be-
tween seaweed species, season, and harvest location pre-
sent challenges to the food industry, since there is

limited and conflicting information about how individ-
ual seaweeds may impact iodine status and thyroid

health.

Heavy metals

One concern about seaweed consumption is exposure
to heavy metals such as arsenic, aluminum, cadmium,

lead, rubidium, silicon, strontium, and tin.176 The con-
tamination of seaweeds with heavy metals depends on

habitat or ecology, which has led to inconsistency in re-
search findings. Seaweeds growing in areas of contami-

nation, often caused by industry or poor sewage

320 Nutrition ReviewsVR Vol. 77(5):307–329



systems, accumulate heavy metals from the surrounding

water and rocks, but at levels that pose little risk to hu-
man health.218 However, exposure to contaminants is

increased in perennial seaweeds, the regular consump-
tion of which may lead to risk of heavy metal toxicity in

humans.219,220 Levels of arsenic, mercury, lead, and cad-
mium in 426 Korean dried seaweed products ranged
from 0.2% to 6.7% of provisional tolerable weekly

intakes when 8.5 g of seaweed was consumed per
day.176,218,221 In 1 study, the authors called for continu-

ous monitoring of heavy metals in seaweed-based food
products, owing to differences between species in the

bioabsorption of metals.221 An example of these
between-species differences is evident in Laminaria spp.

At an intake of 3.3 to 12.5 g/d, Laminaria digitata con-
tains 24 to 90 mg of cadmium,176 which corresponds to

40% to 150% of the tolerable daily intake, while
Laminaria japonica contains 0.45 to 0.80 mg/kg, which

exceeds the maximum limits for seaweed products
according to legislation in France (0.5 mg/kg of dry

weight) and Australia/New Zealand (0.2 mg/kg of dry
weight), but not in China (1.0 mg/kg).225 Tables S15,

S16, and S17 in the Supporting Information online pro-
vide details of the heavy metal content of several brown,

red, and green seaweeds, respectively, although infor-
mation about the toxicokinetics of heavy metals

ingested from seaweeds is too limited to make conclu-
sions about potential health risks.

In a cross-sectional study of heavy metal concentra-
tions in 3404 healthy Korean adults, urinary arsenic

concentrations were significantly increased in both the
second and third tertiles of seaweed consumption.226

Arsenic species were not determined in this study, but
blood mercury was significantly higher in the highest

consumers of seaweed versus the lowest consumers.
Preliminary research shows that increased water tem-

peratures can increase mercury absorption by fish, and
the same biosorption of mercury may occur in sea-

weed.227 Considering global warming, trends in the heavy
metal content of seaweed should also be monitored; like-
wise, the presence of rare earth elements, recently identi-

fied in northwest Mediterranean seaweeds, should be
watched.228 The placental transfer of heavy metals from

mother to fetus can cause neurological, developmental,
and endocrine disorders in infants.230,231 Ultimately, the

extraction of bioactive or nutritional components from
seaweeds may mitigate ingestion of excessive heavy

metals, which can be mutagenic and carcinogenic to
humans.229

Arsenic

A major consideration for the exploitation of seaweeds

as health foods or functional food ingredients is the

need to speciate and quantify the levels of arsenic pre-

sent in seaweed products. Arsenic species may be cate-
gorized as toxic (inorganic arsenic, which are class I

carcinogens), nontoxic (arsenobetaine), or potentially
toxic (fat-soluble arsenic, arsenosugars, and other

organoarsenicals).232 The health risks associated with
inorganic hydrogen arsenate species are related to
DNA damage, which predisposes cells to carcinogene-

sis. Consumption of inorganic arsenic has been shown
to increase the incidence of lung, bladder, skin, and

kidney cancers and has also been linked to skin
lesions, cardiovascular disease, neurological effects,

and diabetes.233–235

Most arsenic species in seaweeds are arsenosugars,

typically ligated to glycerol, sulfonate, or phosphonate.
Arsenosugars resist degradation in the stomach and,

upon entering the lower gastrointestinal tract, are me-
tabolized to at least 12 different metabolites, including

dimethylarsinate, methylarsinate, and dimethylarsinoy-
lethanol, but the toxicity of these metabolites is un-

known.232,236–238

Speciation and concentration of arsenic in brown

seaweeds (Ascophyllum nodosum, Laminaria digitata,
Fucus vesiculosus, Fucus spiralis, Alaria esculenta, and

Saccharina latissima),239,240 red seaweeds (Porphyra
umbilicalus, Chondrus crispus, Gracilaria vermiculo-

phylla, and Palmaria palmata), and green seaweeds
(Ulva prolifera and Ulva lactuca)240 revealed that total

arsenic content ranged from 4.1 to 111.0 mg/g, with the
majority of arsenic present as arsenosugars (inorganic

arsenic content was < 1.0 mg/g). The exception was
Laminaria digitata, which contained inorganic arsenic

at levels of 2.8 to 20.0mg/g (USA)240 and 2.2 to
87.0 mg/g (Ireland).239 These levels represent a large

proportion of the total arsenic content of Laminaria
digitata, reported to range from 36.0 to 131.0 mg/g of

dry weight.176,239,240 In contrast, Laminaria japonica
sourced from China contained inorganic arsenics at a

concentration of 0.16 to 0.58 mg/kg, which is below
maximum limits set by China (1.0 mg/kg of dry
weight),225 France (3.0 mg/kg of dry weight),241 and

Australia/New Zealand (1.0 mg/kg of dry weight). 242

Such variation in inorganic arsenic contents may war-

rant regular testing for inorganic arsenic content in
Laminaria spp food products.

Another recent study reported that the content of
inorganic arsenic was negligible in 23 seaweed food

products except for hijiki (19.83 mg/g), agar (0.06 mg/g),
and nori (0.03 mg/g).235 Total arsenic concentrations in

seaweed products were as follows, in descending order:
hijiki (83.7 mg/g), kombu (51.2 mg/g), kelp seasoning

(43.5 mg/g), arame (41.6 mg/g), wakame (34.7 mg/g),
dried red seaweed (35.2 mg/g), nori (19.4 mg/g), dulse

(12.1 mg/g), agar (0.23 mg/g), and kelp noodles (0.08 mg/g).
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The amount of inorganic arsenic in 112 edible seaweed

products sold in Spain was also within safe limits, with
the exception of hijiki, in which the level of inorganic

arsenic ranged from 41.6 to 117.0 mg/g.243

Inclusion of 3% hijiki powder has caused arsenic

poisoning in rats,249 and the risk of hijiki to public
health has led to current recommendations against the
consumption of hijiki in Asia,244 Australia,246

Europe,245,247,248 and the United States.246 Seaweeds
such as arame, wakame, kombu, and nori, however, are

suggested as safe to eat because they contain inorganic
arsenic at a concentration of less than 0.3 mg/g, which is

encouraging for potential food ingredient
applications.250

The amounts of potentially bioaccessible arsenite,
arsenate, methylarsonate, and dimethylarsinate follow-

ing the in vitro digestion of Laminaria japonica,
Undaria pinnatifida, Hizikia fusiformis, Porphyra

yezoensis, and Enteromorpha prolifera were low enough
to indicate no hazard of inorganic arsenic to human

health.251 However, cooking of Porphyra spp and
Hizikia fusiforme by baking and boiling, respectively,

has been shown to increase inorganic arsenic species,252

while soaking, cooking, boiling, and washing/soaking of

other seaweeds reduced total arsenic by up to 58.8%,
91.5%, 50%, and 60%, respectively.253

Wei et al254 investigated the bioavailability of arse-
nic from Porphyra spp, reporting that total urinary arse-

nic peaked (average, 92.5 ng/mL) after 20 to 30 hours,
resulting in a 20-fold increase in DMA before returning

to normal levels after 80 hours. Another study showed
that 2 arsenic metabolites, DMA and 2-dimethylarsi-

noyl ethanol (DMAE), were detected in the urine of 5
volunteers who consumed 20 to 25 g of Laminaria spp

(total arsenic, 43.2 mg/g): the peak ratio of arsenic to
creatinine was 228, 158, 141, 72, and 70 ng/mL, and lev-

els normalized after 80 hours.236

Consumption of 10 g of nori, kombu, or wakame

per day for 3 days, followed by a 3-day washout period
between seaweeds, resulted in increased levels of the
arsenosugars DMA, thio-dimethylarsenoacetic acid

(DMAA), and thio-DMAE in 24-hour urine samples
obtained during the 3 days of seaweed consumption.

The extent of these increases varied between seaweeds
and individuals.235 Toxic thio-DMA was present only at

trace levels, and the authors identified thio-DMAE and
thio-DMAA as unique arsenosugar metabolites that

could potentially be used as urinary biomarkers for die-
tary intake of arsenic from seaweeds.

The arsenosugars present in seaweed resist cooking
and in vitro digestion processes and have been sug-

gested to be absorbed, in part, into the hepatic portal
system intact.255 Human studies have shown consider-

able differences in the rate of excretion of arsenosugars,

ranging from 4% to 95%.256 The high variability associ-

ated with arsenosugar metabolism may be attributable
to between-individual differences in endogenous diges-

tion, gut microbiota composition and activity, passage
across the intestinal barrier, or transformation in the

liver.256 Thus, there is a need to characterize the meta-
bolic fate of arsenosugars in order to clarify the safety
associated with arsenosugar-rich seafoods.257

While regulatory bodies have attempted to provide
guidance about arsenic intake, there is a need for clearer

regulation and guidance regarding the permissible arse-
nic content of foods. For example, the UK Food

Standards Agency has advised against consuming
Sargassum fusiforme (hijiki) because of significant food

safety concerns over high levels of inorganic arsenic.248

To reduce health risks, regular environmental assess-

ment and analysis of the arsenic species present in
seaweed-containing food products may be required to

ascertain the exposure to and the potential toxicity of
heavy metals.221,242 Indirect exposure to arsenic could

also be a concern if arsenic accumulates in the food
chain following the use of seaweed either as feed for

livestock258 or as fertilizer.259 The majority of edible
seaweeds have been reported to contain heavy metals in

safe amounts. As with iodine, it has been suggested that
food regulation should ensure the disclosure of heavy

metal contents on food labeling and establish legal lim-
its for the content of inorganic arsenic in seaweed.260

Cooking methods and food processing procedures may
help reduce the amount of heavy metal present in edible

seaweeds, but regulatory bodies and industry both face
challenges. For regulatory bodies, the greatest challenge

in developing safe limits is the interindividual differen-
ces in biotransformation, metabolism, and excretion of

arsenic, while for industry, the greatest challenge is the
high within-species variability of arsenic levels in sea-

weed and the potential costs of regularly monitoring
product(s).

HEALTH IMPACT OF HABITUAL INTAKE OF WHOLE
SEAWEEDS

While this review highlights the lack of human inter-
vention trials investigating the potential risks and bene-

fits of consuming seaweed components, some
observational evidence does exist. Epidemiological evi-

dence indicates that seaweed-containing diets are in-
versely associated with all-cause mortality and

cardiovascular disease mortality in Japanese adults.261

On the other hand, Korean men with metabolic syn-

drome are reported to consume significantly more sea-
weed than those without metabolic syndrome, although

no mechanistic insight has been published.262
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Consumption of Porphyra spp was inversely associ-

ated with breast cancer risk in premenopausal women
but not in postmenopausal women, and no association

was found between Undaria pinnatifida consumption
and breast cancer risk.265 A study by Michikawa et al194

identified a positive association between seaweed con-
sumption and the risk of thyroid cancer (especially papil-
lary carcinoma) in postmenopausal women, while Wang

et al195 did not find an association between seaweed in-
take and thyroid cancer incidence in either premeno-

pausal or postmenopausal women. Case-controlled
studies by Hoshiyama et al266,267 implicated an inverse

relationship between seaweed consumption and stomach
and colon cancer; nevertheless, interpretation warrants

caution in light of the low sample power of the studies.
An inverse association was also reported between

Undaria pinnatifida, Sargassum fusiforme, and Porphyra
spp intake and prevalence of allergic rhinitis in pregnant

Japanese women (n¼ 1002).268 The study did not mea-
sure iodine intake or iodine status, which would have con-

tributed to the knowledge of iodine intake from seaweeds
during pregnancy, since current recommendations in

Australia and New Zealand limit brown seaweed intake to
1 portion per week in pregnant women.269 There are also

concerns about the potential for seaweed to contribute to
foodborne infections, as noted by reports of norovirus

contamination of Enteromorpha spp270 and the presence
of polycavernoside A toxin in Gracilaria edulis.271,272

Current Asian populations are reported to consume
less seaweed than previous generations, shifting toward a

high-energy, low-fiber Westernized diet that promotes
the development of metabolic syndrome and has in-

creased the number of iodine-deficient individuals in
Japan.273,274 One recent intervention study in a European

population concluded that Palmaria palmata consump-
tion could improve iodine status in adults, as serum TSH

was significantly increased (within the normal clinical
range) following Palmaria palmata intake of 5 g/d for

28 days.275 The authors of this study highlighted the need
to characterize seaweed composition when undertaking
human interventions to help ascertain which compo-

nents of seaweed affect health, immune function, and dis-
ease risk. While the evidence from observational studies

reviewed here may indicate potential benefits, the out-
comes must be viewed with considerable caution.

Randomized controlled trials with suitable biomarkers, as
well as supportive in vitro and in vivo animal studies, are

warranted to verify previous observations and eludicate
the mechanisms of action of edible seaweeds in humans.

CONCLUSION

Edible seaweeds are a rich and sustainable source of

macronutrients (particularly dietary fiber) and

micronutrients, but if seaweeds are to contribute to fu-

ture global food security, legislative measures to ensure
monitoring and labeling of food products are needed to

safeguard against excessive intakes of salt, iodine, and
heavy metals.

While heavy metal concentrations in edible sea-
weeds are generally below toxic levels, bioaccumula-
tion of arsenic is a risk, and more studies of heavy

metal toxicokinetics are needed. A trade-off between
iodine and/or heavy metal ingestion and the amount

of whole seaweed needed to obtain meaningful
amounts of PUFAs, protein, or dietary fiber may limit

the recommended portion size. Therefore, the extrac-
tion of individual components from the complex sea-

weed matrix is a legitimate strategy to create added-
value products, particularly since novel bioactive com-

ponents extracted from seaweeds are increasingly
studied as potential agents to combat noncommunica-

ble diseases.
Looking ahead, more human intervention studies

with defined health-related endpoints are needed to
establish how chronic consumption of whole seaweeds

and their extracted bioactive components affects hu-
man health. Mechanisms of action must also be eluci-

dated to substantiate any future health claims
associated with seaweed consumption and to support

applications within the food and nutraceutical
industries.
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