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DNA alterations have been observed in astrocytoma for decades. A copy-number

genotype predictive of a survival phenotype was only discovered by using the gener-

alized singular value decomposition (GSVD) formulated as a comparative spectral

decomposition. Here, we use the GSVD to compare whole-genome sequencing

(WGS) profiles of patient-matched astrocytoma and normal DNA. First, the GSVD

uncovers a genome-wide pattern of copy-number alterations, which is bounded by

patterns recently uncovered by the GSVDs of microarray-profiled patient-matched

glioblastoma (GBM) and, separately, lower-grade astrocytoma and normal genomes.

Like the microarray patterns, the WGS pattern is correlated with an approximately

one-year median survival time. By filling in gaps in the microarray patterns, the

WGS pattern reveals that this biologically consistent genotype encodes for transfor-

mation via the Notch together with the Ras and Shh pathways. Second, like the

GSVDs of the microarray profiles, the GSVD of the WGS profiles separates the

tumor-exclusive pattern from normal copy-number variations and experimental

inconsistencies. These include the WGS technology-specific effects of guanine-

cytosine content variations across the genomes that are correlated with experimental

batches. Third, by identifying the biologically consistent phenotype among the

WGS-profiled tumors, the GBM pattern proves to be a technology-independent

predictor of survival and response to chemotherapy and radiation, statistically better

than the patient’s age and tumor’s grade, the best other indicators, and MGMT
promoter methylation and IDH1 mutation. We conclude that by using the complex

structure of the data, comparative spectral decompositions underlie a mathematically

universal description of the genotype-phenotype relations in cancer that other

methods miss. VC 2018 Author(s). All article content, except where otherwise noted,
is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5037882

INTRODUCTION

Recurring DNA alterations have been recognized as a hallmark of cancer for over a century1

and observed in astrocytoma brain cancer for decades, without being translated into clinical use.2

Meanwhile, the prognosis, diagnosis, and treatment of astrocytoma have remained largely

unchanged. Temozolomide, the one drug that progressed from trials to standard of care, modestly

improves the one-year median survival time of grade IV astrocytoma, i.e., glioblastoma (GBM),

by less than three months.3 This is despite advances in genomic profiling technologies and the
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growing number of publicly available genomic data.4,5 Only recently, a copy-number genotype

predictive of an astrocytoma survival phenotype was discovered and only by using the general-

ized singular value decomposition (GSVD) to compare patient-matched primary adult GBM and,

separately, grades III and II, i.e., lower-grade astrocytoma (LGA) tumor and normal genomes,

profiled by Agilent comparative genomic hybridization (CGH) and Affymetrix single nucleotide

polymorphism (SNP) microarray platforms, respectively.6,7 Note that primary GBM and LGA are

different types of cancers. Their histopathologies overlap, and GBM is distinguished from LGA

by the presence of necrosis or microvascular proliferation in the tumor. Their epidemiologies,

however, differ, including the distributions of the results of existing tests, i.e., for MGMT pro-

moter methylation and IDH1 mutation, and, therefore, also the distributions of treatments, i.e.,

chemotherapy and radiation.8

To test the mathematical universality and biological consistency of the tumor-exclusive

genotype and phenotype, here we use the GSVD to additionally compare whole-genome

sequencing (WGS) read-count profiles of astrocytoma tumor and patient-matched normal DNA9

from the Cancer Genome Atlas (TCGA). We used the same computational workflow to con-

struct the WGS astrocytoma set of patients as we previously used to construct the Agilent

GBM and Affymetrix LGA discovery and validation sets (Methods and Fig. S1 in the supple-

mentary material). The resulting tumor and normal datasets have the structure of two matrices

of N¼ 85 matched columns, i.e., patients, and M1 ¼ 2 827 037 and M2 ¼ 2 828 152 rows, i.e.,

tumor and normal 1K-nucleotide bins10,11 (Dataset S1).

The WGS technology complements the CGH and SNP microarray platforms to represent

the main genomic profiling technologies. Note that each technology relies on a specific experi-

mental design and a specialized computational protocol, which is sensitive to perturbations to

the data, e.g., due to changes in the experimental batch or the computational preprocessing.12–14

This has contributed to a low reproducibility, <70% between technical replicates of the same

sample and <50% between computational assessments of the same raw data, in assigning copy-

number variations (CNVs) in normal DNA15 or copy-number alterations (CNAs) in tumor

DNA. The WGS set of bins, while different from the Agilent CGH and Affymetrix SNP sets of

probes, provides a high-resolution representation of the human genome, like the CGH and SNP

sets. The �2.8M bins, across the autosome and the X chromosome, include almost all of the

213K CGH and 934K SNP probes. In addition, the bins fill in gaps in the genome which are

not covered by either set of probes, mostly in genomic regions of constitutive heterochromatin

domains, e.g., the centromeres and telomeres.

The WGS astrocytoma set of patients, while different from the mutually exclusive Agilent

GBM and Affymetrix LGA discovery and validation sets of patients, statistically represents the

astrocytoma patient population at large, like the GBM and LGA sets representing the GBM and

LGA populations, respectively. The representation is in terms of both disease and normal phe-

notypes, e.g., gender and ethnicity, while reflecting biases against surgical resections in patients

>75 years old or of diffuse tumors, which affect mostly GBM or LGA patients, respectively.

The 85 WGS astrocytoma patients include �61%, 28%, and 11% primary GBM and grade III

and II astrocytoma patients, diagnosed at the median ages of 60, 50, and 31 years, and with

median survival times of 15, 58, and 63 months, respectively. IDH1 mutation was detected in

15%, 48%, and 86% of the tested GBM and grade III and II astrocytoma patients, respectively.

Treatment by chemotherapy was noted for 77% GBM and 55% LGA patients. There are 62%

male and 38% female patients. Of the 85 WGS astrocytoma patients, 24, i.e., �28%, comple-

ment the discovery sets of 251 GBM and 59 LGA patients. Of these 24 patients, 14 comple-

ment the validation sets of 184 GBM and 74 LGA patients and include GBM and grade III and

II astrocytoma patients.

The WGS astrocytoma tumor and patient-matched normal datasets, while different from

the Agilent GBM and Affymetrix LGA datasets, represent a range of approaches to tissue col-

lection from 1993 to 2012 and DNA extraction and genomic characterization, like the Agilent

GBM and Affymetrix LGA datasets. Participating in generating the data were 18 TCGA tissue

source sites (TSSs), two biospecimen core resources (BCRs), and three genomic characteriza-

tion centers (GCCs), employing two different types of DNA sequencing instruments. Even
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while controlling for intratumor heterogeneity, TCGA parameters, e.g., the tumor sample’s vol-

ume, can span approximately two orders of magnitude.

We find that first the GSVD identifies the same genotype-phenotype relation as significant

in, and exclusive to, the WGS astrocytoma tumor relative to the patient-matched normal pro-

files, here as in the previous GSVDs of Agilent GBM and, separately, Affymetrix LGA tumor

and normal profiles. The identification is invariably blind to, i.e., without a priori information

about, the clinical labels of the patients, the experimental labels of the samples, or the genomic

coordinates of the bins or probes. This identified relation is invariably robust to perturbations to

the minimally preprocessed data and independent of intratumor heterogeneity as it is reflected

in the TCGA parameters.

Second, independent of the profiling technology, the GSVD blindly separates the tumor-

exclusive genotype-phenotype relation from experimental batch effects. Affecting the WGS

data, here we find guanine-cytosine (GC) content variations across the genomes that vary in

magnitude between TCGA GCC and TSS batches. Affecting the microarray data, previously we

found batches of, e.g., hybridization dates, scanners, and plates. Additional separation is from

normal relations that are conserved in the tumor, e.g., the X chromosome genotype and the gen-

der phenotype. Note that depending on the technology, this relation is represented in the data as

a male-specific deletion or a female-specific amplification of the X chromosome relative to the

autosome or the normal male genome, respectively.

Third, the tumor-exclusive genotype invariably predicts the phenotype of astrocytoma sur-

vival and response to chemotherapy and radiation statistically better than and independent of

any other indicator, test, and treatment, here, for the WGS astrocytoma set of patients, as it did

previously for the mutually exclusive Agilent GBM and Affymetrix LGA discovery and valida-

tion sets of patients.

We, therefore, conclude that the tumor-exclusive genotype-phenotype relation is appropri-

ate for the adult astrocytoma population at large and suitable for all genomic profiling technolo-

gies. That is, that the GSVD formulated as a comparative spectral decomposition underlies a

mathematically universal description of the genotype-phenotype relations in astrocytoma.

THE GSVD AS A COMPARATIVE SPECTRAL DECOMPOSITION

Given two column-matched but row-independent real matrices Di 2 RMi�N , each with full

column rank N � Mi, the GSVD is an exact simultaneous factorization16–19

Di ¼ UiRiV
T ¼

XN

n¼1

ri;nui;n � vT
n ; i ¼ 1; 2; (1)

where Ui 2 RMi�N are real and column-wise orthonormal and VT 2 RN�N is real, invertible,

and with normalized rows. The 2 N positive generalized singular values are arranged in

Ri ¼ diagðri;nÞ 2 RN�N in a decreasing order of the ratio r1;n=r2;n. The GSVD is unique up to

phase factors of 61 of each triplet of the corresponding column and row basis vectors, i.e., ui;n

and vn, except in degenerate subspaces defined by subsets of pairs of generalized singular val-

ues of equal ratios, i.e., r1;n=r2;n. The GSVD generalizes the SVD from one to two matrices.

Like the SVD, the GSVD is a mathematical building block of algorithms, e.g., for solving the

problem of constrained least squares in algebra,20 and theories, e.g., for describing oscillations

near equilibrium in classical mechanics.21

We formulated the GSVD as a comparative spectral decomposition that can simultaneously

identify the similarity and dissimilarity between two column-matched but row-independent

matrices and, therefore, create a single coherent model from two datasets recording different

aspects of interrelated phenomena.22,23 This formulation24–27 is possible because the GSVD is

exact, exists, and has uniqueness properties that directly generalize those of the SVD28,29

(Theorem S1). The only assumption is that there exists a one-to-one mapping between the col-

umns of the matrices but not necessarily between their rows. We defined the significance of the

row basis vector vn and the corresponding column basis vector ui;n in the corresponding matrix
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Di, i.e., the “generalized fraction” pi;n, to be proportional to the corresponding generalized sin-

gular value ri;n and the “generalized normalized Shannon entropy” of Di to be proportional to

the arithmetic mean of pi;n log pi;n (Fig. S2). We defined the significance of vn and u1;n in D1

relative to that of vn and u2;n in D2, i.e., the “GSVD angular distance,” to be a function of the

ratio r1;n=r2;n that, from the cosine-sine decomposition, is related to an angle (Fig. 1)

�p=4 < hn ¼ arctanðr1;n=r2;nÞ � p=4 < p=4: (2)

Note that the angular distances hn are different from the principal angles corresponding to

canonical correlations, as the GSVD is different from canonical correlations analysis (CCA).30

A unique row basis vector vn that is significant in either D1 or D2 and with an angular dis-

tance of hn � 6p=4, which corresponds to a ratio of r1;n=r2;n � 1 or � 1, respectively, is

mathematically approximately exclusive to either D1 or D2 and for consistency should be inter-

preted with the corresponding column basis vector u1;n or u2;n to represent phenomena exclusive

to either the first or the second dataset. A unique row basis vector vn that is significant in both

D1 and D2 and with an angular distance of hn � 0, which corresponds to r1;n=r2;n � 1, is math-

ematically common to D1 and D2 and should be interpreted with both u1;n and u2;n to represent

phenomena common to both datasets.

Mathematically invariant under the exchange of the two matrices or the reordering of the

pairs of matched columns or the rows, the GSVD is also blind to the labels of the matrices, the

columns, and the rows. These labels are only used to interpret the row and column basis vectors

in terms of the phenomena recorded in the datasets.

FIG. 1. The GSVD of the WGS read-count profiles of patient-matched astrocytoma tumor and normal DNA. The GSVD is

depicted in a raster display with the relative WGS read-count, i.e., DNA copy-number amplification (red), no change

(black), and deletion (green). This GSVD depiction is denoted as approximate, even though the GSVD of Eq. (1) is exact,

because only the first through the 5th and the 81st through the 85th row and the corresponding tumor and normal column

basis vectors and generalized singular values are explicitly shown. The angular distances of Eq. (2) are depicted in a bar

chart. The red and green contrasts for the datasets Di, the dataset-specific column basis vectors Ui and generalized singular

values Ri, and the dataset-shared row basis vectors VT, are c¼ 1, 750 and 0.0005, and 5, respectively.
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ASTROCYTOMA TUMOR-EXCLUSIVE GENOTYPE AND PHENOTYPE

The second most tumor-exclusive row basis vectors uncovered by the previous GSVDs of

patient-matched Agilent GBM and, separately, Affymetrix LGA tumor and normal profiles are

also the first and third most significant in the GBM and LGA tumor genomes, respectively. By

using the clinical labels of the previous discovery sets of patients in survival analyses, these

second row basis vectors were shown to separate subsets of patients of an approximately one-

year median survival time from the complement subsets of median survival times of three years

in GBM and five years in LGA. The corresponding second GBM and LGA tumor column basis

vectors, i.e., patterns, were shown to similarly separate subsets of patients of an approximately

one-year median survival time from the previous validation sets of patients.

By using the genomic coordinates of the microarray probes in segmentation analyses, the

GBM and LGA patterns were shown to describe similar genome-wide patterns of co-occurring

DNA CNAs that encode for opportunities for transformation via the Ras and Shh pathways.

The GBM pattern, which encompasses the LGA pattern, such that these opportunities are

enhanced in GBM relative to LGA, includes most CNAs that were known and several that

were unrecognized in GBM prior to its discovery. We found that the GBM pattern predicts

GBM survival statistically better than any one CNA that it identifies and that none of the previ-

ously known CNAs was correlated with GBM survival. We, therefore, suggested that the astro-

cytoma survival phenotype is an outcome of its global genotype.

Here, we find that the second tumor column basis vector uncovered by the GSVD of the

WGS profiles is the second most significant in and exclusive to the astrocytoma tumor relative

to the normal genomes and describes the same genotype (Fig. 2). To compare the correspond-

ing WGS astrocytoma pattern to the Agilent GBM and Affymetrix LGA patterns, we used the

FIG. 2. Astrocytoma tumor-exclusive genotype and phenotype. The similar genome-wide patterns of CNAs described by

the second (a) Agilent GBM, (b) Affymetrix LGA, and (c) WGS astrocytoma tumor column basis vectors are depicted in

plots of relative copy numbers, ordered and colored based upon genomic coordinates, and segmented by CBS (black lines),

including GBM-specific (blue), GBM- and LGA-shared (black), or WGS technology-filled in (red) CNAs. (d) The second

WGS astrocytoma row basis vector is depicted in a plot showing the classification of the 85 patients into low (red) or high

(blue) superposition coefficients. (e) The WGS astrocytoma tumor dataset is depicted in a raster showing the tumor-

exclusive genotype-phenotype relation.
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genomic coordinates of the WGS bins and classified the 111 genomic segments of at least five

Agilent probes in length, previously identified in the Agilent GBM pattern, as amplified, unal-

tered, or deleted in the WGS astrocytoma pattern in addition to the Affymetrix LGA pattern

(Dataset S2). The classification is based upon the differences, in standard deviations, between

the relative copy-number means of the segments and the autosome or the chromosomes. We

find that the WGS astrocytoma pattern is approximately bounded above by the Agilent GBM

and below by the Affymetrix LGA pattern; � 83% of the segments that are amplified or

deleted in the WGS astrocytoma pattern are a subset and a superset of, and of a lesser or

greater magnitude than, those that are amplified or deleted in the Agilent GBM and Affymetrix

LGA patterns, respectively.

An approximately one-year median survival time phenotype

By using the clinical labels of the patients, we find that the WGS astrocytoma pattern is

correlated with the same survival phenotype as the Agilent GBM and Affymetrix LGA patterns

(Fig. S3). Of the 85 patients, 52 are classified as having high weights of the astrocytoma pattern

in their tumor profiles based upon the superposition coefficients of the second tumor column

basis vector in the column vectors of the tumor dataset. The vector that lists these coefficients

is linearly proportional to the second row basis vector. Of the same 85 patients, 54, including

51, i.e., �98% of the 52, have high Pearson correlations of their tumor profiles with the pattern.

We use the correlation cutoff of 0.15 and compute the coefficient cutoff by scaling 0.15 by the

Frobenius norm of the vector that lists the correlations, as was previously established for the

Agilent GBM discovery set of patients and validated for the Agilent GBM validation and

Affymetrix LGA discovery and validation sets of patients.

In Kaplan-Meier (KM) survival analyses, the subsets of patients with high superposition

coefficients and, separately, Pearson correlations are of an approximately one-year median sur-

vival time, statistically significantly shorter than the median survival time of five years of the

complement subsets of patients. In Cox proportional hazards models, a high coefficient or, sepa-

rately, correlation confers �8 times the hazard of a low coefficient or correlation, respectively.

A genotype encoding for transformation via the Notch together with the Ras and Shh

pathways

By filling in gaps in the genome which are not covered by either the Agilent or the

Affymetrix probes, the WGS astrocytoma pattern adds to the description of the genotype that

corresponds to the one-year survival phenotype. We find amplifications previously unrecognized

in astrocytoma which encode for increased cell communication via the canonical Notch path-

way in support of transformation via the Ras and Shh and the hominin-specific Notch pathway

(Fig. 3).

The largest of the 111 segments, which spans �79M nucleotides on chromosome 1 across

the bands 1p31.1-q23.3, is classified as unaltered in the WGS pattern, the same as in the micro-

array patterns. The segment contains the two largest gaps between the microarray probes on

chromosome 1. The largest, a 23M-nucleotide gap (1p11.2-q21), includes the centromere.

Circular binary segmentation (CBS)31 of the WGS pattern identified a 21M-nucleotide segment

(1p11.2-q12) within the gap, which is classified as amplified. At 739K nucleotides from the 50

end of the gene NOTCH2 (1p12-p11.2), the amplification is within its promoter region.32

Similarly, a 140K-nucleotide gap (9q34.3), which includes the 9q telomere, overlaps 79K of a

104K-nucleotide amplified segment in the promoter region of NOTCH1 at 1.6M nucleotides

from its 50 end. These amplifications within the promoter regions, rather than of the genes,

encode for overexpression of wild-type NOTCH1/2.33,34 Three genes in the core Notch pathway

are on two of the 111 segments, which are approximately coextensive with 19q and 20p and

are amplified in the GBM but not the LGA or astrocytoma patterns. The ligand-encoding JAG1
and DLL3 are involved in sending, and PSENEN in receiving, the Notch signals. These amplifi-

cations encode for overactivation of Notch in GBM. Note that the co-deletion of 1p and 19q,
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which can underactivate Notch, is associated with an oligodendroglioma brain cancer patient’s

longer survival.

Segmentation of the WGS pattern also identifies a 76K-nucleotide segment within the second

largest gap on chromosome 1 (1q21.2). The segment, which is classified as amplified, maps to

the neuroblastoma breakpoint family gene NBPF14, so-called because NBPF1 (1p36.13) was dis-

covered in a screen for genes disrupted by a translocation in a neuroblastoma brain cancer

patient’s normal genome.35 The segment includes 38 repeats of a 1.5K-nucleotide sequence that

encodes for a copy of the protein domain of unknown function 1220 (DUF1220).36 At 2.3M

nucleotides from the 50 end of the hominin-specific NOTCH2NL (1q21.1), the amplification is

within its promoter region and encodes for its overexpression.

Overactivation of the canonical Notch pathway supports human normal to tumor cell transfor-

mation via the Ras and Shh and the hominin-specific Notch pathway. In response to Ras-mediated

growth signals, wild-type NOTCH1/2 upregulate the cell cycle-promoting cyclin-dependent kinase

(CDK) encoded by CDK4 and blocks the cell cycle arrest, apoptosis, and senescence-promoting

CDK inhibitors p16INK4A and p15INK4B encoded by CDKN2A/B.37–40 Note that in the absence of

CDK inhibitors, DNA-damaged cells acquire deformed polyploid nuclei.41,42 In response to Shh-

mediated developmental signals, NOTCH1/2 facilitate the clearance of the tumor suppressor Ptch1,

the concurrent accumulation of the Shh signal-transducing protein encoded by SMO, and the

increased downstream conversion of the proteins encoded by the oncogenes GLI1/3 into cell cycle

transcriptional activators.43,44 Note that Notch is critical for an Shh-induced medulloblastoma brain

cancer tumor’s development.45

In the hominin-specific Notch pathway, NOTCH2NL can act as a ligand-independent

NOTCH1/2.46 Note that overexpression of NOTCH2NL and gain of DUF1220 are associated

with an increased brain size, both developmentally within the human and evolutionarily within

the primate population.47

We also find consistency between the DNA CNAs and mRNA expression, which addition-

ally supports the astrocytoma tumor-exclusive genotype-phenotype relation.48 Of the 29 genes

highlighted, 19 are overexpressed or underexpressed in the subset of tumors that have high

FIG. 3. The astrocytoma tumor-exclusive genotype encodes for increased cell communication via the canonical Notch

pathway in support of transformation via the Ras, Shh, and hominin-specific Notch pathways. The astrocytoma genotype is

depicted in a diagram of the WGS technology-filled in Notch pathway (yellow) in addition to the microarray-described Ras

and Shh pathways, which include CNAs unrecognized in GBM prior to the discovery of the GBM pattern (violet).

Explicitly shown are amplifications (red) and deletions (green) of genes and transcript variants (rectangles), either GBM-

and LGA-shared (black) or GBM-specific (blue), and relationships that directly or indirectly lead to increased (arrows) or

decreased (bars) activities of the genes and transcripts, the tumor suppressor proteins p53, Rb, and Ptch1, and the oncopro-

teins Notch1, Notch2, and Notch2nl (circles).
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weights of the WGS astrocytoma pattern in their profiles, with the corresponding Mann-

Whitney-Wilcoxon (MWW) P-values <0.05. This subset of tumors corresponds to the subset of

patients that have the approximately one-year survival phenotype. Of these 19 genes, 16, i.e.,

�84%, consistently map to amplifications or deletions in the tumor-exclusive genotype (Figs.

S4–S7).

BLIND SEPARATION FROM NORMAL AND EXPERIMENTAL SOURCES OF THE

COPY-NUMBER VARIATION

By using the experimental labels of the DNA samples, we find that the GSVD blindly, i.e.,

without a priori information, separates the astrocytoma tumor-exclusive genotype and pheno-

type from CNVs common to the normal and tumor genomes and from experimental variations

specific to the minimally preprocessed WGS profiles. These include the effects of the GC con-

tent variations across the tumor and normal genomes that vary in magnitude between experi-

mental batches. The first tumor and 85th normal column basis vectors are the most significant

in and exclusive to and are correlated with the fractional GC content across the tumor and nor-

mal genomes, respectively, with both correlations � 0.78 and both MWW P-values <10�105

(Figs. S8–S10). Both vectors roughly describe frequent spikes of reduced copy numbers super-

imposed on an invariant baseline in agreement with the polymerase chain reaction (PCR)

amplification-dependent WGS technology underestimating the abundance of GC-poor sequen-

ces. The corresponding first and 85th row basis vectors are correlated with experimental varia-

tions in the GCC of the tumor and TSS of the normal DNA with both hypergeometric and both

MWW P-values <10–2 (Fig. S11).

The 82nd row basis vector is the second and fifth most significant in the normal and tumor

genomes, respectively, and approximately common to both. The vector classifies the patients by

gender with both hypergeometric and MWW P-values <10–13 (Fig. S12). Both normal and

tumor 82nd column basis vectors describe a deletion of the X chromosome with both MWW

P-values <10�104

(Figs. S13–S15). While the deletion is dominant in the normal and tumor

genomes of the 53 male patients, it is missing from the astrocytoma pattern, where the X

chromosome is classified as unaltered, the same as in the GBM and LGA patterns.

THE TUMOR-EXCLUSIVE GENOTYPE PREDICTS THE SURVIVAL PHENOTYPE

STATISTICALLY BETTER THAN ANY OTHER INDICATOR

Because the Agilent GBM pattern encompasses the WGS astrocytoma and Affymetrix

LGA patterns in the number and magnitude of CNAs and because it was derived from the larg-

est discovery set, i.e., of 251 patients, we additionally classified the 85 WGS astrocytoma

patients based upon the correlations of the Agilent GBM pattern with their WGS astrocytoma

tumor profiles. We find that the Agilent GBM pattern predicts survival statistically better than

and independent of the best other indicators, i.e., the patient’s age and tumor’s grade49 and sur-

vival and response to treatments, i.e., chemotherapy and radiation, better than the existing tests,

i.e., for MGMT promoter methylation and IDH1 mutation.50,51 In KM analyses and Cox models

of the patients, the pattern identifies the biologically consistent survival phenotype with greater

median survival time differences, hazard ratios, and concordance indices, i.e., accuracies, and

lesser log-rank P-values than either indicator or test (Fig. 4), and, in KM analyses and Cox

models of the treated patients, better than either test (Fig. S16). The bivariate hazard ratios of

the pattern and either indicator are within the 95% confidence intervals of the corresponding

univariate ratios (Table S1). The pattern is also independent of intratumor heterogeneity as it

is reflected in the TCGA parameters of the tumor sample’s volume, the slide’s percent tumor

cells and percent tumor nuclei, the portion’s weight, and the analyte’s and aliquot’s DNA

concentrations.

This is consistent with the classifications based upon the WGS astrocytoma pattern, where

the median survival time differences are the same and the hazard ratios are within the 95%

confidence intervals of those based upon the Agilent GBM pattern. This is also consistent with

the classifications of an Affymetrix set of 497 astrocytoma patients and, separately, an Agilent
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set of 364 GBM patients, from the previous discovery and validation sets of GBM and LGA

patients, based upon their Affymetrix and Agilent tumor profiles, respectively, where the pattern

is independent of each treatment, indicator, and test (Figs. S17 and S18, Tables S2 and S3, and

Datasets S3 and S4).

That the tumor-exclusive genotype-phenotype relation is statistically independent of the

current indicators, tests, and treatments of astrocytoma implies that the information contained in

the relation is not currently being used in clinical practice. This information includes, e.g., bio-

chemically putative drug targets and combinations of drug targets that are predicted to be corre-

lated with outcome. By using this information in clinical practice, therefore, it can be expected

to improve the prognostics, diagnostics, and therapeutics of the disease.

DISCUSSION

That the astrocytoma tumor-exclusive genotype-phenotype relation is invariably uncovered

by, and only by, the GSVD, independent of the profiling technology and the astrocytoma grade,

highlights the role of mathematics in genomic data science and machine learning. Unlike most

other analyses, the GSVD uses minimally preprocessed genomic data without feature engineer-

ing. This accounts for the robustness of the GSVD to perturbations to the data and is possible

because of its scalability to petabyte-sized data. Other analyses often standardize the data based

upon assumptions, which may confound the data and contribute to the low reproducibility noted

in genomic profiling.

Unlike most other analyses, the GSVD uses the patient-matched normal data to analyze the

tumor data, including tumor genomic regions of normal CNVs, e.g., the X chromosome. This

makes the GSVD sensitive to robust genotype-phenotype relations in small discovery sets of

only, e.g., 251, 59, and 85 patients, and possibly imbalanced validation sets of, e.g., 184 and 74

patients, with large genomic profiles of, e.g., 213K, 934K, and 2.8M probes or bins each. This

FIG. 4. Survival analyses of the WGS astrocytoma patients. The classifications of the 85 patients based upon (a) the

Agilent GBM pattern and, in addition, (b) age or (c) grade, or (d) MGMT promoter methylation or (e) IDH1 mutation are

depicted in KM curves highlighting median survival time differences (yellow) with the corresponding log-rank P-values

and Cox hazard ratios.

031909-9 Aiello, Ponnapalli, and Alter APL Bioeng. 2, 031909 (2018)



is possible because the GSVD uses the structure of the tumor and normal datasets, of two

column-matched but row-independent matrices, in the blind source separation (BSS)52–64 of the

tumor-exclusive from the normal genotype-phenotype relations and from experimental batch

effects. Patient-matched normal CNVs are often missing from other analyses of tumor CNAs,

even though CNVs overlap �12% of the normal human genome,65 where they are 102–104

times more frequent than point mutations,66 and are associated with both tumor and normal

development.67–69 When other analyses use patient-matched normal data, it is to standardize the

tumor data. This reduces the structure of the data to that of one matrix, and some of the infor-

mation regarding the similarity and dissimilarity between the tumor and normal genomes may

be lost.

The GSVD as a comparative spectral decomposition22,23 has been extended from two to

multiple matrices and, separately, two tensors.24–26 A recent tensor GSVD comparison of

ovarian cystadenocarcinoma tumor and patient- and microarray platform-matched normal

copy-number profiles uncovered chromosome arm-wide patterns of tumor-exclusive platform-

consistent CNAs that predict survival and response to chemotherapy. We conclude that

comparative spectral decompositions, such as the GSVD, underlie a mathematically universal

description of the genotype-phenotype relations in cancer that other methods miss.

METHODS

See supplementary material for the Methods section.
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