
EDITORIAL

Ten simple rules for quick and dirty scientific

programming

Gabriel BalabanID
1,2, Ivar GryttenID

1, Knut Dagestad RandID
3, Lonneke SchefferID

1, Geir

Kjetil SandveID
1,2*

1 Biomedical Informatics Group, Department of Informatics, University of Oslo, Oslo, Norway, 2 PharmaTox

Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway,

3 Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway

* geirksa@ifi.uio.no

This is a PLOS Computational Biology Software paper.

Introduction

Any textbook or course in programming will tell you to write programs that are well struc-

tured, well documented, and thoroughly tested, to ensure correctness and ease of maintenance.

However, when faced with time pressures and the eagerness of reaching a scientific result, you

may instead find yourself coding in a quick and dirty style that does not live up to the ideal.

Indeed, coding quickly can be a good way to deal with the uncertain and explorative nature of

computational research. The quicker you code, the more scientific ideas you can potentially

test and publish. However, if coding quickly means coding sloppily, then bugs, false conclu-

sions, and article retractions [1] may be the result. Furthermore, if your code becomes increas-

ingly complex and messy over time, then adapting it to new tasks will be difficult, potentially

stalling your research progress. Effective scientific programming therefore requires a constant

balance between the needs of the present and the needs of the future, with a coding style that is

quick and dirty but rigorous enough.

In our guide, we focus on software development speed and formulate a set of 10 simple

rules for writing good enough quality code with minimal effort, with the aim to increase

research productivity. We follow in the tradition of promoting software competence among

scientists [2–4] and build on previous installments in the Ten Simple Rules Series, which aim

to make scientific software more robust [5], useable [6], reproducible [7], open [8], and effec-

tive [9].

Our rules are based on our personal experiences with scientific software development, and

on industrial software methodologies [10–14], which we have applied to various computa-

tional biology research projects over the last decade. While we found that many software

industry practices were applicable to our research, we also experienced that they could not be

applied blindly and needed some adaptation. This is because scientific software development

is typically done by relatively few individuals, who are also domain experts and intimately

familiar with the software requirements. In contrast, the industrial setting most often involves

large teams of developers who rely on separate business experts to define their goals. We there-

fore focus on the subset of industrial software engineering practices that we found most useful,

and bring them to you in a condensed form.

Software engineering requirements can vary greatly in computational biology applications

(Fig 1), ranging from simple scripts for routine data analysis with preexisting tools and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Balaban G, Grytten I, Rand KD, Scheffer

L, Sandve GK (2021) Ten simple rules for quick

and dirty scientific programming. PLoS Comput

Biol 17(3): e1008549. https://doi.org/10.1371/

journal.pcbi.1008549

Editor: Scott Markel, Dassault Systemes BIOVIA,

UNITED STATES

Published: March 11, 2021

Copyright: © 2021 Balaban et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The manuscript does

not include or refer to any underlying data.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-6794-9611
https://orcid.org/0000-0001-8941-942X
https://orcid.org/0000-0003-3359-7619
https://orcid.org/0000-0001-8900-075X
https://orcid.org/0000-0002-4959-1409
https://doi.org/10.1371/journal.pcbi.1008549
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008549&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1371/journal.pcbi.1008549
https://doi.org/10.1371/journal.pcbi.1008549
http://creativecommons.org/licenses/by/4.0/


software packages, up to sophisticated general purpose frameworks [15–17], which seek to

automate and simplify a wide range of computing tasks. We kindly refer readers learning to

program to [18] and readers working on large general purpose scientific computing frame-

works to the software engineering literature [10–14].

Our advice is intended for researchers who already know how to code and are working on

focused scientific projects that require experimentation with computational and or data pro-

cessing methods. Throughout our guide, we assume familiarity with basic Software Carpentry

concepts [4], such as version control [19] and data management [20].

Rule 1: Think before you code

“Preparation, I have often said, is rightly two-thirds of any venture.”—Amelia Earhart

Computer programming is a world of details and decisions, and it is good to take stock of

where you are before you enter. Why are you coding and how does your code help you to

achieve your scientific goals? Once an idea pops up, it can be tempting to just start working,

since the process of programming provides a feeling of producing something. However, con-

stantly doing something does not necessarily mean that you are doing the right things.

Try to get as much relevant information as you can before starting to write code, as suggested

in [9]. This should include a literature review of the computational methods and application

domain that you will be working with, as well as a search for preexisting software implementa-

tions which you can use in your project. Also, consider the expertise of other people in your

team or community and whether there are any potential collaborations which would benefit

your project. Organize your relevant information into sketches, mind maps, wikis, or lists which

you can consult regularly to see the big picture. A few hours of literature review or discussion

with colleagues can save you weeks of programming and should not be underestimated. Also, a

good knowledge of your research topic and the people that work in it will allow you to make bet-

ter technical decisions, leading to simpler software designs and effort invested in the right places.

If you are working with datasets, try to become aware of the strengths and weaknesses of

your data as early as possible. This is especially relevant if your data was collected by collabora-

tors, who may have important knowledge that you are currently unaware of. We recommend

that you start your data analysis with simple exploratory techniques, such as summary

Fig 1. Levels of scientific software engineering sophistication in computational biology.

https://doi.org/10.1371/journal.pcbi.1008549.g001

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 2 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g001
https://doi.org/10.1371/journal.pcbi.1008549


statistics, histograms, and pair-plots, to quickly get an overview. Such information is useful for

discussions with collaborators and for informing further analysis.

Rule 2: Start with prototypes and expand them in short development cycles

“Do the simplest thing that could possibly work.”—Kent Beck

Research projects are like start-up businesses in that they often rely on a critical set of assump-

tions. For example, a typical better methods research project assumes that the existing methods

can be improved upon, whereas an applied project assumes that publishable interpretations

can be made from the analysis of some data. It is important to test your key assumptions as

early as possible before committing too much of your time and effort. In the computational

setting, this can be accomplished by prototyping techniques.

The start-up literature [21] recommends the use of a Minimum Viable Product (MVP), the

smallest program (in terms of required effort) you need to test your key project assumptions.

Such a prototype can provide you with valuable information while minimizing the time

invested in it, thereby allowing you to decide whether a research project is worth pursuing as it

is or whether it needs to be modified or dropped. If a project is worth pursuing, then the proto-

type serves as a basis for future development and can provide valuable insights into the data,

methods, and technologies that you are working with.

It can be tempting to implement a few extra features speculatively for the future at the pro-

totype stage of your project. However, you should avoid doing this (Fig 2), as the best way to

prepare for the future is to make the currently required code as clear and straightforward as

possible [13,22]. To keep your prototype simple, reuse existing tools and libraries (see Rule 3)

and create mocks [23] which simulate the outputs of code that you do not need to write at the

moment. Mock code can always be replaced with full implementations later on. Also, using

high-level programming languages (e.g., Python or R) can be very beneficial at this stage, as

you can build your prototype more quickly and with less code than with low-level languages.

Once your prototype has been finished, you should assess what you have learned and use

this information to guide what to do next. From here, we suggest that continued development

should be done in short cycles, focusing on the current most critical assumptions that need to

be tested. Each cycle should start with a plan to write the minimal set of code to reach the next

goal and should end with a critical assessment of the results and useful information for what to

do next. Such short development cycles allow you to frequently reassess the situation and keep

you on the right track [21].

Rule 3: Look for opportunities for code reuse

“Measuring programming progress by lines of code is like measuring aircraft building progress
by weight.”—Bill Gates

Reuse of existing code can be a powerful way to keep development time short and get working

solutions quickly (Fig 3). Code reuse comes in many forms, ranging from importing and using

existing libraries, running existing tools, reusing your own code (see Rule 9), and cloning/

extending existing code bases to simply copying short snippets of code that others have writ-

ten. All of these ways of reusing existing code can potentially save you hours of development

time. Beyond this immediate benefit, code reuse also centralizes or outsources maintenance of

the reused code, potentially saving you time and effort in the future. For example, if you

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 3 / 15

https://doi.org/10.1371/journal.pcbi.1008549


import and use the functionality from a well-known package such as scikit-learn [16] instead

of developing your own code, you can be assured that this code will most likely gradually

improve and be thoroughly maintained over the coming years.

It is human nature to trust your own code more than code written by somebody else. When

this is taken to the extreme, it can result in the “not invented here” syndrome [24], an irrational

preference for self-made solutions (Fig 4). Though you may be more comfortable working

with something you wrote yourself, you should consider that well-established and regularly

updated code bases are typically the result of countless hours of solving minor problems and

edge-cases that you may not yet even be aware of, as well as a shared effort to remove nontriv-

ial bugs. Reusing high-quality code bases can therefore save you from hitting the mistakes and

pitfalls that have been previously solved by others.

On the other hand, implementing an algorithm yourself can be a fantastic way to broaden

your knowledge, especially when you can compare your implementation to a preexisting refer-

ence. Also, writing your own code can allow you to avoid dependency issues associated with

external packages (also known as dependency hell). You should therefore weigh the benefits of

external packages against the expected effort of managing any dependencies. Thankfully, mod-

ern dependency management tools such as Packrat for R or pipenv for Python have made the

job of managing dependencies much easier than in the past, allowing you to more comfortably

make use of external packages in your code.

Fig 2. Minimize your prototypes by focusing on the core questions that you are trying to answer at the moment. Avoid implementing features

speculatively for the future.

https://doi.org/10.1371/journal.pcbi.1008549.g002

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 4 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g002
https://doi.org/10.1371/journal.pcbi.1008549


You can find opportunities for code reuse by browsing the literature, searching online, and

talking to colleagues or other experts. When evaluating an external library or tool, consider the

effort required to install it and integrate it with your own code, as well as whether any underly-

ing assumptions hold in your case. A good indicator of library/tool quality is a substantial user

base and recent development and/or updates. However, even if a tool or library is not a perfect

fit, it may be worth using it in the early phases of your project to make progress. You can

always replace the imperfect tool or library later on with something better.

Rule 4: Modularize your code

“The art of programming is the art of organizing complexity, of mastering multitude and
avoiding its bastard chaos as effectively as possible.”—Edsger Dijkstra

Modularization is the process of organizing your code into reusable and parametrizable com-

ponents. Even when you are trying to code quickly, modularization is a good idea; it prevents

errors, makes your code more readable and testable, and facilitates code reuse over unneces-

sary duplication (Fig 5). With a bit of practice and a few guidelines, modularization can

become second nature to you and will not slow down your coding.

A good way to begin with modularization is to observe the DRY (Do not Repeat Yourself)

principle [10], which says to avoid unnecessary duplication of code. Reusable functions can be

used instead of duplicate code, which also makes your code more readable and generalizable

([12]; Chapter 7). A simple rule of thumb is to not let your functions become more than a

screen long. This will keep your functions manageable and focused on a specific task. A little

Fig 3. An ideal computational research project has a high amount of code reuse and a publishable innovation

implemented in a small amount of new code.

https://doi.org/10.1371/journal.pcbi.1008549.g003

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 5 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g003
https://doi.org/10.1371/journal.pcbi.1008549


bit of thinking is sometimes required when breaking up large functions. However, if you make

it a regular habit, you will ultimately achieve simpler code designs with minimal effort.

If you are using an object-oriented language such as Python or C++, then you can further

modularize your code with classes. An easy way to do this is to start with procedural code, and

then group together related variables and functions into classes. Using object-orientation this

way allows you to encapsulate technical details, better manage complexity, and more easily

reuse code across projects. Beyond simply organizing functions and variables, object-oriented

code can be made more sophisticated by exploiting polymorphic behavior, inheritance, object

composition, and design patterns [25,26]. These strategies facilitate flexible code with highly

dynamic run-time behavior.

That being said, there is always the risk of overengineering object-oriented programs,

which results in overly complex code which is difficult to understand and modify. To avoid

overengineering, you should always try first to avoid complexity before using advanced object-

oriented strategies to deal with complexity. Be concrete with what you want to achieve and

keep your scientific goals in mind. Finally, consider the advantages of programs based on low-

level loops and arrays, which can be simpler and faster than object-oriented code.

Fig 4. Not invented here syndrome.

https://doi.org/10.1371/journal.pcbi.1008549.g004

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 6 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g004
https://doi.org/10.1371/journal.pcbi.1008549


The way that you modularize your code into functions and classes forms a high-level design

of your code. We recommend that you let your design evolve as you code by adding functions

and classes as you need them, rather than trying to develop your design a priori. When done

properly, such an ad-hoc design process is very efficient and will give you only the modulariza-

tion that you actually need ([13]; Chapter 17), which helps to prevent overengineering. Fur-

thermore, “perfect” software designs can be very time consuming to develop and often require

that existing functionality be rewritten many times. For most scientific applications, and espe-

cially for prototyping, a “good enough” design is all that is needed ([10]; Chapter 1).

Rule 5: Avoid premature optimization

“Premature optimization is the root of all evil.”—Donald Knuth

It has become increasingly common to work with large datasets, which can greatly slow down

the execution of computer programs. In these situations and any others where code is running

slowly, it may be tempting to optimize the code to make it more efficient. However, optimizing

Fig 5. Working with a badly designed code base is difficult. Modularize your code to avoid getting lost and to prevent bugs.

https://doi.org/10.1371/journal.pcbi.1008549.g005

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 7 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g005
https://doi.org/10.1371/journal.pcbi.1008549


code comes with risks: it can be time consuming, you might break the code, and you may end

up making the code more complex or specialized in order to speed it up (Fig 6). Before you

optimize code, you should consider the alternatives.

The best alternative to code optimization is reducing the size of the computation/data. If

you are working with large datasets, try to subsample them or replace them with smaller data-

sets. In the early phases of a research project, small synthetic datasets are often the best way to

go. Only scale up the input data when you are sure that your code does what you want. You

may then find that you only need to analyze your large dataset a limited number of times, so

that you may be able to live with the long run-time after all.

Another good alternative to code optimization is doing other things while a program with a

long execution time runs. If the program runs for hours, then you can always catch up on the

latest research articles while you wait. If the program takes a day or two, consider running it

over the weekend or on a high-performance cluster. Your time is more valuable than your

computer’s, and you should have a very good reason to trade your time spent on run-time

optimization for your computer’s execution time.

If you end up pursuing run-time optimization, it is worthwhile to start by profiling your

program to find the critical spots which are running slowly. While profiling, make sure your

Fig 6. Premature optimization, avoid it like the plague.

https://doi.org/10.1371/journal.pcbi.1008549.g006

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 8 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g006
https://doi.org/10.1371/journal.pcbi.1008549


program inputs are sufficiently large, as some algorithms only become inefficient with a large

enough problem size. Look for low-hanging algorithmic optimizations first, that is a better

algorithm that reduces the number of operations that need to be performed. Before carrying

out an optimization, have a test in mind that you can use to check that you have not intro-

duced a bug. If your optimization is complex, use an automated unit test (see Rule 6). If you

are using a high-level language such as Python or R and no better algorithm exists for your bot-

tleneck, consider using a low-level language such as C. Look for existing wrappers to low-level

code first, and only create your own low-level implementations as a last resort.

Rule 6: Use automated unit testing for critical components

“More than the act of testing, the act of designing tests is one of the best bug preventers
known.”—Boris Beizer

Unit tests are small pieces of code which test that a given function produces an expected output

given a set of predetermined inputs. Unit tests are considered software engineering best prac-

tice [27], because they provide a quick and automated way for future developers (including

yourself) to verify that your code has not been broken after an update.

Unit tests can play a valuable role in your exploratory and experimental scientific coding.

This is because your code may change as a result of your varying research priorities, which

may cause you to inadvertently introduce bugs. You would not want to abandon a good

research direction because your “quick and dirty” code erroneously reported little to no signal.

Conversely, reporting flawed results due to programming errors is bad science and has led to

article retractions in the past [1]. Unit tests can help to avoid such problems, because they

instantly make you aware of broken functionality before it becomes a problem.

An easy way to get started with unit testing is to practice the “test-first approach,” which

consists of designing a test before implementing productive code. In practice, before writing a

function, you can write a small code piece that calls the function with some test data. This code

piece can then be turned into an automated test by adding an assert statement to check if the

function output meets some expected criteria. An example unit test demonstrating this idea is

given in Fig 7. In order for your unit tests to be useful, they should be simple, quick to run, and

Fig 7. Demonstration of the test-first approach to writing automated unit tests. The desired function should

calculate the reverse complement of a DNA sequence and also be case insensitive. (A) The test code in the top panel is

written first, along with a skeleton reverse complement function in the bottom panel, which initially fails the test. (B)

The reverse complement code can then be written and should pass its unit test when it is complete.

https://doi.org/10.1371/journal.pcbi.1008549.g007

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 9 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g007
https://doi.org/10.1371/journal.pcbi.1008549


give unambiguous error messages when they fail. Stochastic test data should be fixed with con-

sistent seed values, to avoid randomness in unit test results.

Writing and maintaining test code requires some effort, which is why we recommend you

focus your testing on critical parts of your code which might produce errors with scientific

consequences (Fig 8), rather than testing everything as per industry best practice. For example,

miscalculating a P value is a potential problem, whereas an error in a progress bar is relatively

harmless. Numerical optimization methods and partial differential equation solvers are good

examples of code which should be tested automatically. Fortunately, the availability of good

open-source scientific packages means that many critical calculations can be outsourced away

from your project code, leaving only a small number of functions which may need to be veri-

fied by unit testing.

Note that if you work on a larger project with many components, you may also find it useful

to automatically test several components together to see how they interact. Such tests are called

integration tests. Depending on your project and your personality, it may be more convenient

to write higher-level integration tests rather than lower-level unit tests. For maximum safety,

use both.

Rule 7: Refactor frequently

“An ounce of prevention is worth a pound of cure.”—Benjamin Franklin

Modern software development methodologies have embraced frequent changes in goals and

requirements, and recommend the iterative evolution of a software system rather than the

implementation of a prespecified and inflexible plan [14]. A consequence of this is the need for

frequent refactoring, which is the process of changing a software system in such a way that it

does not alter the external behavior of the code yet improves its internal structure [22]. Fre-

quent refactoring ensures that the design of a software system stays simple and fit for purpose,

without unnecessary complexity or duplication. This helps to prevent errors and facilitates

future changes to the system.

Fig 8. Many computational research projects contain just a few critical components responsible for important scientific calculations. Try to identify these critical

components and write automated unit tests for them to avoid potential bugs and errors.

https://doi.org/10.1371/journal.pcbi.1008549.g008

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 10 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g008
https://doi.org/10.1371/journal.pcbi.1008549


For some scientists, frequent refactoring may be a tall order. After all, the goal of a research

project is science and not coding, and if the system ain’t broke, then why fix it? Nevertheless,

frequently changing requirements are a common feature of many research projects, and reus-

ing code is more efficient than constantly starting from scratch. Most importantly, a few min-

utes spent refactoring can save hours of future debugging. So if you find yourself spending too

much time on debugging and managing your code, you should consider refactoring more fre-

quently (Fig 9).

A good way to get started with refactoring is to consult lists of “code smells”—general char-

acteristics of code that is unnecessarily complex and could be simplified ([12]; Section 24.2).

Examples of such code smells include duplicated code, long functions, long parameter lists, or

the need to make synchronized changes at distinct places in your codebase. Many types of

code smells can be detected automatically by various tools [28], which can aid you in your pro-

gramming. You should also be particularly wary of situations where you have developed code

with a particular aim and then had to repurpose the code; the assumptions you originally

made may no longer be relevant and may need to be refactored out of your software.

To succeed with refactoring, focus on making small changes with little risk of breaking the

code or introducing bugs. Some examples of such small and easy refactoring are giving vari-

ables better names, making global variables local to a function, eliminating obvious duplicate

code, breaking up large functions into smaller ones, grouping related functions into classes,

and reorganizing functions and classes into appropriate files. Such changes can be made in a

few minutes and will not slow down your coding very much. Furthermore, frequent refactor-

ing in small amounts saves you from having to make larger and riskier changes in the future.

In the case that you do need to make larger changes, automated tests can be very helpful, as

they can quickly let you know if you have broken something in the code while you refactor.

Finally, make sure to version control your code, so that if your refactoring goes badly, you can

always go back to your latest working version.

Rule 8: Write self-documenting code for programmers and a readme file

for users

“It is not enough for code to work.”—Robert C.Martin, Clean Code

Fig 9. Refactoring can save you from debugging and is also more fun. However, it can also be overdone, so try to find

the right balance.

https://doi.org/10.1371/journal.pcbi.1008549.g009

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 11 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g009
https://doi.org/10.1371/journal.pcbi.1008549


Code documentation is information about a computer program that is intended for human

consumption and will not be used by the computer for the program’s execution. It can take the

form of external documents, such as user manuals or code vignettes, or code-level information,

which are the code itself and inline comments. In the early experimental phases of a research

project, there can be a lot of changes to the codebase, and we therefore recommend sticking to

code-level documentation in the early phases of your project, rather than creating external

documents. This is because it is much easier to keep code-level documentation in-sync with

your changes.

The majority of useful code-level information is contained within the code itself. You can

maximize this information by using good program structure, clear variable and function

names, named constants instead of literal numbers, and by minimizing the complexity of con-

trol-flow statements and data structures ([12]; Section 32). Improving your code via refactor-

ing (see Rule 7) is therefore also a form of documentation, and it is better to simplify a

complex code, rather than trying to explain it with extensive documentation.

To increase the readability of your code, try to imitate human sentences. This can be facili-

tated by using verbs to name your functions, nouns to name your variables, and by giving

boolean variables the prefix “is.” An example of bad versus self-documenting code style is

given in Fig 10. Finally, do not be afraid to use long names; most modern code editors have

auto-complete and search and replace features that make working with long names easy.

The use of in-line comments is a personal choice, but ideally, computer code should explain

itself. If you do use in-line comments, try to explain your intentions or summarize your code,

rather than repeating the information contained within the code itself ([12]; Section 32). A

good trick is to write out your algorithm in pseudocode first, before implementing it in com-

puter code. The pseudocode comments can help you to organize your thoughts and can guide

later programmers to the relevant parts of your code if it needs to be updated.

You can use references to external documents, such as published research papers and tech-

nical manuals, to further minimize your documentation efforts. This is particularly relevant

Fig 10. Example Python code written in (A) a bad style with unnecessary comments and in (B) a better self-

documenting style.

https://doi.org/10.1371/journal.pcbi.1008549.g010

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 12 / 15

https://doi.org/10.1371/journal.pcbi.1008549.g010
https://doi.org/10.1371/journal.pcbi.1008549


when implementing mathematical formulas and algorithms. In these situations, try to keep

your variable names consistent with the external reference, and note the reference and the

location of the relevant algorithm or formula as an inline comment. This minimizes the

amount of documentation that you need to write and allows you to use short variable names

like “x” and “y” that make your code read like a mathematical equation.

When your computational experiments or analyses have settled into a publishable form,

you may want to share some of your code with other researchers by making it publicly avail-

able. At this point, changes to your code should be less frequent, and it is worthwhile to create

basic external documentation for your “end users,” who will not want to read your code-level

documentation. A basic readme file is the quickest way to create external documentation,

which will most likely be automatically displayed on your repository pages by code hosting ser-

vices such as Github. Your readme file should include a statement of purpose, installation

instructions, and some simple use-case examples to get your users started.

Rule 9: Grow your libraries and tools organically from your research

“A rock pile ceases to be a rock pile the moment a single man contemplates it, bearing within
him the image of a cathedral.”—Antoine de Saint-Exupery, The Little Prince

During the course of a computational research project, you typically write computer code to

perform tasks and solve problems. Some of this code could be useful for other research proj-

ects, and you may want to store it for future use. In the long run, this can be an incredibly pow-

erful strategy, as it helps you to develop a niche, an area where you can quickly and efficiently

carry out research by reusing the fruits of your past projects.

We therefore recommend organizing your code into two categories: project code and library

code. Project code should address a specific research question, whereas library code should contain

reusable components for ongoing and future projects. This has the benefit of simplifying your

research code, as technical tasks such as data handling and preprocessing can be off-loaded to your

libraries. You may also want to maintain a set of tools, that is programs with user interfaces for car-

rying out practical tasks (e.g., a data format conversion). Tools can often be quickly spun out of a

library by connecting an appropriate function to a user interface. In most circumstances, we rec-

ommend command line interfaces over graphical interfaces, as command line interfaces are tech-

nically simpler and allow you to easily chain together your tools via automated scripts.

Library code has higher-quality requirements than project code. This is because research

projects are uncertain and typically have limited lifespans, whereas your libraries need to be

maintained in the long term. When building a library, you should plan for the possibility of

future changes in any dependent software packages. Such changes may force you to perform

maintenance work. Prepare for such future changes by being ruthless about eliminating dupli-

cate code, as this simplifies future code updates and makes them less error prone. Also, con-

sider writing automated unit tests for your more critical library components [27].

Due to the higher-quality demands of library code, we recommend being selective about

which code you put into a library. Do not try to build your libraries before your research proj-

ects, as it is very difficult to predict which software components you will want to reuse. Instead,

grow your libraries organically from your research projects, that is, move a software compo-

nent into a library only after it has proven its worth. For instance, if you find yourself writing

the same class in 2 different research projects, you can move the class into a library instead,

and use the library in your projects. If you build your libraries in this way, you will only need

to maintain the code that you truly need.

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 13 / 15

https://doi.org/10.1371/journal.pcbi.1008549


Rule 10: Go explore and be rigorous when you publish

“The sea is dangerous and its storms terrible, but these obstacles have never been sufficient
reason to remain ashore.”—Ferdinand Magellan

The rules of this guide are designed to allow you to explore computational ideas in an uncer-

tain environment by programming efficiently. Psychologically, this can allow you to limit your

investment in an idea until it proves valuable and to avoid the fallacy of sunk costs [29], which

is continuing an endeavor as a result of previously invested resources rather than the endeav-

or’s merit. The less time and effort that you spend on testing an idea, the easier it will be to

change it or give it up in favor of a more fruitful direction.

At the same time, your programming speed must be combined with quality: to avoid mis-

leading errors, false scientific conclusions, and nonreproducible results. Although you can be

“quick and dirty” in the early phases of your projects, you should ensure quality and reproduc-

ibility when you publish [7]. In particular, you should have a scripted computational workflow

that reproduces each publishable result after the exploratory phase of your project is done and

your conclusions are drawn. Such scripts can be made using shell programming (Bash),

computational notebooks (e.g., Jupyter [30]), or workflow description languages such as Next-

Flow [31] or Snakemake [32]. Finally, in the very least, your results should be free from pro-

gramming errors and meet the standards of your field.

Conclusion

Developing a fast programming style with high-quality code is a lifelong endeavor, and our

rules serve as a starting point. To become truly proficient, you should experiment and learn

what works for you. We hope that integrating our advice into your programming style will

help you to develop as a computational biologist and become better equipped to take on the

scientific challenges of your field.

Acknowledgments

We thank the members of the Tuesday bioinformatics meetings and the members of the

Sandve lab research craft sessions at the University of Oslo for discussion and feedback. Special

thanks to Victor Greiff and Eleonora Piersanti for their opinions which helped shape the

article.

References
1. Miller G. A scientist’s nightmare: Software problem leads to five retractions. Science. 2006; 314

(5807):1856–7. https://doi.org/10.1126/science.314.5807.1856 PMID: 17185570

2. Wilson GV. Where’s the real bottleneck in scientific computing? Am Sci. 2006; 94(1):5.

3. Wilson GV, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best practices for scientific com-

puting. PLoS Biol. 2014; 12(1):e1001745. https://doi.org/10.1371/journal.pbio.1001745 PMID:

24415924

4. Wilson GV, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific

computing. PLoS Comput Biol. 2017; 13(6):e1005510. https://doi.org/10.1371/journal.pcbi.1005510

PMID: 28640806

5. Taschuk M, Wilson GV. Ten simple rules for making research software more robust. PLoS Comput

Biol. 2017; 13(4):e1005412. https://doi.org/10.1371/journal.pcbi.1005412 PMID: 28407023

6. List M, Ebert P, Albrecht F. Ten simple rules for developing usable software in computational biology.

PLoS Comput Biol. 2017; 13(1):e1005265. https://doi.org/10.1371/journal.pcbi.1005265 PMID:

28056032

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 14 / 15

https://doi.org/10.1126/science.314.5807.1856
http://www.ncbi.nlm.nih.gov/pubmed/17185570
https://doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pubmed/24415924
https://doi.org/10.1371/journal.pcbi.1005510
http://www.ncbi.nlm.nih.gov/pubmed/28640806
https://doi.org/10.1371/journal.pcbi.1005412
http://www.ncbi.nlm.nih.gov/pubmed/28407023
https://doi.org/10.1371/journal.pcbi.1005265
http://www.ncbi.nlm.nih.gov/pubmed/28056032
https://doi.org/10.1371/journal.pcbi.1008549


7. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research.

PLoS Comput Biol. 2013; 9(10):e1003285. https://doi.org/10.1371/journal.pcbi.1003285 PMID:

24204232

8. Prlić A, Procter JB. Ten simple rules for the open development of scientific software. PLoS Comput Biol.

2012; 8(12):e1002802. https://doi.org/10.1371/journal.pcbi.1002802 PMID: 23236269

9. Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N, et al. Ten simple rules for

effective computational research. PLoS Comput Biol. 2014; 10(13):e1003506. https://doi.org/10.1371/

journal.pcbi.1003506 PMID: 24675742

10. Hunt A, Thomas D. The pragmatic programmer. Addison-Welsely; 2000.

11. Martin RC. Agile software development: principles, patterns, and practices. Prentice Hall; 2002.

12. McConnell S. Code complete. Pearson Education. 2004.

13. Beck K. Extreme programming explained: embrace change. Addison-Wesley Professional; 2000.

14. Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M, et al. Manifesto for agile

software Development; 2001. Available from: https://agilemanifesto.org/.

15. Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M, et al. Galaxy: a web-based

genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010; 89(1):19–0. https://doi.org/10.

1002/0471142727.mb1910s89 PMID: 20069535

16. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. J Mach Learn Res. 2011; 12:2825–30.

17. McKinney W, et al. pandas: a foundational Python library for data analysis and statistics. Python for

High Performance and Scientific. Computing. 2011; 14(9).

18. Carey MA, Papin JA. Ten simple rules for biologists learning to program. 2018.

19. Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, FdV L, et al. Ten simple rules for taking

advantage of Git and GitHub. 2016.

20. Goodman A, Pepe A, Blocker AW, Borgman CL, Cranmer K, Crosas M, et al. Ten simple rules for the

care and feeding of scientific data. PLoS Comput Biol. 2014; 10(4):e1003542. https://doi.org/10.1371/

journal.pcbi.1003542 PMID: 24763340

21. Ries E. The lean startup: How today’s entrepreneurs use continuous innovation to create radically suc-

cessful businesses. Crown Publishing Group; 2011.

22. Fowler M. Refactoring: improving the design of existing code. Addison-Wesley Professional; 2018.

23. Thomas D, Hunt A. Mock objects. IEEE Softw. 2002; 19(3):22–4.

24. Katz R, Allen TJ. Investigating the Not Invented Here(NIH) syndrome: A look at the performance, ten-

ure, and communication patterns of 50 R&D Project Groups. R&D Manag. 1982; 12(1):7–20.

25. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Welsely; 1994.

26. Freeman E, Robson E, Bates B, Sierra K. Head first design patterns. O’Reilly Media, Inc.; 2008.

27. Osherove R. The Art of Unit Testing: With Examples in.Net. Manning Publications; 2009.

28. Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E. A review-based comparative study of bad smell

detection tools. In: Proceedings of the 20th International Conference on Evaluation and Assessment in

Software Engineering; 2016. p. 1–12.

29. Arkes HR, Blumer C. The psychology of sunk costs. Organ Behav Hum Decis Process. 1985; 35

(1):124–40.

30. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks-a

publishing format for reproducible computational workflows. In: ELPUB; 2016. p. 87–90.

31. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nat Biotechnol. 2017; 35(4):316–9. https://doi.org/10.1038/nbt.3820

PMID: 28398311

32. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;

28(19):2520–2. https://doi.org/10.1093/bioinformatics/bts480 PMID: 22908215

PLOS COMPUTATIONAL BIOLOGY Ten simple rules for quick and dirty scientific programming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008549 March 11, 2021 15 / 15

https://doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pubmed/24204232
https://doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pubmed/23236269
https://doi.org/10.1371/journal.pcbi.1003506
https://doi.org/10.1371/journal.pcbi.1003506
http://www.ncbi.nlm.nih.gov/pubmed/24675742
https://agilemanifesto.org/
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
http://www.ncbi.nlm.nih.gov/pubmed/20069535
https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/10.1371/journal.pcbi.1003542
http://www.ncbi.nlm.nih.gov/pubmed/24763340
http://in.Net
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1371/journal.pcbi.1008549

