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Abstract: There is evidence for the involvement of peroxisome proliferator-activated receptors
(PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown.
The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We
investigated the effects of intra-basolateral amygdala (BLA) administration of PPARα, PPARβ/δ, and
PPARγ antagonists on nociceptive behaviour, FCA, and conditioned fear in the presence or absence
of nociceptive tone. Male Sprague-Dawley (SD) rats received footshock (FC) or no footshock (NFC)
in a conditioning arena. Twenty-three and a half hours later, rats received an intraplantar injection
of formalin or saline and, 15 min later, intra-BLA microinjections of vehicle, PPARα (GW6471)
PPARβ/δ (GSK0660), or PPARγ (GW9662) antagonists before arena re-exposure. Pain and fear-
related behaviour were assessed, and neurotransmitters/endocannabinoids measured post-mortem.
Intra-BLA administration of PPARα or PPARγ antagonists potentiated freezing in the presence of
nociceptive tone. Blockade of all PPAR subtypes in the BLA increased freezing and BLA dopamine
levels in NFC rats in the absence of nociceptive tone. Administration of intra-BLA PPARα and PPARγ
antagonists increased levels of dopamine in the BLA compared with the vehicle-treated counterparts.
In conclusion, PPARα and PPARγ in the BLA play a role in the expression or extinction of conditioned
fear in the presence or absence of nociceptive tone.

Keywords: PPAR; fear conditioning; fear-conditioned analgesia; nociception; basolateral amygdala;
GW6471; GSK0660; GW9662

1. Introduction

Peroxisome-proliferator activated receptors (PPARs) are transcription factors and part
of the nuclear hormone superfamily of receptors. There are three described isoforms:
PPARα, PPARβ/δ, and PPARγ [1]. Endogenous ligands at PPARs include fatty acids [2],
serotonin derivatives [3], the endocannabinoid anandamide (AEA; [4,5]), and the related N-
acylethanolamines (NAEs) N-palmitoylethanolamide (PEA; [6]) and N-oleoylethanolamide
(OEA; [7]). PPARs are involved in many physiological processes and are targets for current
in-use medicines for diabetes [8] and cholesterol lowering [9].

The amygdala is part of the limbic system and plays a key role in emotional responses
including anxiety and fear [10]. The basolateral amygdala (BLA) is one of three groups of
nuclei in the amygdala. It is differentiated from the two other groups—central amygdala
(CeA) and cortical nuclei—on account of its connections, embryonic origin, and cytoarchi-
tecture [11]. The BLA receives input from several brain regions including the hippocampus,
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hypothalamus, cerebral cortex, ventral tegmental area (VTA), and thalamus [11–13]. It also
has an extensive efferent network, which includes the CeA, periaqueductal grey (PAG),
ventral striatum, dorsal striatum (caudate-putamen), hippocampus, and others [11–13].
The BLA has a central role in emotional behaviour, particularly, fear conditioning. It has
been shown that lesions [14–20] or inactivation by muscimol [21–25] of the BLA impaired
acquisition and the expression of fear conditioning. Inactivation of the BLA also affects
fear extinction [26]. Some other general behaviours such as rearing and distance moved in an
open field arena have also been shown to be affected by electrolytic lesions of the BLA [27].
Moreover, reversible blockade of the BLA by lidocaine infusions results in increased rearing
responses and locomotor activity after amphetamine administration [28]. The GABAergic [29],
glutamatergic [30,31], serotoninergic [32], dopaminergic [33], and endocannabinoid [34] sys-
tems have all been shown to participate in this modulatory role of the BLA.

Pain is a complex condition with sensory-motor, emotional, and cognitive aspects.
The amygdala is part of both the descending pain pathway and the limbic system and
is involved in the emotional-affective aspect of pain. Neurons in the BLA respond to
chronic [35] and acute [36,37] noxious stimuli and the pharmacological deactivation of the
BLA reduced pain-related behaviour [35]. Additionally, intraplantar injection of formalin
increased c-fos expression in the BLA [38].

Pain and fear modulate one another in a reciprocal manner. The phenomenon known
as fear-conditioned analgesia (FCA), in which a fearful stimulus causes a significant sup-
pression in pain response, is an example of the influence of fear on pain. In turn, pain can
regulate fear responses. Post-traumatic stress disorder (PTSD) symptoms tend to be more
pronounced in patients with chronic pain [39]. Moreover, patients with chronic pain are
twice as likely to develop phobias [40]. PPAR isoforms are expressed in brain regions that
play an important role in pain and fear/anxiety such as the amygdala [41], PFC [41–43],
hippocampus [42,44], and PAG [45].

Studies have indicated a likely role for PPARs in pain (see [46] for review), but the role
of PPARs expressed in the amygdala in pain has not been examined yet. There is some
evidence that PPARγ blockade or knockout has anxiogenic effects in mice [44,47]. However,
whether PPARβ/δ and PPARα modulate anxiety or fear remains unexplored. Moreover,
the role of PPARs expressed in the BLA in interactions between pain and fear has not been
investigated yet. Previous work from our research group has provided evidence that PPAR
blockade can potentiate conditioned fear-related behaviour in the presence of nociceptive
tone [48], but the brain regions mediating these effects remain to be elucidated.

Thus, a better understanding of the mechanisms underlying anxiety, fear, pain, and
their mutual modulation, particularly the role of the PPAR signalling system in these phe-
nomena, is necessary. In this study, we investigated the hypothesis that PPARs expressed
in the BLA modulate tonic inflammatory pain, fear, and their interaction. Specifically, we
examined the effects of intra-BLA administration of GW6471 (PPARα antagonist), GSK0660
(PPARβ/δ antagonist), and GW9662 (PPARγ antagonist) on formalin-induced nociceptive
behaviour and FCA in rats. We also investigated the effects of intra-BLA administration of
these antagonists on conditioned-fear related behaviour, both in the presence and absence
of nociceptive tone in rats. In addition, associated alterations in levels of neurotransmitters,
endocannabinoids, and NAEs in the BLA were analysed. Furthermore, differences in the
levels of neurotransmitters, endocannabinoids, and NAEs in FC and NFC rats that received
either formalin or saline injection were also analysed.

2. Results
2.1. Experiment 1: Effects of Intra-BLA Administration of PPAR Antagonists on Formalin-Evoked
Nociceptive Behaviour, Fear-Conditioned Analgesia, and Conditioned Fear in the Presence of
Nociceptive Tone in Rats
2.1.1. Intra-BLA Administration of GW6471, GSK0660, and GW9662 Had No Effect on
Formalin-Evoked Nociceptive Behaviour or FCA

After histological verification, 75% of the rats had both injections correctly placed
within the borders of both BLA. Additionally, 4% had one of the injections in the BLA and
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the other outside BLA borders (see Supplementary Figure S1 for details). The remaining
21% were placed in the CeA, basomedial amygdala (BMA), or ventral endopiriform nucleus.
The data analysed were derived only from rats where intracerebral microinjections were
accurately placed in the BLA.

Intraplantar administration of formalin into the right hind paw produced robust
nociceptive behaviour, as evidenced by the CPS (Figure 1). Two-way ANOVA revealed
a significant main effect of fear conditioning [F (1, 54) = 35.264, a p < 0.05], but not of
treatment [F (3, 47) = 0.987, p > 0.05] or treatment × conditioning [F (2, 54) = 0.304, p > 0.05],
on nociceptive behaviour (Figure 2). However, post hoc pairwise analysis with Student
Newman–Keuls test revealed there were no significant differences between groups. There
were no significant effects of fear-conditioning [F (1, 70) = 0.011, p > 0.05], treatment
[F (3, 70) = 0.296, p > 0.05], or treatment × conditioning [F (2, 70) = 0.078, p > 0.05] on
formalin-induced paw oedema (Figure 2).
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Figure 1. Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and PPARγ antagonists
on formalin-evoked nociceptive behaviour (CPS; composite pain score) in non-fear conditioned
(NFC) and fear conditioned (FC) rats. Data are expressed as mean ± S.E.M (n = 6–7 rats per group).
According to a 2-way ANOVA (a p < 0.001), significant overall effect of fear conditioning.
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Figure 2. Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and PPARγ antagonists
on paw oedema. Paw oedema was assessed by measuring the change in the diameter of the right
hind paw immediately before, and 60 min after, formalin administration. Data are expressed as
mean ± S.E.M, n = 9–10 rats per group.
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2.1.2. Intra-BLA Administration of GW6471, GSK0660, and GW9662 Increases Fear-Related
Behaviour in Formalin-Treated Rats

Kruskal–Wallis test revealed a significant difference between the groups on total
duration of freezing [χ2 (7) = 34.508, p < 0.001] (Figure 3A). However, there were no
significant differences with Dunn’s post hoc pairwise analysis.
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Figure 3. Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and PPARγ antagonists
on freezing duration over the total trial period (A) and as 3-min time bins (B) in non-fear conditioned
(NFC) and fear conditioned (FC) rats. Post hoc analysis indicated a significant increase at 0–3 min
for FC GW9662-treated rats (* p < 0.05, vs. FC vehicle), and FC GW6471-treated rats at 10–12 min
(* p < 0.05, vs. FC vehicle). Data are expressed as the median with interquartile range and min/max
(A) and mean ± S.E.M. (B) (n = 7–9 rats per group).

In an analysis of the data as 3-min time bins, two-way repeated measures ANOVA
revealed a significant effect of fear conditioning [F (1, 47) = 37.456, p < 0.001], time [F (2.251,
105.816) = 38.350, * p < 0.001), and fear conditioning × time [F (2.251, 105.816) = 35.556,
p < 0.001] on freezing duration (Figure 3B; NFC groups not shown for clarity of pre-
sentation, but are presented in Supplementary Figure S2). Post hoc analysis by Student
Newman–Keuls test indicated a significant increase in the duration of freezing in FC
GW6471 vs. FC Vehicle at 10–12 min ($ p < 0.05) and at 0–3 min for FC GW9662 vs. FC
Vehicle (# p < 0.05) (Figure 3B). There were no significant effects of drug treatment on
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freezing across time in NFC rats (Supplementary Figure S2). There were no significant
effects of treatment [F (3, 47) = 1.750, p > 0.05], treatment × conditioning [F (3, 47) = 1.591,
p > 0.05], time × treatment [F (6.754, 105.816) = 1.538, p > 0.05], time × conditioning [F (2.251,
105.816) = 35.556, p > 0.05], and time × conditioning × treatment [F (6.754, 105.8160 = 1.372,
p > 0.05] on freezing duration.

Kruskal–Wallis test also revealed a significant difference in defecation among all
groups [χ2 (7) = 24.023, p < 0.01] (Figure 4). However, post hoc pairwise analysis with
Dunn’s test did not reveal significant differences between pairs of groups.
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Figure 4. Effects of fear conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
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min/max (n= 7–9 rats per group).

2.1.3. Intra-BLA Administration of GW6471, GSK0660, and GW9662 Does Not Affect
General/Motor Behaviour

The effects of fear-conditioning and intra-BLA administration of PPAR antagonists
on motor behaviour were also assessed (Figure 5). Neither fear conditioning nor PPAR
antagonists had any significant effect on walking (two-way ANOVA [F (3, 53) = 0.294,
p > 0.05], fear conditioning [F (1, 53) = 0.251, p > 0.05], treatment × conditioning [F (3,
53) = 1.42]; Figure 5A), rearing (Kruskal–Wallis [χ2 (7) = 5.685, p > 0.05]; Figure 5C),
grooming (two-way ANOVA [F (3, 53) = 0.043, p > 0.05], fear conditioning [F (1, 53) = 0.380,
p > 0.05], and treatment × conditioning [F (3, 53) = 0.268, p > 0.05); Figure 5D) or distance
moved (two-way ANOVA [F (3, 53) = 0.591, p > 0.05], fear conditioning [F (1, 53) = 0.056,
p > 0.05], and treatment × conditioning [F (3, 53) = 0.532, p > 0.05]; Figure 5B) in either the
NFC or FC rats.

2.1.4. Effect of Fear Conditioning and PPAR Antagonist Administration on Neurotransmitter
Levels in the Basolateral Amygdala (BLA)

In order to further explore the neurochemical mechanisms underlying the effect of
PPAR antagonism on fear memory, the levels of neurotransmitters (glutamate, GABA,
dopamine and serotonin) in the right (ipsilateral) and left (contralateral, in relation to the
formalin injection, which was into the right hind paw) BLA were measured in all groups
(Figure 6).
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Figure 5. Effects of fear-conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
and PPARγ antagonists on walking duration (A), distance moved (B), grooming duration (C), and
rearing duration (D). Data are expressed as mean ± S.E.M. (A,B,D) or median with interquartile
range and min/max (C), each symbol represents one individual, n = 7–9 rats per group.
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Figure 6. Effects of fear-conditioning and intra-BLA administration of PPARα, PPARβ/δ, and PPARγ
antagonists on the levels of GABA (A), glutamate (B), serotonin (C), and dopamine (D). Post hoc
analysis indicated that dopamine levels were significantly lower in the right BLA of NFC Vehicle, FC
Vehicle, and NFC GSK0660 rats compared to their left counterparts (* p < 0.05). Post hoc analysis also
indicated that levels of serotonin were lower in the right BLA of NFC GW6471, FC Vehicle, and FC
GSK0660 rats compared to their left side counterparts (* p < 0.05). Data are expressed as the median
with interquartile range and min/max (n = 7–9 rats per group).
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Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (15) = 84.814, p < 0.001) in serotonin levels in the BLA (Figure 6C). Post hoc analy-
sis with Dunn’s test indicated that the levels of serotonin were significantly lower in the
right BLA of NFC GW6471, FC Vehicle, and FC GSK0660 rats compared to their left side
counterparts (* p < 0.05). When each side was analysed separately, Kruskal–Wallis showed
a significant difference among the groups in the left [χ2 (7) = 16.134, p < 0.05], but not in the
right [χ2 (7) = 4.713, p > 0.05] side in serotonin levels in the BLA. However, post hoc pairwise
comparisons with Dunn’s test did not reach statistical significance. The Kruskal–Wallis test
revealed a significant difference between groups (χ2 (15) = 90.526, p < 0.001) in dopamine
levels in the BLA (Figure 6D). Post hoc analysis with Dunn’s test indicated that the levels of
dopamine were significantly lower in the right BLA of NFC Vehicle, FC Vehicle, and NFC
GSK0660 rats compared to their left counterparts (* p < 0.05). When each side was analysed
separately, Kruskal–Wallis did not show any significant difference between groups in the
right [χ2 (7) = 11.912, p > 0.05] or in the left [χ2 (7) = 1.796, p > 0.05] sides in dopamine levels
in the BLA.

The Kruskal–Wallis test did not show any significant difference between groups
(χ2 (15) = 20.669, p > 0.05) in GABA levels in the BLA (Figure 6A). When each side was
analysed separately, Kruskal–Wallis did not show any significant difference between groups
in the right [χ2 (7) = 6.288, p > 0.05] or in the left [χ2 (7) = 5.291, p > 0.05] sides in the GABA
levels in the BLA. Kruskal–Wallis comparisons revealed a significant difference between
groups (χ2 (15) = 39.443, p < 0.01) in glutamate levels in the BLA (Figure 6B). However, post
hoc analysis with Dunn’s test did not reach statistical significance. When each side was
analysed separately, Kruskal–Wallis did not show any significant difference between group
in the right [χ2 (7) = 5.432, p > 0.05] or in the left [χ2 (7) = 9.575, p > 0.05] sides in glutamate
levels in the BLA.

2.1.5. Effect of Fear Conditioning and PPAR Antagonist Administration on Endocannabinoids
and NAE Levels in the Basolateral Amygdala (BLA)

We also investigated endogenous ligands for PPARs (AEA, PEA, and OEA) in the BLA,
and checked for possible effects of PPAR antagonism and intraplantar formalin injection
on their levels.

Three-way ANOVA revealed an effect of side [F (1, 84) = 49.888, * p < 0.001] and fear
conditioning [F (1, 84) = 4.298, p < 0.05] on PEA levels in the BLA (Figure 7A). Post hoc
pairwise analysis with Student Newman–Keuls test did not show any significant statistical
differences. There were no significant effects of treatment [F (3, 84) = 0.068, p > 0.05], treat-
ment × conditioning [F (3, 84) = 0.669, p > 0.05], treatment × side [F (3, 84) = 0.344, p > 0.05],
conditioning × side [F (1, 84) = 0.074, p > 0.05], and treatment × conditioning × side
[F (3, 84) = 0.656, p > 0.05] on PEA levels. When each side was analysed separately, two-way
ANOVA did not show any significant effect of treatment, conditioning, or their interaction
on either the left or right BLA.

Kruskal–Wallis comparisons did not show any significant difference between groups
(χ2 (15) = 22.173, p > 0.05) in AEA levels in the BLA (Figure 7B). When each side was
analysed separately, Kruskal–Wallis did not show any significant difference between groups
in the right [χ2 (7) = 4.721, p > 0.05] or in the left [χ2 (7) = 6.548, p > 0.05] sides in the AEA
levels in the BLA.

Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (15) = 31.454, p < 0.01) in OEA levels in the BLA (Figure 7C). However, post hoc
analysis with Dunn’s test did not reach statistical significance. When each side was anal-
ysed separately, the Kruskal–Wallis test did not show any significant difference between
groups in the right [χ2 (7) = 6.672, p > 0.05] or in the left [χ2 (7) = 4.598, p > 0.05] sides in the
OEA levels in the BLA.
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Figure 7. Effects of fear-conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
and PPARγ antagonists on the levels of PEA (A), AEA (B), and OEA (C). Two-way ANOVA revealed a
significant effect of side on PEA levels (* p < 0.05). Data are expressed as mean ± S.E.M (A) or median
with interquartile range and min/max (B,C), each symbol represents one individual, (n = 7–9 rats
per group).

2.2. Experiment 2: Effects of Intra-BLA Administration of PPAR Antagonists on Conditioned Fear
in the Absence of Nociceptive Tone in Rats
2.2.1. Intra-BLA Administration of PPAR Antagonists Had No Effect on Composite Pain Score in
Saline-Injected Rats

After histological verification, 73% of the rats had both injections correctly placed
within the borders of both BLA. Additionally, 7% had one of the injections in the BLA and
the other outside BLA borders (see Supplementary Figure S3 for details). The remaining
20% were placed in the CeA, basomedial amygdala (BMA), or ventral endopiriform nucleus.
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The data analysed were derived only from rats where intracerebral microinjections were
accurately placed in the BLA.

As expected, composite pain scores were substantially less in this experiment fol-
lowing intraplantar saline injection compared with Experiment 1, where the rats received
intraplantar formalin injection (Figure 8). The Kruskal–Wallis test revealed no difference be-
tween groups [χ2 (7) = 4.241, p > 0.05] of rats that received an intraplantar injection of saline
into the right hind paw (Figure 9). Two-way ANOVA showed that there were no significant
effects of fear-conditioning [F (1, 9) = 4.364, p > 0.05], treatment [F (3, 27) = 0.5191, p > 0.05],
or treatment × conditioning [F (3, 26) = 0.4741, p > 0.05] on paw diameter (Figure 9).
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Figure 8. Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and PPARγ antagonists
on the composite pain score in non-fear conditioned (NFC) and fear conditioned (FC) rats that
received an intraplantar injection of saline. Composite pain score was calculated as (pain 1 + 2 ×
[pain 2])/total duration of analysis period (see for further information in the Material and Methods).
Kruskal–Wallis showed no significant difference between groups [χ2 (7) = 4.241, p > 0.05]. Data are
expressed as median with interquartile range and min/max (n = 8–10 rats per group).
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Figure 9. Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and PPARγ antagonists
on saline-evoked changes in the hind paw diameter in non-fear conditioned (NFC) and fear condi-
tioned (FC) rats. The change was assessed by measuring the paw diameter immediately before, and
60 min after, saline administration. Data are expressed as mean ± S.E.M, each symbol represents one
individual, n = 8–10 rats per group.

2.2.2. Intra-BLA Administration of PPARs Antagonists Increases Freezing in NFC Rats

Kruskal–Wallis revealed a significant difference between groups on the total duration
of freezing [χ2 (7) = 18.037, p = 0.012] (Figure 10; the graphs for 3-min bins are available
as Supplementary Figure S4). Post hoc pairwise analysis with Dunn’s test indicates a
significant enhancement in freezing duration in FC Vehicle rats compared to their NFC
counterparts (NFC Vehicle vs. FC Vehicle, * p < 0.05). The treatment with GW6471 and
GSK0660 in NFC rats also increased freezing duration (NFC Vehicle vs. NFC GW6471,
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** p < 0.01; NFC Vehicle vs. NFC GSK0660, * p < 0.05). The treatment with GW9662 in NFC
rats narrowly failed to reach statistical significance (NFC Vehicle vs. GW9662, p = 0.064).
These drugs had no significant effects on FC rats.
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Figure 10. Effects of fear conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
and PPARγ antagonists on total freezing duration. Post hoc indicated an increase in freezing duration
in FC Vehicle rats (# p < 0.05, vs. NFC Vehicle). The treatment with GW6471 and GSK0660 in NFC rats
also increased freezing duration (## p < 0.01 vs. NFC Vehicle; # p < 0.05 vs. NFC Vehicle). Treatment
with GW9662 almost reached statistical significance (p = 0.064, vs. NFC Vehicle). Data are expressed
as median with interquartile range and min/max (n= 7–9 rats per group).

Kruskal–Wallis analysis of the defecation data revealed a significant difference between
groups [χ2 (7) = 23.49, p < 0.01] (Figure 11). Post hoc pairwise analysis with Dunn’s test did
not show any significant difference between groups.
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Figure 11. Effects of fear conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
and PPARγ antagonists on defecation. Data are expressed as median with interquartile range and
min/max (n = 7–9 rats per group).

2.2.3. Intra-BLA Administration of PPAR Antagonists Does Not Affect General/Motor Behaviour

The effects of fear-conditioning and intra-BLA administration PPAR antagonists on
motor behaviour were also assessed (Figure 12). Neither fear conditioning nor PPAR
antagonists induced any significant effect on walking (two-way ANOVA [F (3, 58) = 0.332,
p > 0.05], fear conditioning [F (1, 58) = 0.133, p > 0.05], treatment × conditioning [F (3,
58) = 0.244, p > 0.05]; Figure 12A), distance moved (two-way ANOVA [F (3, 58) = 0.716,
p > 0.05], fear conditioning [F (1, 58) = 0.055, p > 0.05], treatment × conditioning [F (3,
58) = 1.199, p > 0.05]; Figure 12B), grooming (two-way ANOVA [F (3, 50) = 0.628, p > 0.05],
fear conditioning [F (1, 50) = 0.053, p > 0.05], and treatment × conditioning [F (3, 50) = 0.248,
p > 0.05); Figure 12D).
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Figure 12. Effects of fear-conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
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grooming duration (D). Data are expressed as mean ± S.E.M.), each symbol represents one individual,
(n = 7–9 rats per group).
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Two-way ANOVA showed an effect of treatment [F (3, 50) = 3.686, p < 0.05] on rearing
duration (Figure 12C). However, post hoc analysis with Student Newman–Keuls did not
reveal significant statistical differences between groups. There were no significant effects of
fear conditioning [F (1, 50) = 0.261, p > 0.05] and treatment × conditioning [F (3, 50) = 0.256,
p > 0.05] on rearing duration.

2.2.4. Effect of Fear Conditioning and PPAR Antagonist Administration on Neurotransmitter
Levels in the Basolateral Amygdala (BLA)

As in experiment 1, we further explored the neurochemical mechanisms underlying
the effect of PPAR antagonism on fear memory, now in the absence of nociceptive tone, by
checking the levels of neurotransmitters (glutamate, GABA, dopamine, and serotonin) in
the right (ipsilateral) and left (contralateral, in relation to the saline injection, which was
into the right hind paw) BLA of all groups (Figure 13).

The Kruskal–Wallis test revealed a significant difference between groups (χ2 (15) = 58.963,
p < 0.001) in dopamine levels (Figure 13D) in the BLA. Post hoc analysis with Dunn’s test
indicated that NFC GW9662-treated rats had higher levels of dopamine levels in the right
side compared to the left side (* p < 0.05). When each side was analysed separately, Kruskal–
Wallis did not reveal a significant difference between groups in the right [χ2 (7) = 11.644,
p = 0.053] and in the left [χ2 (7) = 8.987, p > 0.05] side. Because the right side almost reached
statistical difference, an analysis considering the different fear conditioning groups was
carried out. When we further analysed the fear conditioning groups, the Kruskal–Wallis test
revealed a significant difference between groups in the NFC rats in the right [χ2 (3) = 8.324,
p < 0.05] but not in the left [χ2 (3) = 5.168, p > 0.05] side. Post hoc analysis with Dunn’s test
indicated that NFC rats treated with GW6471 had increased dopamine levels compared to
the NFC Vehicle-treated ones (# p < 0.05). The test also indicated a strong trend for increased
levels of dopamine in the NFC GW9662-treated rats compared to the NFC vehicle-treated
(p = 0.0584). The Kruskal–Wallis test did not reveal any significant differences between
groups in FC rats neither in the right [χ2 (3) = 1.937, p > 0.05] nor in the left [χ2 (3) = 3.028,
p > 0.05] side.
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Figure 13. Effects of fear-conditioning and intra-BLA administration of selective PPARα, PPARβ/δ
and PPARγ antagonists on the tissue levels of GABA (A), glutamate (B), serotonin (C), and dopamine
(D) in the BLA. Post hoc analysis indicated that NFC rats treated with GW6471 had increased
dopamine levels compared to the NFC Vehicle-treated ones (# p < 0.05). The test also indicated a
strong trend for increased levels of dopamine in the NFC GW9662-treated rats compared to the NFC
vehicle-treated (p = 0.0584). Data are expressed as median with interquartile range and min/max
(n = 7–9 rats per group).

Kruskal–Wallis test also revealed a significant difference between groups (χ2 (15) = 25.622,
p < 0.05) in the GABA levels (Figure 13A) in the BLA. However, post hoc analysis with
Dunn’s test did not show any significant between-group differences in the GABA levels.
When each side was analysed separately, Kruskal–Wallis did reveal a significant difference
among groups in the right [χ2 (7) =14.483, p < 0.05] but not in the left [χ2 (7) = 3.012,
p > 0.05] side. However, post hoc analysis with Dunn’s test did not show any significant
between-group differences in the GABA levels.

Kruskal–Wallis test did not show any significant difference between groups in glu-
tamate (χ2 (15) = 15.856, p > 0.05; Figure 13B) or serotonin (χ2 (15) = 22.532, p > 0.05;
Figure 13C) levels in the BLA. When each side was analysed separately, Kruskal–Wallis
did not reveal a significant difference in the levels of glutamate among groups in the right
[χ2 (7) = 6.458, p > 0.05] or in the left [χ2 (7) = 3.802, p > 0.05] side. Similarly, when each side
was analysed separately, Kruskal–Wallis did not reveal a significant difference in serotonin
levels among groups in the right [χ2 (7) = 12.250, p > 0.05] or in the left [χ2 (7) = 2.039,
p > 0.05] side.
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2.2.5. Effect of Fear Conditioning and PPAR Antagonist Administration on Endocannabinoid
and NAE Levels in the Basolateral Amygdala (BLA)

Again, we investigated endogenous ligands for PPARs (AEA, PEA, and OEA) in the
BLA, and checked for possible effects of PPAR antagonism in the absence of nociceptive
tone on their levels.

Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (15) = 32.124, p < 0.05) in the PEA levels (Figure 14A) in the BLA. However, post hoc
analysis with Dunn’s test did not show any significant changes in PEA levels. When each
side was analysed separately, two-way ANOVA revealed a significant effect of treatment [F
(3, 44) = 3.034, p < 0.05], fear conditioning [F (1, 44) = 7.163, p < 0.05), and the interaction of
treatment × fear conditioning [F (3, 44) = 3.606, p < 0.05] on the PEA levels in the right BLA.
Post hoc analysis with Dunn’s test indicated that the FC GW6471-treated rats had decreased
levels of PEA compared to the FC Vehicle treated rats in the right BLA ($ p < 0.05). Two-way
ANOVA did not reveal any significant effect of treatment [F (3, 48) = 0.624, p > 0.05], fear
conditioning [F (1, 48) = 0.590, p < 0.05], and the interaction of treatment × fear conditioning
[F (3, 48) = 0.830, p < 0.05] on the PEA levels in the left BLA.

Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (15) = 47.410, p < 0.05) in the AEA levels (Figure 14B) in the BLA. However, post
hoc analysis with Dunn’s test did not show any significant changes in the AEA levels.
When each side was analysed separately, Kruskal–Wallis revealed a significant difference
between the group in the right [χ2 (7) =14.798, p < 0.05] but not in the left [χ2 (7) = 6.537,
p > 0.05] side. However, post hoc analysis with Dunn’s test did not show any significant
changes in the AEA levels in the Right BLA.

Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (15) = 32.456, p < 0.05) in the OEA levels (Figure 14C) in the BLA. However, post
hoc analysis with Dunn’s test did not show any significant changes in the OEA levels.
When each side was analysed separately, Kruskal–Wallis test revealed a significant differ-
ence between groups in the OEA levels in the right (χ2 (7) = 21.988, p < 0.01) but not in
the left (χ2 (7) = 6.350, p > 0.05) BLA. Post hoc analysis with Dunn’s did not reveal any
significant differences between groups in the OEA levels in the right BLA.
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Figure 14. Effects of fear-conditioning and intra-BLA administration of selective PPARα, PPARβ/δ,
and PPARγ antagonists on the levels of, PEA (A), AEA (B), and OEA (C). Post hoc analysis with
Dunn’s test indicated that FC GW6471-treated rats had decreased levels of PEA compared to the FC
Vehicle treated rats in the right BLA ($ p < 0.05). Data are expressed as median with interquartile
range and min/max (n = 6–9 rats per group).

2.3. Expression of PPARs in the BLA
2.3.1. Western Blotting

PPARα, PPARβ/δ, and PPARγ expression was confirmed in the right and left BLA
of naïve male SD rats (Figure 15). The bands for PPARα (55 kDa) and PPARβ/δ (52 kDa)
were obtained with the use of a monoclonal antibody. The double bands for PPARγ are
a consequence of the expression of two subtypes of PPARγ: PPARγ1 and PPARγ2. The
42 kDa band corresponded to β-actin, used as an endogenous control.
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Figure 15. Expression of PPARα, PPARβ/δ, and PPARγ in the right and left BLA in four or five
samples (S1–S4/S5 per side). The expression of PPARα (A) as seen at 55 kDa, PPARβ/δ (B) at 52
kDa, and PPARγ (C) at 52/55 kDa; β-actin was used as the endogenous control. M = marker/ladder;
QC = quality control.

2.3.2. RT-qPCR

The available antibodies developed to bind to PPARβ/δ in western blotting protocols
did not provide results that were entirely satisfactory, as evidenced by the faint bands
above (Figure 15B). Therefore, we opted to demonstrate the presence of PPARβ/δ in the
BLA using RT-qPCR. The presence of mRNA encoding PPARβ/δ was confirmed in the
right and left BLA of naïve male SD rats. The Ct values found for the BLA punches were
30.05 ± 0.11 in the BLA Right and 29.74 ± 0.02 in the BLA Left. Data are expressed as
means ± S.D. (Figure 16)
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2.4. Effects of Intraplantar Administration of Formalin on Levels of Neurotransmitters,
Endocannabinoids, and NAEs in NFC and FC Rats

Samples from the NFC and FC vehicle-treated groups from both experiments were
re-run on LC-MS/MS and re-analysed together in order to compare the possible effects
of the presence of a nociceptive inflammatory tone (i.e., formalin) versus its absence (i.e.,
saline) on the levels of neurotransmitters, endocannabinoids, and NAEs.

2.4.1. Effects of Intraplantar (i.pl.) Administration of Formalin on Levels of Neurotransmitters
in NFC and FC Rats

There was a significant effect of side (ipsilateral/contralateral) for all four neuro-
transmitters analysed (GABA [F (1, 52) = 10.730, a p = 0.002]; glutamate [F (1, 52) = 5.630,
a p = 0.021]; serotonin [F (1, 51) = 12.192, a p = 0.001]; and dopamine [F (1, 47) = 53.882,
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a p < 0.001]; Figure 17). Post hoc pairwise analysis with Student Newman–Keuls did not
show any further significant statistical differences for GABA and glutamate (Figure 17A,B),
but indicated that saline-treated FC rats had increased levels of serotonin compared to
their NFC counterparts (NFC Saline-treated vs. FC Saline-treated, # p < 0.05; Figure 17C)
on the right side and also showed that NFC rats that received an intraplantar injection of
formalin had increased levels of dopamine on the right BLA (NFC saline-treated vs. NFC-
formalin-treated, # p < 0.05; Figure 17D). It also confirmed the side differences (* p < 0.05,
compared to their left counterparts) in the dopamine levels (Figure 17D). When the right
and left sides were analysed separately, two-way ANOVA revealed a significant effect of
fear conditioning [F (1, 24) = 4.464, £ p < 0.05] on the serotonin levels in the right BLA.
However, post hoc pairwise analysis with Student Newman–Keuls did not show significant
statistical differences. The other comparisons did not reach any statistical significance (see
the Supplementary Materials for details).
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Figure 17. Effects of fear-conditioning and intraplantar injection of formalin on the levels of GABA (A),
glutamate (B), serotonin (C), and dopamine (D). Two-way ANOVA revealed a significant effect of
side on all neurotransmitters (a p < 0.05). Post hoc pairwise analysis with Student Newman–Keuls
showed a significant difference in serotonin levels between the NFC Vehicle and FC Vehicle of i.pl.
saline-treated rats (# p < 0.05), and dopamine levels between the NFC Vehicle i.pl. saline-treated and
NFC Vehicle i.pl. formalin-treated rats (# p < 0.05). The test also confirmed side differences (* p < 0.05,
compared to their left counterparts) in the dopamine levels. Data are expressed as mean ± S.E.M,
each symbol represents one individual, (n = 7–9 rats per group).

2.4.2. Effects of Intraplantar Administration of Formalin on Levels of Endocannabinoids
and NAEs in NFC and FC Rats

Likewise, an effect of side (ipsilateral/contralateral) was seen for two of the en-
dogenous ligands at the PPARs analysed (PEA: [F (1, 49) = 4.191, a p = 0.046]; OEA:
[F (1, 48) = 9.699, a p = 0.003]; Figure 18A,C). The following post hoc pairwise analysis
with Student Newman–Keuls did not show significant statistical differences in PEA and
OEA levels. When the right and left sides were analysed separately, two-way ANOVA
revealed a significant effect of treatment [F (1, 23) = 8.216, p = 0.009] on the PEA levels in the
right BLA (Figure 18A). Post hoc pairwise analysis with Student Newman–Keuls indicated
that FC rats that received formalin injection had lower levels of PEA in the right side
compared to their saline-treated counterparts (FC formalin-treated vs. FC saline-treated,
$ p < 0.05). There were no significant differences in the levels of OEA when sides were
analysed separately (Figure 18C; see the Supplementary Materials for details).
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Figure 18. Effects of fear-conditioning and intraplantar injection of formalin on the levels of PEA
(A), AEA (B), and OEA (C). Two-way ANOVA revealed a significant effect of side on PEA and
OEA (a p < 0.05). Post hoc pairwise analysis with Student Newman–Keuls indicated that FC rats
that received formalin injection had lower levels of PEA in the right side compared to their saline-
treated counterparts (FC formalin-treated vs. FC saline-treated, $ p < 0.05). Data are expressed as
mean ± S.E.M (A,C) or median with interquartile range (B); each symbol represent one individual,
n = 6–9 rats per group.

Kruskal–Wallis comparisons revealed a significant difference between groups
(χ2 (7) = 35.131, p < 0.05) in the AEA levels (Figure 18B). Post hoc analysis with Dunn’s test
showed lower levels of AEA in the NFC Saline group in the right side compared to the
left (* p < 0.05). When each side was analysed separately, Kruskal–Wallis did not reveal
any significant differences between groups in the right [χ2 (3) =6.485, p > 0.05] or in the left
[χ2 (3) = 2.456, p > 0.05] side.
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3. Discussion

The experiments described herein investigated the role of PPARs expressed in the
BLA in the mediation or modulation of inflammatory pain, FCA, and conditioned fear,
the latter in the presence and absence of nociceptive tone. The expression of the three
isoforms in the BLA was confirmed by western blotting (and re-confirmed by RT-qPCR in
the case of PPARβ/δ). Administration of GW6471, a PPARα antagonist, directly into the
BLA prolonged freezing duration in FC rats in the presence of formalin-evoked nociceptive
tone and increased freezing duration in NFC rats in the absence of nociceptive tone. The
administration of a PPARγ antagonist, GW9662, into the BLA enhanced freezing expression
in the first part of the trial in the presence, but not in the absence, of nociceptive tone. Thus,
endogenous PPAR signalling through PPARγ expressed in the BLA may act to attenuate
or extinguish conditioned fear behaviour. Likewise, PPAR signalling through PPARα
expressed in the BLA seems to be involved in the recall of fear-related memories, with its
blockade resulting in potentiation of fear conditioned behaviour in the first part of the trial.
Importantly, these effects were only seen in the presence of formalin-evoked nociceptive
tone; they were not observed in rats that received intraplantar saline injection. The effects
of PPARα and PPARγ blockade on freezing expression were associated with increased
levels of dopamine in the right BLA. In the absence of nociceptive tone, the administration
of the three antagonists increased freezing duration in NFC rats. These results suggest a
modulatory role for PPARs in innate anxiety, but not in conditioned fear, in the absence of
nociceptive tone. The intra-BLA injection of PPAR antagonists did not alter nociceptive
behaviour or locomotor activity in either NFC or FC rats, irrespective of the nociceptive
status. These results suggest that PPAR signalling in the BLA does not modulate pain or
FCA. Taken together, these results demonstrate a differential effect of the PPAR signalling
system on fear and/or anxiety in the presence versus absence of acute inflammatory pain.

Extinction is defined as a learned inhibition of the retrieval of previously acquired
memories. Many studies have demonstrated that PPAR signalling plays a role in mnemonic
formation [48–51]. However, the role of PPARs expressed in the BLA in memory and
learning formation have not been investigated yet. We propose that the blockade of PPARα
expressed in the BLA delayed short-term, within-trial extinction of fear memory in the
presence of nociceptive tone. The blockade of PPARγ in the same region potentiated the
initial freezing expression, but did not affect its extinction, in the presence of a nociceptive
tone. These effects are related to increased levels of dopamine in the right BLA of FC
rats, both in the presence and absence of nociceptive tone, suggesting a possible link of
PPAR signalling and basolateral amygdalar dopaminergic modulation of fear and anxiety
responses. Our findings are in agreement with a recent study showing that PPARα-KO mice
had enhanced fear learning compared to their WT counterparts, and that this enhancement
is associated with increased levels of dopamine in the amygdala [51]. Other studies have
proposed that PPARs modulate dopamine signalling. Mijangos-Moreno et al. (2016) [52]
showed that WY14643 (PPARα agonist) injected into the hypothalamus increased dopamine
levels in the nucleus accumbens. This same agonist and methOEA (a long lasting form
of OEA), when systemically administered, dose-dependently decreased nicotine-induced
excitation of dopamine neurons in the VTA and nicotine-induced elevations of dopamine
levels in the nucleus accumbens shell of rats [53]. Thus, we hypothesize that the blockade of
PPARα in the BLA of FC rats affects dopamine signalling within this region, resulting in a
delay in extinction learning. Moreover, the blockade of PPARγ in FC rats affects dopamine
signalling in the BLA, which in turn could result in the enhancement of the recall of fearful
memories [54]. Alternatively, the blockade of these receptors may have affected AEA action
on fear expression and/or extinction. Previous work from our group has shown increased
levels of AEA in the BLA of FC rats that received intraplantar formalin injection in the hind
paw compared to NFC counterparts, and trends were also present for the other two NAEs—
PEA and OEA [55]. Recently, Morena et al. (2018) [56] demonstrated that the overexpression
of FAAH in the BLA decreased expression of conditioned fear in the extinction training
session and anxiety-related behaviour in rats. We hypothesize that AEA in the BLA may
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modulate fear processing through PPARα and PPARγ. Thus, the blockade of these receptors
may have affected AEA action on fear expression and/or extinction. However, a possible
role of PEA and OEA in this modulation cannot be disregarded. Further studies focusing on
the activation of PPARs and the role of PEA and OEA signalling in the BLA in conditioned
fear and anxiety could contribute to a better understanding of the role of PPAR signalling
in the BLA in conditioned fear and anxiety.

Recent studies have pointed to a possible role of PPARs in anxiety and cognition.
Our recent work has shown that the administration of a PPARα antagonist exacerbated
inflammatory pain-related impairment of spatial memory in rats [57]. Youssef et al. (2019)
showed that the administration of a PPARγ antagonist blocked the anxiolytic effect of
beta-caryophyllene. Another study demonstrated that repeated stress decreased PPARγ ex-
pression in the amygdala, and treatment with anxiolytics recovered PPARγ expression [58].
PPARγ blockade or knockout was shown to have anxiogenic effects on mice [43]. In this
same study, intra-amygdala injections of pioglitazone (PPARγ agonist) were shown to
reduce stress-induced anxiety behaviour in rats. In the present study, NFC rats that re-
ceived intra-BLA injections of PPAR antagonists in the absence of nociceptive tone had
increased levels of freezing, comparable to their FC counterparts. Thus, the blockade of
these receptors in the BLA increased the innate anxious state in NFC rats with absent
formalin-evoked pain. The studies to-date have investigated the role of PPARs in provoked
anxious state (i.e., stress or pharmacological-induced anxiety state). Our results support
and extend these studies, demonstrating that PPAR signalling in the BLA may modulate
anxiety-related behaviour in the absence of nociceptive tone.

The results suggest that PPAR signalling in the BLA does not mediate or modulate
formalin-evoked nociceptive behaviour. As previously mentioned, other studies have
demonstrated effects of PPAR agonists on pain-related behaviour [59–63] but less is known
about the effect of PPAR antagonists. The exogenous administration of PPAR natural
ligands has also been shown to modulate pain responses (see Okine et al. 2018 for a review).
To our knowledge, the present study is the first to investigate the effect of the blockade of
PPARα, PPARβ/δ, and PPARγ expressed in the BLA on inflammatory pain. Similarly to
what was shown by us previously [47] and by Donvito et al. (2017) and Mansouri et al.
(2017) in their systemic studies, PPAR antagonist administration into the BLA did not affect
formalin-evoked nociceptive behaviour.

FCA is a potent suppression of nociceptive responses upon exposure to a fearful
stimulus. Our current study investigated the effects of intra-BLA administration of PPAR
antagonists on FCA. FCA has been previously shown to be associated with increased levels
of AEA, an endocannabinoid that also binds to PPARs, in the BLA [55] and a strong trend
for increased tissue levels of PEA and OEA, endogenous ligands of PPARs, in the BLA.
No FCA-related alterations in the levels of AEA, PEA, and OEA in the BLA were seen in
our experiment; however, Rea et al. (2013) [64] used a different rat strain (Lister-hooded
vs. Sprague-Dawley) and a shorter trial compared to our experiment (15 min vs. 30 min),
which may explain the different observations in our studies. The data demonstrate that
fear conditioning profoundly reduces formalin-evoked nociceptive behaviour via FCA as
we and others have previously shown [65–70] and that the blockade of PPARα, PPARβ/δ,
or PPARγ in the BLA does not affect the expression of FCA.

Furthermore, we compared the effects of intraplantar injection of formalin or saline
on the tissue levels of neurotransmitters, endocannabinoids, and NAEs in the BLA of
FC and NFC rats. The presence or absence of formalin-induced inflammatory pain was
shown to influence the changes in the levels of neurotransmitters and NAEs after fear
conditioning rats that received intra-BLA vehicle. For example, FC rats that received saline
injection into the right hind paw had increased serotonin and AEA levels in the right BLA,
but these effects were not observed in formalin-treated animals. Fear conditioning also
decreased PEA levels in the right BLA of formalin-, but not saline-, treated rats. Rea et al.
(2013) showed that PEA levels were higher in the left BLA of FC formalin compared to
NFC formalin-treated counterparts, which is opposite to what we have observed in our
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experiment, in which PEA levels were higher in the right BLA of FC formalin compared
to the NFC formalin-treated counterparts. In addition, Rea et al. (2013) did not observe
altered AEA levels in the left or right BLA of saline-treated animals, contrary to what
we observed in our study, where the AEA levels were higher in the FC saline-treated
compared to NFC saline-treated rats. However, the rats used by Rea et al. (2013) were
from a different strain (Lister-hooded versus Sprague Dawley), which may explain the
difference in the results between our studies. The higher levels of serotonin in FC saline-
treated rats compared to NFC counterparts that we have observed were in accordance to
what Zanoveli et al. (2009) [71] observed in their microdialysis study. Similarly, serotonin
levels were increased in conditioned rats 30 min after re-exposure. Other studies have also
shown that serotonin neurotransmission in the BLA can be involved in the facilitation of
conditioned states [72–74]. Formalin-injection itself affected dopamine and AEA levels.
NFC rats that received an intraplantar formalin injection were shown to have increased
levels of both dopamine and AEA in the right BLA compared to their saline-treated
counterparts. Although the role of dopaminergic signalling in pain responses has been
extensively studied [75–78], the role of this system in the amygdala in nociception has been
less examined. Roche et al. (2007) [79] did not find changes in dopamine levels in the
amygdaloid complex of formalin-treated rats compared to saline-treated rats, which is in
contrast with our findings. The rats, similar to our study, underwent cannula implantation
into the BLA but were only re-exposed for 15 min to the arena. Additionally, the levels
of dopamine were measured using a different technique (i.e., HPLC with electrochemical
detection) in gross dissected amygdala in contrast to punches of each of the amygdalar
nuclei separately. One study demonstrated that antagonism of D1 receptors in the BNST
(part of the extended amygdala) enhanced nociceptive responses in female, but not male
rats, suggesting that the dopaminergic system in the BNST may exert sexually dimorphic
effects on pain [80]. The blockade of dopaminergic receptors in the nucleus accumbens
prevented antinociceptive effects of CB1 receptor activation in the BLA, suggesting a link
between the neuromodulation of pain in the BLA and the mesolimbic dopaminergic system.
The blockade of D2 and D4 in the PFC inhibited long lasting suppression of nociceptive
responses induced by high frequency stimulations of the BLA, suggesting a link between
the neuromodulation of pain and the prefrontal dopaminergic system. In their investigation,
Rea et al. (2013) did not see any changes in AEA levels in the BLA of formalin-treated
rats compared to saline-treated counterparts, which is divergent to what we observed in
our results. However, their re-exposure time to the conditioning arena was longer (45
or 60 min) than the one used in our experiments (30 min), which may account for this
difference. In our experiment, FC formalin-treated rats had higher levels of PEA in the right
BLA compared to saline-treated animals, a result also seen by Rea et al. (2013). Together,
these results show that intraplantar formalin injection impacts neurotransmitters and NAE
signalling in the BLA. Thus, it is possible that these neurochemical differences underpin the
differential effects of PPAR blockade on conditioned fear-related behaviour in the presence
versus absence of formalin-evoked nociceptive tone.

In conclusion, the experiments described herein have shown that the blockade of
PPARα expressed in the BLA impaired short-term, within trial fear-extinction, and the
blockade of PPARγ in the same region potentiated freezing expression in the presence of a
nociceptive stimulus in rats, without affecting pain responses. Moreover, the blockade of
PPARα, PPARβ/δ, and PPARγ in the BLA increased innate anxiety status in the absence of
pain in NFC rats. These results indicate a possible modulatory role for PPARs in the BLA in
fear/anxiety expression, with differential effects depending on the presence or absence of
nociceptive tone. Further investigations are necessary to elucidate the possible mechanisms
involved in these modulations and clarify the molecular basis of this differential pain-
dependent effect.
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4. Materials and Methods
4.1. Animals

Experiments were carried out on a total of 88 (Experiment 1) and 92 (Experiment 2)
adult male Sprague-Dawley rats (230–250 g on arrival; Envigo UK, Bicester, England). The
animals were maintained at a controlled temperature (22 ± 2 ◦C) and humidity (45–55%)
under standard lighting conditions (12:12 h light–dark cycles, lights on from 07.00 h). All
experiments were carried out during the light phase. Food and water were available ad
libitum. The experimental procedures were approved by the Animal Care and Research
Ethics Committee, National University of Ireland Galway. The work was carried out under
license from the Health Products Regulatory Authority in the Republic of Ireland and in
accordance with EU Directive 2010/63.

4.2. Cannula Implantation

Under isoflurane anaesthesia (2–3% in O2, 0.7 L/min), a stainless steel guide can-
nula (12 mm length, Plastics One Inc., Roanoke, VA, USA) was stereotaxically implanted
1 mm above the right and left BLA of each rat (coordinates: AP = −2.5 mm from bregma,
ML = ±4.8 mm, DV = −7.5 mm from the skull surface) according to the rat brain atlas
published by Paxinos and Watson (Paxinos et al. 1997) [81]. The cannulae were perma-
nently fixed to the skull using stainless steel screws and carboxylate cement. A stylet
made from stainless steel tubing (12 mm length, 22 G, Plastic One—Bilaney Consultants,
Sevenoaks, UK) was inserted into the guide cannula to prevent blockage by debris. The
non-steroidal anti-inflammatory agent, carprofen (1.25 mg/25 µL, s.c., Rimadyl, Pfizer,
Kent, UK), was administered before surgery to manage postoperative analgesia. Animals
received a single daily dose of the antimicrobial agent enrofloxacin (10 mg/kg, s.c., Baytril,
Bayer plc, Berkshire, UK) for five days to prevent postoperative infection. Following can-
nula implantation, the rats were singly housed and at least seven days were allowed for
recovery post-surgery prior to experimentation. During this recovery period, the rats were
handled, stylets checked, and their body weight and general health monitored once daily.

4.3. Drugs

PPARα antagonist, GW6471, PPARβ/δ antagonist, GSK0660, and PPARγ antago-
nist, GW9662 (all obtained from Tocris Bioscience, Bristol, UK) were dissolved in 100%
dimethyl sulfoxide (DMSO), which was used as a vehicle solution. The dose of GW6471
(10 ng/0.5 µL) was chosen based on a study from our laboratory showing that this dose
delayed the onset of the second phase of formalin-evoked nociceptive behaviour [43]. The
dose of GW9662 (10 ng/0.5 µL) was chosen based on a previous study showing that this
dose was effective in reversing the anti-inflammatory and anti-hyperalgesic actions of
rosiglitazone [82]. We used the same dose of GSK0660 (10 ng/0.5 µL) as that used for the
other two antagonists for comparison and because, up to the time of the experiments, no
published studies have administered this drug intracerebrally. Formalin was prepared
from a 37% stock solution (Sigma-Aldrich, Dublin, Ireland) diluted in sterile saline. Sodium
chloride was dissolved in distilled water (9 g in 1 L—0.9%) and the solution was autoclaved.

4.4. Experimental Procedure

Two different experiments using two different cohorts of rats were carried out (Exper-
iments 1 and 2) and identical in design and methodology with the exception that rats in
Experiment 1 received an intraplantar injection of formalin while those in Experiment 2
received an intraplantar injection of saline. The FCA paradigm used in both experiments
was essentially as previously described [83–85]. There were two phases: conditioning
(day 1) and testing (day 2). On the conditioning day, rats were placed in a Perspex chamber
(30 cm × 30 cm × 40 cm) and after 15 s, they received the first of 10 footshocks (0.4 mA,
1 s duration, LE85XCT Programmer and Scrambled Shock Generator; Linton Instrumen-
tation, Norfolk, UK) spaced 60 s apart. Fifteen seconds after the last footshock, rats were
returned to their home cage. The animals that belonged to the control group, which did
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not receive footshocks, were placed in the chamber for an equivalent time (9 min 30 s).
The animals were randomly assigned to one of eight groups (n = 11 per group; see Sup-
plementary Table S1 for a summary of experimental groups)—rats that received footshock
(FC) or no footshock (NFC) treated with the PPARα antagonist GW6471, PPARβ/δ antag-
onist GSK0660, PPARγ GW9662, or vehicle (100% DMSO). The sequence of testing was
randomised to minimise any confounding effects of the order of testing.

The test day started 23 h 30 min after the end of the conditioning phase (Figure 19).
First, the rats received a 50 µL injection of formalin (2.5% in saline; Experiment 1) or
saline (Experiment 2) into the right hind paw under brief isoflurane anaesthesia (3% in O2;
0.8 L·min−1). Fifteen minutes after, the animals received intra-basolateral amygdalar (intra-
BLA) microinjections of either the PPARα antagonist (GW6471), the PPARβ/δ antagonist
(GSK0660), PPARγ antagonist (GW9662), or vehicle (volume of injection 0.5 µL/side). After
these microinjections, the rats were returned to their home cages. Fifteen minutes after
the microinjections, or 24 h after footshock, the rats were re-exposed to the conditioning
chamber. A video camera located beneath the observation chamber was used to monitor
animal behaviour for 30 min. At the end of the test phase (60 min post formalin injection),
rats were killed by decapitation, fast-green dye injected via the guide cannulae, brains
were removed, snap-frozen on dry ice, and stored at −80 ◦C. Formalin induced oedema
was assessed by measuring the change in the diameter of the right hind paw measured
immediately before, and 60 min after, formalin administration, using Vernier callipers.
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4.5. Behavioural Analysis

Behaviour was analysed using the Ethovision 11.5 XT software package (Noldus
Technology, Wageningen, The Netherlands). A trained observer blind to the experimental
conditions assessed behaviour including: (1) freezing duration (defined as the absence of
visible movement except that needed for respiration); (2) duration of walking; (3) duration
of grooming; and (4) duration of rearing. Moreover, formalin-evoked nociceptive behaviour
was scored according to the composite pain scoring (CPS) technique described by Watson
et al. (1997) [86] in which pain behaviours are classified as time spent raising the formalin-
injected paw (P1), and holding, licking, biting, shaking, or flinching the injected paw (P2).
Thus, we obtained a CPS value from the equation [CPS = (P1 + 2(P2))/(total duration
of trial)].

4.6. Histological Verification of Intracerebral Injection Sites

Stereotaxic coordinates were verified histologically on two animals before the start
of the cannula implantation surgeries. The rats underwent the surgical procedure as
previously described. After the conclusion of the surgical implantation of cannulae, the
two rats, still under anaesthesia, were decapitated and a microinjection of 2% fast green
dye (0.5 µL over 1 min; Sigma-Aldrich, Dublin, Ireland) diluted in DMSO was made to
determine whether the coordinates used were accurate for the BLA. The brain was collected
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and snap-frozen on dry ice. Then, frozen coronal brain sections were cut at a 50 µm
thickness on a cryostat at −21 ◦C from the start to the end of the amygdaloid complex to
determine the location of the dye and confirm the coordinates. For all other rats in the
experiments, the dye injections were performed immediately post-decapitation in order to
determine if the injections successfully targeted the BLA.

4.7. Cryo-Sectioning and Tissue Microdissection

Frozen coronal brain sections of 150 µm thickness containing the basolateral amygdala
(BLA) were cut on a cryostat (Leica Biosystems, Watznal, Germany) and punch-dissected
as previously described [70,87,88] using cylindrical brain punchers (Harvard Apparatus,
Holliston, MA, USA) with an internal diameter of 0.50 mm for the different amygdalar
nuclei, at the following rostro-caudal levels: Bregma, −2.12–−3.30 mm. Additionally, in
order to evaluate possible lateralisation effects, the BLA punches were separately collected
for the right and left hemispheres. The punch-dissected tissue was weighed (mean ± S.E.M.
weight per sample was 1.72 ± 0.1 mg) and stored at −80 ◦C prior to measurement of the
AEA, PEA, OEA, 2-AG, and neurotransmitter levels by liquid chromatography coupled to
tandem mass spectrometry (LC-MS/MS).

4.8. Measurement of Endocannabinoids, NAEs, and Neurotransmitters in Discrete Brain Regions
Using Liquid Chromatography—Tandem Mass Spectrometry (LC-MS/MS)

Each punch-dissected brain sample was homogenised for 4–6 s with an ultrasonic ho-
mogeniser/sonicator (Mason, Dublin, Ireland) in a mixture containing 200 µL of deuterated
internal standards for endocannabinoids (0.48 nmol/50 ng of 2-AG-d8 and 0.014 nmol/2.5 ng
of AEA-d8) and NAEs (0.015 nmol/2.5 ng of OEA-d2 and 0.016 nmol/2.5 ng of PEA-d4), and
10 µL of deuterated internal standards for neurotransmitters (5 µg/0.048 µmol of GABA-d6,
5 µg/0.033 µmol of glutamate d-5, 1 ng/0.006 nmol of dopamine-d-4, and 1 ng/0.005 nmol
of serotonin-d-4) and immediately kept on ice. The final volume was made up to 260 µL
prior to sonication by adding 50 µL of 100% acetonitrile. Deuterated and non-deuterated
endocannabinoids were purchased from Cayman Chemicals (Biosciences, Cambridge, UK).
Non-deuterated neurotransmitters were purchased from Sigma Chemicals (Dublin, Ire-
land): 2129-GABA, G1251-glutamate, H8502-dopamine, and H9523-serotonin. Deuterated
neurotransmitters for GABA, glutamate, and dopamine were acquired from CDN isotopes
(Pointe-Claire, QC, Canada) (D1828-GABA (D6), D2193-glutamate (D5), D1540-dopamine
(D4)). The deuterated serotonin was procured from Alsachim (Strasbourg, France) M760-
serotonin (D4).

Samples were kept on ice during the procedure. The homogenates were centrifuged
at 11,000× g for 15 min at 4 ◦C (Hettich centrifuge Mikro 22R, Steinheim am Albuch,
Germany). The supernatant was collected and 40 µL was transferred to a HPLC vial. The
standard curve was constructed using serial 1/2 dilution by adding 50 µL of a mixture of
non-deuterated endocannabinoids and NAEs (25 ng for PEA, OEA, and AEA + 250 ng for
2-AG) and 10 µL of a mixture of non-deuterated neurotransmitters (100 µg of glutamate
and GABA, 10 ng each of dopamine, noradrenaline, and serotonin) to 40 µL of acetonitrile
in tube #10, vortex-mixing, then collecting 50 µL and transferring it to the next tube (#9)
containing 50 µL acetonitrile. The process was repeated until tube #1, when 50 µL of
the final volume was discarded, in order to keep the volumes between tubes consistent.
Thus, all 10 tubes had 50 µL of a mixture of endocannabinoids and neurotransmitters. All
standard curve tubes were spiked with 200 µL of a deuterated endocannabinoid/NAE
mixture (2.5 ng deuterated PEA, OEA, and AEA and 50 ng deuterated 2-AG as the internal
standards) and 10 µL of deuterated neurotransmitter mixture (5 µg of glutamate and GABA,
and 1 ng each of dopamine, and serotonin). A double blank (100% acetonitrile) was also
included in between each standard point during the run to minimise the risk of analyte
carryover from standard to standard at the upper range of the curve and five double blanks
were included after the highest concentration point on the curve to avoid carryover onto the
samples. A quality control (QC) sample was prepared from the whole rat brain homogenate
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using the same protocol described for the punches, and was included with each run to
allow for monitoring of inter-run variability. The QC was added after all the samples, at
the end of the run.

Mobile phases consisted of (1) high pressure liquid chromatography (HPLC) grade
water with 0.1% (v/v) formic acid, and (2) acetonitrile with 0.1% (v/v) formic acid for the
initial three minutes with a flow rate of 0.2 mL/min using a Waters Atlantis T3 column
(3 µm particles, 100 mm length, 2.1 mm diameter; Waters, UK). Quantitation of each analyte
was performed by determining the peak area response of each target analyte against its
corresponding deuterated internal standard. This ratiometric analysis was calculated using
Masshunter Quantitative Analysis Software (Agilent Technologies Ltd., Cork, Ireland).
The amount of analyte in unknown samples was calculated from the analyte/internal
standard peak area response ratio using a 10-point calibration curve constructed from a
range of concentrations of the non-deuterated form of each analyte and a fixed amount
of deuterated internal standard. The values obtained from the Masshunter Quantitative
Analysis Software are initially expressed in ng per mg of tissue by dividing by the weight of
the punched tissue. To express values as nmol or pmols per mg, the corresponding values
are then divided by the molar mass of each analyte expressed as ng/nmole or pg/pmole.

4.9. Verification of PPAR Expression in the BLA

Previous studies showing PPAR expression in the amygdalar complex [41,42] had
not considered the subdivisions of the amygdala or all the isoforms in their experiments.
Therefore, we carried out a confirmation of the expression of each of the isoforms of PPARs
in the BLA.

4.9.1. Verification of PPAR Expression in the BLA by Western Blotting

Punched brain tissues from BLA of naïve male SD rats were analysed by western
immunoblotting. Frozen punched samples were lysed briefly with 3 s sonication in
radio-immunoprecipitation assay (RIPA) lysis buffer (150 mmol/L NaCl, 25 mmol/L
Tris-HCl, pH 7.6, 0.5% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sul-
phate, 1 mmol/L Na3VO4, 10 mmol/L NaF containing 1% protease inhibitor cocktail
[Sigma-Aldrich, Ireland] in a 1.5 mL microcentrifuge tube [75 mL]). After homogenisation,
the microcentrifuge tube was placed on the shaker for 45 min at 4 ◦C for the RIPA lysis
buffer to free the protein bound either to the plasma membrane/nuclear membrane and
then centrifuged at 14,000× g (Eppendorf Centrifuge 5415R, Stevenage, UK) for 20 min
at 4 ◦C to separate the precipitate and the supernatant. The supernatant was collected,
and the protein content determined by the Bradford assay. Protein (BSA, Sigma-Aldrich,
Arklow, Ireland) standards (0, 0.0125, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 mg/mL) were prepared in
deionised water (DH2O). The Bradford assay involved adding 250 µL of Bradford reagent
(Sigma-Aldrich, Ireland) to 5 µL of unknown samples or standards in triplicate on a 96-well
plate. After a 5 min incubation time, absorption at 570 nm wavelength was determined.
Protein concentrations of the samples were determined using an 8-point standard curve
constructed using the BSA standards. The samples were equalised to 2.0 mg/mL after
determining the protein concentration. Eight µL of 4X sample loading buffer was added
to 24 µL of the protein sample (48 µg of protein sample) in the microcentrifuge tubes
(4X sample loading buffer: 25% v/v 1 mol/L Tris-HCl, pH 6.8, 5% w/v sodium dodecyl
sulphate (SDS), 20% v/v glycerol, 2.5% bromophenol blue (0.2% w/v in 100% ethanol), 7 M
urea, and 20% v/v of 2-mercaptoethanol, made up to a total volume of 20 mL in distilled
water). The microcentrifuge tubes were vortexed quickly and then boiled at 95 ◦C for 5 min.
The samples were then briefly centrifuged and subjected to 9% SDS–polyacrylamide gel
electrophoresis (SDS-PAGE) at a constant voltage of 120 mV for 2 h. The separated protein
samples were electroblotted onto a nitrocellulose membrane (Nitrocellulose membrane,
CAS# 9004-70-0; Bio-Rad, Hercules, CA, USA) at 100 mV for 40 min using the wet transfer
method. Protein transfer efficiency was verified by ponceau S (0.1% ponceau dye in 5%
acetic acid; Sigma-Aldrich, Arklow, Ireland) staining of the protein band. Membranes were
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blocked in 5% non-fat dry milk in 0.1% Tris-buffered saline/Tween 20 (TBST) solution for
1 h at room temperature and incubated with a polyclonal antibody to PPARβ/δ Cat# 398394,
anti-rabbit, Santa Cruz Biotechnology, Dallas, TX, USA], PPARα [1:200, Cat# 74517, anti-
mouse Santa Cruz Biotechnology, Dallas, TX, USA] or PPARγ receptor [1:200, Cat# 22020,
anti-goat, Santa Cruz Biotechnology, Dallas, TX, USA] and mouse monoclonal antibody
to β-actin (1:10000 Cat# 5441; Sigma-Aldrich, Arklow, Ireland) diluted in 5% milk/0.05%
TBST overnight at 4 ◦C. Post incubation period, the membrane was washed in washing
buffer (0.1% TBST) for 3 × 10 min washes. After washing, membranes were then incubated
in secondary antibody solution containing IR-Dye goat anti-mouse (k700) and goat anti-
rabbit or donkey anti-goat (k800) (LI-COR Biosciences, Cambridge, UK) diluted 1:10,000
in 1% milk/0.1% TBST for 1 h. Five × 5 min washing steps were then performed with
washing buffer (0.1% TBST) and one final 5 min wash in distilled water. Blots were scanned
on a LI-COR Odyssey imager. IR band intensities for PPAR receptor protein expression
(~52/55 kDa) for each sample were generated automatically using the background sub-
traction method of the LI-COR Image Studio Ver. 2.0 imaging software. Two distinct
bands were observed for PPARγ (refer to Figure 15) due to the existence of two isoforms
for this receptor. Because the antibodies for PPARα and PPARβ/δ were raised in mouse,
similarly to β-actin, these two isoforms showed a band for the endogenous control taken
in a second moment. The membranes were stripped of the binding of PPAR antibodies
using a stripping buffer, and the protocol described above was repeated from the blocking
in 5% non-fat dry milk in the 0.1% TBST step, and the membrane was then re-probed
using β-actin antibodies. The blots were then re-scanned on a LI-COR Odyssey imager. IR
band intensities for β-actin (~42 kDa) were generated automatically using the background
subtraction method of the LI-COR Image Studio Ver. 2.0 imaging software.

4.9.2. Verification of PPARβ/δ Expression in the BLA by RT-qPCR

Punched brain tissues from BLA of naïve male Sprague-Dawley rats were analysed
by quantitative real-time PCR (RT-qPCR). RT-qPCR was carried out as described pre-
viously (68,87). RNA was extracted from BLA tissue (BLA: 2.04 mg ± 0.2 mg) using
the Macherey-Nagel NucleoSpin® RNA Extraction Kit (Nucleospin RNA, Fisher Scientific,
Dublin, Ireland), according to the instructions of the manufacturer. Tissue was homogenised
in 353.5 µL of lysis buffer (RA1) containing β-mercaptoethanol (Sigma, Dublin, Ireland) for
3–5 s using an automated homogeniser (Polytron tissue disrupter, Ultra-Turrax, Staufen,
Germany). Homogenates were kept on ice until transferred to a Nucleospin filter (violet
ring) and centrifuged at 11,000× g for 1 min to reduce viscosity and clear the lysate. The
lysates were then treated with 350 µL of 70% molecular grade ethanol (Sigma, Dublin,
Ireland) and transferred to a Nucleospin RNA column (light blue ring) and centrifuged at
11,000× g for 30 s to bind the RNA to the membrane. The membrane column was then de-
salted by adding 350 µL of membrane desalting buffer (MDB) and centrifuging at 11,000× g
for 1 min to dry the membrane. Samples were then treated with 10 µL rDNase and left
for 15 min at room temperature to remove any DNA. Samples were then serially washed
using washing buffers (200 µL RA2, 600 µL RA3, and 250 µL RA3) and RNA was eluted
in 30 µL of RNAase-free water (Sigma, Dublin, Ireland). Nanodrop technology (ND-1000,
Nanodrop, Labtech International, Ringmer, UK) was used to measure the concentration,
purity, and integrity of the RNA. RNA concentration was determined by measuring the
optical density (OD) at 260 nm. The integrity and purity were determined by measuring the
ratios of OD260/OD280 and OD230/OD280, respectively, where a ratio of approximately
1.8–2.0 was deemed indicative of RNA of good quality and purity. All RNA samples were
within the acceptable range for both integrity and purity. Samples were equalised to the
same concentration of RNA (35 ng/µL) using RNase free water (Sigma, Dublin, Ireland).
Equalised samples were then stored at −80 ◦C until reverse transcribed. Equal amounts of
total RNA (10 ng/µL) were reverse transcribed into cDNA as follows: two master mixes
were made up, as shown below in Supplementary Tables S2 and S3; all reagents were
obtained from (Biosciences, Dublin, Ireland). Ten µL of normalised RNA from each sample
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was added to a newly labelled PCR tube where 2 µL of master mix 1 was added to each
tube. The mixture was then heated to 65 ◦C for 5 min in a thermocycler (MJ Research,
Reno, NV, USA) and quickly chilled on ice. The contents of the tube were collected by brief
centrifugation. Seven µL of master mix 2 was then added to each tube and incubated at
37 ◦C for 2 min on the thermocycler. One µL of superscript III reverse transcriptase was
added to each sample and mixed gently. Samples were left to incubate at room temperature
for 10-min and then loaded on the thermocycler to incubate further at 50 ◦C for 50 min. The
reaction was inactivated by heating the samples at 70 ◦C for another 15 min. Finally, cDNA
samples were diluted (1:4) using RNAase-free water and stored at −20 ◦C. cDNA strands
were then analysed by RT-qPCR using the Applied Biosystems StepOne Plus Real Time
PCR System (Bio-Sciences, Dublin, Ireland). TaqMan gene expression assays (Bio-Sciences,
Dublin, Ireland) containing forward and reverse primers and a FAM-labelled TaqMan
probe were used (Bio-Sciences, Dublin, Ireland). Assay IDs for the genes in rats examined
were as follows: PPARβ/δ (Rn00565707) and VIC-labelled β-actin (Rn00667869_m1) was
used as the house keeping gene and endogenous control. A reaction mixture was prepared
and stored on ice. This consisted of 0.5 µL target (PPAR) primers (Bio-Sciences, Dublin,
Ireland), 0.5 µL of the reference gene β-actin, 5 µL TaqMan Universal PCR master mix,
1.5 µL of RNA free water, and 2.5 µL of sample cDNA to give a total volume of 10 µL per
sample. Samples were pipetted in duplicate (10 µL per well total volume) into an optical
96 well plate. Negative controls were included in all assays, containing the master mix
but cDNA was replaced with RNase free water. Plates were then covered with adhesive
covers and spun at 1000 g for 1 min to ensure complete mixing. The plate was then placed
in a StepOnePlus™ real time PCR machine (Bio-Sciences, Dublin, Ireland). StepOnePlus™
cycling conditions were 50 ◦C for 2 min, 95 ◦C for 10 min, and 40 cycles of (95 ◦C for
15 s/60 ◦C for 1 min). Amplification plots were examined using Applied Biosystems 7500
System SDS Software 1.3.1.

4.10. Statistical Analysis

The SPSS 21.0 statistical package was used to analyse the data. Normality was assessed
using thee Shapiro–Wilk test and homogeneity of variance was checked using Levene’s
test. Behavioural data were analysed using two-factor analysis of variance (two-way
ANOVA), with factors being fear-conditioning and treatment, or analysis of variance with
repeated measures (repeated measures ANOVA) when appropriate (e.g., when the data
were analysed and presented in time bins). Neurochemical data were analysed using
three-factor analysis of variance (three-way ANOVA), with factors being fear conditioning,
treatment, and side (ipsilateral or contralateral, with respect to the formalin injection). Post
hoc pairwise comparisons were made with Student Newman–Keuls test when appropriate.
If data were found to be non-parametric, three transformation protocols were applied,
in this order: square root of the data values, log of the data values, and ranking of the
data values. Additionally, we checked whether the highest standard deviation was less
than or equal to two times the smallest standard deviation for the particular dataset being
analysed [89]. If data were still deemed non-parametric after these transformations and
tests, they were analysed using Kruskal–Wallis analysis of variance and post hoc analysis
performed using Dunn’s test when appropriate. When repeated measures data were non-
parametric, they were analysed using Friedman’s and Kruskal–Wallis tests, followed by
Dunn’s post hoc if applicable. Data were considered significant when p < 0.05. Data are
expressed as group means ± standard error of the mean (S.E.M.) when parametric and as
median with interquartile range and min/max when non-parametric.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27062021/s1, Figure S1: Histological verification of
injector site location for Experiment 1; Figure S2: Effects of intra-BLA administration of selective
PPARα, PPARβ/δ, and PPARγ antagonists on freezing duration presented as 3-min time bins (B)
in non-fear conditioned (NFC) rats; Figure S3: Histological verification of injector site location for
Experiment 1; Figure S4: Effects of intra-BLA administration of selective PPARα, PPARβ/δ, and
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PPARγ antagonists on freezing duration presented as 3-min time bins in fear conditioned (FC)
and non-fear conditioned (NFC) rats; Table S1: Summary of experimental groups. NFC, non-fear
conditioned; FC, fear conditioned; Table S2: Supplementary Table S1: Master mixture 1 for cDNA
synthesis; Table S3: Supplementary Table S3: Master mixture 2 for cDNA synthesis; Annex S1:
Description of statistical results for Section 2.4.1; Annex S2: Description of statistical results for
Section 2.4.2.
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