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Retinal prosthesis is steadily improving as a clinical treatment for blindness caused by retinitis pigmentosa. However, despite the
continued exciting progress, the level of visual return is still very poor. It is also unlikely that those utilising these devices will
stop being legally blind in the near future. Therefore, it is important to develop methods to maximise the transfer of useful
information extracted from the visual scene. Such an approach can be achieved by digitally suppressing less important visual
features and textures within the scene. The result can be interpreted as a cartoon-like image of the scene. Furthermore, utilising
extravisual wavelengths such as infrared can be useful in the decision process to determine the optimal information to present.
In this paper, we, therefore, present a processing methodology that utilises information extracted from the infrared spectrum to
assist in the preprocessing of the visual image prior to conversion to retinal information. We demonstrate how this allows for
enhanced recognition and how it could be implemented for optogenetic forms of retinal prosthesis. The new approach has been
quantitatively evaluated on volunteers showing 112% enhancement in recognizing objects over normal approaches.

1. Introduction

Humans have six primary senses: touch, taste, smell, hearing,
sight, and balance. Of these, vision and touch are arguably
the most important. According to the World Health
Organization [1], there are thought to be more than 39
million people worldwide who are blind. Visual prosthesis
holds promise for a return of functional vision for those
conditions which have already caused blindness. For those
with photoreceptor disorders such as retinitis pigmentosa
(prevalence 1 : 3000), stimulation of the remaining retinal
layers is most appropriate. Where the communication
circuitry of the eye is no longer functional, as for trauma or
glaucoma, neuroprosthetic stimulation would have to be in
the visual parts of the brain.

The field of visual prosthesis is perhaps surprisingly old.
The first electrical stimulation experiment for the visual
cortex dates back to 1929 [2]. In the 1950s, Brindley and
Lewin pioneered the first electrical visual cortical prosthesis

[3], though progress has subsequently been slow. In 1992,
Stone et al. [4] demonstrated that the retinal ganglion
(communication) cells were still functional in patients
blinded by retinitis pigmentosa. Since then, the biomedical
engineering field has invested significant research effort into
developing retinal prosthesis. Several research groups and a
number of companies around the world are currently
engaging in both engineering and clinical efforts.

Traditional electronic approaches have implanted elec-
trodes into the eye or brain to stimulate remaining neurons.
In particular, retinal prosthesis has seen primarily subretinal
[5–9] and epiretinal [10–12] approaches. The difference
relates to the location (resp., underneath or in front of the
retina) of implantation of the stimulating electrodes. More
recently, there has been an emergence of optogenetic
approaches which involves genetically photosensitizing one
of the remaining layers of the eye. Such opsins (photosen-
sitization agents) have been successfully expressed in reti-
nal ganglion cells [13], bipolar cells [14], and degenerate
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photoreceptors [15]. The caveat is a requirement for
ultrabright optical stimulation, which has been previously
proposed by this team [16, 17]. Nevertheless, key advan-
tages include genetic targeting of retinal subcircuits and
that such stimulation could be external to the eye, and
not requiring implantation.

Current generations of retinal prostheses return a very
basic vision consisting of phosphene percepts [18–21]. Sub-
jects can interpret clusters of such percepts to determine
basic visual information such as high-contrast letters and
shapes. Optogenetic approaches [17, 22–24] hold much
promise, but it may take many years to perfect.

Human visual resolution was first determined by
Oesterberg in 1935 to be 120 million rods and 6 million cones
[25]. The architecture of the retina then compresses this
information to 1 million retinal ganglion (communication
output) cells. Such sensor density contrasts with current
commercial prostheses which have 1500 stimulators. The
retina is spatially structured into different domains—the
fovea, macula, and periphery, which have progressively
decreasing spatial resolution, but increasing temporal resolu-
tion. Typically, electronic retinal prostheses have been placed
in a small domain in the macula, but optogenetic variants
could potentially project to a broader domain.

Margalit et al. [26] postulated that at least 625 pixels/
phosphenes are needed for resolving basic images or the gist
thereof. However, beyond spatial resolution, the quality of
the image is also determined by the contrast and dynamic
range of the stimulators [27]. Finally, the communication
protocol is additionally important. The retina has a pro-
cessing architecture which extracts spatial and temporal
derivatives of the scene. Mathematically, a derivative can be
positive or negative, but this is difficult for neurons to project.
Thus, information is split between on and off pathways
whereby information is contained in the differential between
the two. If both are stimulated equally, the result will be no
net transfer of information. Furthermore, the degenerate
retina is very noisy [28]. Finally, if net visual information
can be transmitted, the communication pattern of the retinal
ganglion cells needs to match the protocol expected by the
visual cortex [29].

Clearly, there are many challenges. However, we can take
inspiration from invertebrates, which perform remarkably
well with only a few thousand light sensors. Although such
light sensors have exquisite function [30], the capacity of
the subsequent nervous system to process it is low. As such,
information content is necessarily low. Nevertheless, their
remarkable level of visual function is achieved through
contrasting information from dedicated light sensors which
extract colour, polarization contrast, and extraspectral ultra-
violet wavelengths. As such, bioinspired techniques can be
developed which adapt these techniques and use them to
improve transmitted images prior to retinal and stimulator
encoding [31, 32].

Previously, we have shown that visual recognition of
visually impaired subjects can be improved using effective
contrast enhancement techniques such as cartoonisation
[33]. Furthermore, to deal with the problem of tunnel vision,
we developed a nonlinear scene compression approach [34].

In that approach, we compress the most important visual
information from a broader visual view into a narrower
stimulation view (i.e., tunnel vision). In 2000, Dobelle [35]
suggested the use of infrared in his version of optic nerve
prosthesis. In that work, it was postulated that infrared
could allow the user to switch between views but was not
implemented as at that time portable infrared imagers were
not available.

In this work, we, therefore, propose to extract thermal
information from the scene to assist in the cartoonisation
segmentation and contrast enhancement process. This
approach would thus integrate both visual and extravisual
spectral information within a scene enhancement framework
to present the most useful information to the user. Figure 1
shows the conceptual components of the system.

2. Methods

The processing of the visible/IR streams is divided into four
main parts according to the flow chart in Figure 2:

(1) Image acquisition and preparation—acquisition
from both IR and visible cameras and initial gain
control and intensity equalisation

(2) Boosting the contrast by segmenting the scene—to
increase the effective contrast of the scene by
reducing irrelevant features (requiring IR enhanced
segmentation)

(3) Scene retargeting—to fit more information into the
visual tunnel by nonlinearly shrinking the scene
(requiring IR enhanced segmentation)

(4) Stimulator encoding—to provide final required
retinal coding and stimulator pulse encoding (not
the focus of this paper)

2.1. Scene Segmentation and Contrast Enhancement

2.1.1. Generating IR Segmentation Map. The useful range of
thermal information is arguably in the range −20 to
+100°C. This range can be sensed by blackbody radiation
with mid-infrared wavelengths in the 7.8–11.5μm range,
which equates to photon energies of 0.16 to 0.1 eV, respec-
tively. Such energies are below the bandgap of diode semi-
conductors. As such, microbolometer devices are used to
acquire information. Such devices cannot determine spectral
differences but infer temperature based on photon flux based
on an assumed blackbody radiation profile from the target.

We utilised two cameras: infrared (Optris PI 160) and
visible (mvBlueFOX-220AC). We optically aligned these
perpendicular to each other relative to a beamsplitter which
reflected infrared and transmitted visible information.
Figure 3 shows the arrangement of the two cameras and the
beamsplitter imaging a hot cup of tea. Hot objects appear
to have a greater intensity relative to the background,
whereas, for example, a glass of iced tea would have a lower
relative intensity. To ensure meaningful information transfer
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Figure 1: Concept of optogenetic retinal prosthesis, enhanced with extraspectral wavelengths. (a) A concept wearable headset which would
project light from (b) a high-density LED array. (c) Cameras which could acquire the infrared, visible, and ultraviolet. (d) Image acquisition
form visible, (e) Infrared image, and (f) combined enhanced image prior to retinal processing. (g) A control unit.

Figure 2: The visible/IR pathways from the two cameras. This includes scene acquisition, contrast enhancement, retargeting, and
simulator encoding.
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from the IR scene, the automatic gain control needs to be set
to a defined range, for example, 0°C to 40°C.

We found that the best approach to separate objects with
different temperature gradients was to utilize an exponential
scaling function in the infrared intensities. We implemented
this on both positive and negative versions of the image.
The result is that central temperatures get suppressed in
preference to extremes of hot and cold. This is performed
as follows:

Ie = e0 025∗I ,
INe = e0 025∗ 255−I

1

I is the IR image, which is exponentially scaled into Ie and
INe is the scaling for the inverse of I. Both Ie and INe are
combined and exponentially rescaled to further suppress
low-intensity pixels. The process separates (segment) the
cold/hot objects from the background.

IRmap = e0 025∗ Ie+INe 2

Figure 4 shows the effect of exponentially stretching
and compressing an 8-bit grayscale image and its negative.
Afterward, we smooth the segmented image to remove any
discontinuities using a Gaussian filter.

IRmap = IRmap ∗G x, y ,

G x, y = 1
2πσ2 e

− x2+y2 /2σ2
3

The segmented image is normalised to be used as a
decision map for segmenting and fusing important details
from both of the input and enhanced images. Also, it is
used in generating an importance map for compressing the
segmented image as will be discussed later.

2.1.2. Simplification of the Visual Scene. The primary hypoth-
esis behind scene simplification is that suppression of less
important features and textures will accentuate the contrast
of more important ones. Subsequent retinal processing will
then extract spatial derivatives. As the stimulator array is
noisy and with low effective resolution, derivatives of com-
plex scenes [36–40] will look noisy. Thus, simpler, cartoon-
like scenes will improve the quality of perception.

Cartoonisation is achieved by first suppressing low-
importance textures, then accentuating the edges of key
segments. For the first stage, we utilize anisotropic smoothing
[41, 42], which smooths textures within higher-contrast
boundaries. This is described mathematically as follows:

In+1 = In + Δt ∇ C ⋅ ∇IH + ∇ C ⋅ ∇IV 4

IR imageVIS image

Beam splitterVIS 
camera

IR camera

Figure 3: The optical setup of the system. Visible/IR cameras are aligned together through specially designed beamsplitter that reflects the
same scene into IR and visible pathways.
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I is the initial unprocessed image; c is the diffusion
function, which monotonically decreases as a function of
the image gradient value; ∇ represents the gradient operator;
Δt is the time step (controls the smoothness speed); and n is
the iteration number. ∇IH and ∇IV represent the gradients of
the image. There are several approaches to calculate the
gradients [43]; however, we use horizontal and vertical
Sobel operators for simple implementation, from which
the gradient ∇ and C are calculated as follows:

∇ = ∇HI
2 + ∇VI

2, 5

C = 1

1 + ∇HI
2 + ∇VI

2 6

Once the anisotropic simplification is complete, we
extract spatial gradients of the image:

∇I = ∇HIS
2 + ∇VIS

2, 7

where IS is the simplified image from (4)–(6) above. For still
images, we simply use the spatial derivatives.

To generate the cartoon-like image, the smoothed gray-
scale image is then quantized into intensity bins. This clusters
regions of similar intensity and also helps compress the
dynamic range, which is limited in retinal prosthesis. The
quantization relation is given as follows:

Q x = q x nearest +
Δq
2 tan h φq ⋅ In+1 x − q x nearest

8

Q is the cartoon-like image; Δq is the bin size, the closest
bin grayscale to the current pixel In+1 x ; and φq is a matrix
that controls the sharpness between bins. More description
about the algorithm can be found in Winnemöller et al. [37].

To further increase the image contrast, we then combine
the negative of the absolute derivative described in (7).

Icartoon = 1 − ∇I ∗Q x 9

∇I is the spatial derivative of the anisotropic image
normalized to between 0 and 1.

To generate the edge-weighted image, we define a
threshold value K. Pixels in normalised gradient image
with values below this threshold are then normalized to
K. This value can be modified according to user preference
and determines how much of the background features and
textures to maintain.

The normalised gradient image becomes a weighting
matrixW that determines the level of details from the visible
image that should be preserved while increasing the bright-
ness of the relevant edges. Then the edge-weighted image
can be defined as follows:

Iedge‐weighted =W∗ Icartoon 10

2.1.3. Infrared-Assisted Visual Segmentation. The previous IR
segmentation map is used here to provide segmentation for
the visible image. This is done by creating weighted decision
regions from this map by which a linear combination of the
pixels in the cartoon/edge-weighted images is used to gener-
ate corresponding pixels in the fused image. The generated
fused images are as follows:

I fused edge‐weighted = IRmap ∗ Ivisible + 1 − IRmap

∗ Ivisible edge‐weighted ,

I fused cartoon = IRmap ∗ Ivisible cartoon + 1 − IRmap

∗ Ivisible
11

2.1.4. Visual-Assisted Infrared Segmentation. We also
explored an optional image modality in which we use the
extracted visible gradient information to be fused with the
anisotropic diffused infrared image. In this mode, the IR
information is simplified using the anisotropic diffusion
filter, and a cartoon-like image is generated from it.

2.2. Spatial Scene Compression. It is currently difficult for
retinal prostheses to present stimulus patterns to the full
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Figure 4: Compressing and stretching the dynamic scale for the IR image and its inverse (a). (b) Exponentially scaling the combined images
in (a).
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140° field of view of the retina. Although it is possible to
resize a larger image acquired by a fisheye lens [44], this
would make the scene seem further away which makes
identifying objects challenging at a lower resolution. Peli
et al. also demonstrate scene multiplexing by presenting the
edges of a wide field image on top of a narrow field image
[45]. However, this approach would present a too-complex
image for retinal prosthesis.

We, therefore, want to nonlinearly compress the visual
field maintaining the size of the most important features.
We, therefore, generate an importance matrixM of the image
that is used to determine how much each pixel is to be
shrunk/compressed. It is composed of two components: the
gradient map of the smoothed visible image and the infrared
decision map.

M = ∇Iprocessed + IRsegmented, 12

where ∇Iprocessed is the spatial derivative of the cartoonised
or edge-weighted scene. The infrared map gives higher
weights for extreme objects’ temperatures over the ambient
surroundings.

This importance matrix ranks pixel locations for which
the shrinking matrix defines how much these pixels in the
original image should be shrunk to retarget/compress the
image by K rows/columns. The shrinkability value of each
pixel S j in this matrix is given by

S j = 1
M j ∗〠M

j=11/M j
13

Summing S j over j column should equal 1 if K is 1. For
shrinking the image by K columns or rows, we simply rescale
the map to the desired shrinkage range.

The generated shrinkability map is used after that to
retarget either the cartoon or the edge-weighted visible
images to the desired size using Fant’s algorithm [46]. It
maps a limited 2-D matrix of discrete input pixel to another
limited matrix. The full description of the scene retargeting
approach can be found in our previous paper [34]. According
to the number of array stimulating points, further linear
image rescaling can be used to scale the nonlinearly retar-
geted scene into smaller sizes.

2.3. Retinal and Pulse Coding. In our previous work [47], we
described three different scenarios for retinal prosthesis:
stimulating the reinnervated cone cells in the macula,
stimulating bipolar cells, or stimulating retinal ganglion cells.
Figure 2 shows the process flow which can be summarised
as follows:

(a) Cone stimulation: this would utilize either the edge-
weighted or cartoon-like image, which should be
controlled according to the user preference, followed
by LED pulse coding.

(b) Bipolar stimulation: here we could use the derivative
of the ones used with the cone stimulation. The result
could be split into on/off pathways, followed by LED
pulse coding.

(c) RGC stimulation: this would be similar to bipolar
stimulation, except with the further possibility of
driving the spike code using an Izhikevich neuron
model.

Once an event occurred, we need to generate a pulse to
stimulate the ChR2 encoded cells. The pulse width depends
on the intensity of the stimulus and the sensitivity of the
ChR2 encoded cells. As channelrhodopsin has dark and light
adapted states, using variable pulse width is more efficient
than using fixed pulse [48]. Once stimulated, ChR2 goes into
its less efficient light-adapted form requiring around 50ms to
recover. We, therefore, determine two pulse widths: short
(5ms), in the case of no action potential stimulus in the
previous 50ms and long (10ms), in the case of a previous
action potential stimulus in the previous 50ms.

3. Results and Discussion

Figure 5 shows an infrared scene for a standing person whose
temperature is higher than the ambient. Objects with
temperatures higher or lower than the surroundings are
extracted using the exponential scaling approach described
in the methodology section. This boosts brighter objects to
higher grayscale values while suppressing darker objects.
The segmenting map image is generated by combining the
cold and hot images as shown in (d).

Figure 6 shows the output of each stage of the scene
processing platform shown in Figure 2. The infrared image
and its derived segmentation map are shown in the top
row. The original image, its anisotropic smoothed version,
and the extracted gradient image are shown in the middle
row. The scene simplification stage is very effective in
enhancing key features for prosthesis systems with low spa-
tial resolution. Figure 6(f) shows the two enhancement tech-
niques we use in this paper, cartoon-like and edge-weighted
images. Controlling the level of details in the edge-weighted
image can be done by varying the value of K. Figure 6(i)
shows the segmented edge-weighted and cartoon images
which were generated from the infrared segmentation map.

Figure 7 shows the effect of our nonlinear retargeting
algorithm after the segmentation process. The effect of non-
linear retargeting approach compared to the linear scaling
process is clear from the middle column that shows that the
dimensions of relevant objects are kept intact while those of
the irrelevant objects are not. Figure 8 shows the efficiency
of our scene optimisation and simplification approach by
simulating the vision when different sizes of stimulator arrays
are used. We can see that when using the original image with
low stimulating array size (e.g., 32× 32 and even 16× 16),
objects of the foreground and background are fused together.
This is not the case when using the segmented edge-weighted
image which maximizes the information perceived from
important objects.

Our hypothesis is that at lower resolutions, the most
useful function is enhanced mobility, that is, having an
awareness of objects relative to the user. This can be achieved
using the edge-weighted approach which increases the
contrast of objects by highlighting the edges of important
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features while suppressing irrelevant pixels in the scene.
Going to higher effective resolutions allows more informa-
tion to be perceived as shown from the third and fourth rows.
At this point, there is perhaps a crossover to cartoonisation
being more useful as it presents more of the background
features. In the end, we envisage this to be up to the patient’s
individual preference.

In addition, our scene optimization algorithm was objec-
tively evaluated in recognizing certain actions in videos using
real subjects. We have tested the algorithm on 15 volunteers.
The participants were each asked to watch 5 video files (rang-
ing from 21 to 27 sec) at two scales of resolutions (16× 16 and
32× 32) with and without our scene-enhancing algorithm,
resulting in an overall viewing of 20 video files. Video files
are displayed randomly to the participants. The participants
were asked to recognize actions and count the number of
detected persons in the video files. Table 1 shows the number
of persons and actions’ description of each video file. The
percentage of detected persons and recognized actions was
measured with respect to the total number of persons and
actions (a total of 13 persons and 11 actions occurred in the
5 video files).

The percentage of recognized actions in the presented
videos for the candidates with respect to the actual number
of actions is shown in Figure 9 with and without using

our scene-optimization approach. The percentages are cal-
culated for a simulation of the perception of two sizes of
stimulating arrays, 16× 16 and 32× 32. We can see that
there is a significant difference (P = 0 002, one tail t-test)
between the recognized actions/objects in the original
videos and those optimized using our proposed approach.
This gives an enhancement of object recognition by more
than 112% for the stimulating array size of 16× 16. The
enhancement percentage has been calculated based on 14.
Additionally, using larger sizes of stimulating array 32× 32,
the recognition rate significantly increased (P = 3 4596e−08)
by 58%.

%of enhancement = 100 × Nen
Nac

− 1 14

Nen is the number of recognized actions using our scene-
enhanced approach. While Nac is the number of recognized
actions from the actual/unprocessed scene.

We can get the same observation from Figure 10 which
shows the percentage of correctly identified persons in the
presented videos for the candidates with respect to the actual
number of persons. We can see that there is a significant
enhancement (P = 1 9706e−05) in the counting number
using our scene enhancement approach when simulating

(a) (b)

(c) (d)

Figure 5: Pathway for the infrared image. (a) Captured IR image. (b, c) Segmented hot and cold objects. (d) Segmentation map.
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the 16× 16 stimulating array. Moreover, the enhancement
significantly (P = 1 7667e−05) exists when increasing the
stimulating array size to 32× 32.

Candidates found that busy sequences such as the second
one were very difficult to recognize and their actions difficult
to describe due to limited resolution as shown from Figure 11

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Figure 6: The output of different stages of the flow chart shown in Figure 2. IR path: IR image (a) and its segmentation map (b). Visible path:
visible (c), anisotropic diffusion (d), and gradient images (e). Enhanced: the edge-weighted (f), cartoon-like (g), segmented edge-weighted (h),
and cartoon-like enhanced images (i).

(c)

(d)

(e)

(a)

(b)

(f)

Figure 7: The effect of segmentation process on image retargeting. The left column shows the original scene (a) and the importance map for
the retargeting process (b). The middle column shows the linearly scaled image (c), the nonlinear retargeted image of the segmented cartoon
(d), and edge-weighted images (e). (f) shows a close-up of the individual demonstrating the effect of nonlinear retargeting on the size of
important features.
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Figure 8: Simulating the vision at different sizes of stimulating arrays. A simulation for what a subject with different stimulating retinal
prosthesis arrays (16× 16, 32× 32, 64× 64 and 128× 128) would perceive is shown from the top row to the bottom row. The left column is
a simulation for the original scene and the middle and right columns are for the segmented cartoon and edge-weighted images,
respectively, after nonlinearly retargeted by 30% in both directions.
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and Figure 12. The continuous movement of the five subjects
in this video made it very difficult for recognizing and differ-
entiating between persons and the actions they were doing,
while this was not the case in simple sequences like the fourth
video as it was recognizable in both versions of resolutions,
16× 16 and 32× 32.

In the case of visible-assisted segmentation of IR, the
nature of the information is different to the visible. The
absolute intensity becomes the key important feature. As
such, we have used anisotropic diffusion to smooth the
scene, as can be seen in Figure 13(a). We then utilize the
segmented edges from the visible to better outline those
features as can be seen in Figure 13(b). This allows the user
to see key hot/cold objects.

Table 1: Description of the subjects and actions of each video.

Video
number

Number of
persons

Actions

1 3

A person waving his two hands
A person changing his standing position

to sitting
A moving person from left to right of

the frame

2 5
A person holding a jacket from a table

A person wearing a jumper

3 3

Two persons standing and talking to
each other

A subject holds a cup from a table
and drinks

A person raising his hands

4 1
A waving hand while opening and

closing it

5 1
A person holding a bottle while drinking

A person waving his two hands
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Figure 9: The efficiency of the optimization algorithm in
recognizing actions in dynamic videos. Simulated video perception
for different stimulating array sizes (16× 16 and 32× 32) have
been presented to the candidates and they asked to recognize the
objects. Greater improvement in number of recognized objects has
been achieved using our scene-optimization algorithm. The error
bars represent the standard error of the data.
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Figure 10: The efficiency of the optimization algorithm in
identifying and counting persons in dynamic videos. Simulated
video perception for different stimulating array sizes (16× 16 and
32× 32) have been presented to the candidates and asked to count
the number of persons in each video. Greater improvement has
been achieved using our scene optimization algorithm. The error
bars represent the standard error of the data.
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Figure 11: The efficiency of the scene optimization algorithm in
recognizing actions for each video when simulating the perception
of using stimulating array size of 16× 16.

Figure 12: The efficiency of the scene optimization algorithm in
identifying and counting subjects for each video when simulating
the perception of using a stimulating array size of 16× 16.
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(a) (b)

Figure 13: Visually enhanced IR segmentation. The base IR image (Figure 5(a)) above is smoothed with the anisotropic method (a) and then
cartoonised via edge overlay from the visual scene (b).

Bipolar Bipolar Reconstructed Reconstructed
(positive, negative) (positive, negative)(positive) (positive)
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Figure 14: Bipolar cell output and reconstructed image from RGC. A simulation for what a subject with different stimulating retinal
prosthesis arrays (128× 128, 64× 64, 32× 32, and 16× 16) would perceive the full bipolar image and the approximate (positive values
only), columns one and two. Columns three and four show the reconstructed images from the RGC for full bipolar and approximate bipolar.
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Figure 14 shows simulation for the output of bipolar cells
and a reconstructed scene from RGC. We show the results at
different resolution starting from 128× 128 down to 16× 16.
The output of bipolar cells is shown in two columns at
different sizes; the first column shows the exact output
when using the on and off bipolar components of the
image. However, the second column shows the absolute
gradients of the on/off image for situations where only
one pathway is to be stimulated. Columns three and four
show the reconstructed images from both the on/off and
on-only RGC using the time to first spike encoding approach.

Results from our proposed system showed the impor-
tance of using dual spectrum imaging system in segmenting,
simplifying, and retargeting the scene before spike coding.
We also demonstrated the effect of increasing stimulator
resolution on scaling the image sent to the patient (assuming
retinal coding).

Ultimately, this work has shown efficacy in scenes
whereby the camera is static and objects in the scene move.
In this situation, creating an importance map is straightfor-
ward. However, in the situation where the camera moves
relative to the environment, the movements of all features
would need to be subtracted from the background move-
ment. This background movement would then have to be
calculated from the optic flow analysis on the images or from
accelerometer motion sensors.

The key to implementability of any image processing
front-end system is its function on portable processing sys-
tems at full video frame rate. We used the Matlab platform
to build our scene optimization algorithm. The processing
was implemented on a laptop computer, with a 2.5GHz Intel
i7 processor. We did not use any GPU-assisted processes,
and thus, all the operations are processed through the
CPU/FPU. Although, we have achieved a frame rate of
27 frames/sec.

Also we have deployed the algorithm in Raspberry Pi for
direct comparison of the overall processing time. Direct
deployment achieved 11 frames/sec for a frame size of
64× 64. However, as is generally accepted in the graphics
processing community, parallel processing using GPU
architectures can speed up the processing time in the range
of 10–100x depending on the level of parallelism of the
program. However, this is beyond the scope of this paper.

We explored the direct fusion of IR, UV, and visible
information. A concept video can be found here [49]. How-
ever, while we found that individually such wavelengths can
be interesting, in most cases, it qualitatively tended to
degrade rather than enhance the usefulness of the image.
As such, we feel that the best approach is to use IR to support
segmentation of visible. With regard to UV imaging, it is
certainly interesting to see flowers in the ultraviolet spec-
trum. But it has little function indoors (low UV light levels),
and as human beings, we are not primarily interested in pol-
len collection. As such, we could not find a way to justifiably
integrate it into a retinal prosthesis imaging system.

The Optris camera we used in this work has a power
consumption of between 0.5 and 1W. More recently has
been the advent of portable mobile phone-based microbol-
ometer imaging systems with power consumption as low as

150mW [50]. We would expect this to improve further
in the coming years. We estimate the total power for our
prosthetic system to be similar to that of smartphones or
tablets, that is., ~1W. This would be feasible to recharge
on a daily basis utilizing a 30WHr battery (3x that of
mobile phone batteries).

4. Conclusions

In this paper, we present a multispectral imaging interface for
a visual prosthesis. We have demonstrated a method which is
not simply separate spectra or an image fusion. Rather, we
demonstrate how the visual image can be used to segment
and cartoonise the infrared scene and how the infrared can
be used to segment, cartoonise, and compress the visible.
We believe that our method usefully combines information
from infrared and visible to best convey the most useful
information to someone with poor vision. It may in the
future also prove useful when integrated into assisted vision
devices for the visually impaired (but not blind).
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