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Summary
Background Current models for predicting intraoperative hemorrhage in cesarean scar ectopic pregnancy (CSEP) are
constrained by known risk factors and conventional statistical methods. Our objective is to develop an interpretable
prediction model using machine learning (ML) techniques to assess the risk of intraoperative hemorrhage during
CSEP in women, followed by external validation and clinical application.

Methods This multicenter retrospective study utilized electronic medical record (EMR) data from four tertiary
medical institutions. The model was developed using data from 1680 patients with CSEP diagnosed and treated at
Qilu Hospital of Shandong University, Chongqing Health Center for Women and Children, and Dezhou Maternal
and Child Health Care Hospital between January 1, 2008, and December 31, 2023. External validation data were
obtained from Liao Cheng Dong Chang Fu District Maternal and Child Health Care Hospital between January 1,
2021, and December 31, 2023. Random forest (RF), Lasso, Boruta, and Extreme Gradient Boosting (XGBoost) were
employed to identify the most influential variables in the model development data set; the best variables were selected
based on reaching the λmin value. Model development involved eight machine learning methods with ten-fold cross-
validation. Accuracy and decision curve analysis (DCA) were used to assess model performance for selection of the
optimal model. Internal validation of the model utilized area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, Matthews correlation coefficient, and F1 score. These same indicators were also applied to
evaluate external validation performance of the model. Finally, visualization techniques were used to present the
optimal model which was then deployed for clinical application via network applications.

Findings Setting λmin at the value of 0.003, the optimal variable combination containing 9 variables was selected for
model development. The optimal prediction model (Bayes) had an accuracy of 0.879 (95% CI: 0.857–0.901) an AUC of
0.882 (95% CI: 0.860–0.904), a DCA curve maximum threshold probability of 0.41, and a maximum return of 7.86%.
The internal validation accuracy was 0.869 (95% CI: 0.847–0.891), an AUC of 0.822 (95% CI: 0.801–0.843), a
sensitivity of 0.938, a specificity of 0.422, a Matthews correlation coefficient of 0.392, and an F1 score of 0.925. In the
external validation, the accuracy was 0.936 (95% CI: 0.913–0.959), an AUC of 0.853 (95% CI: 0.832–0.874), a
sensitivity of 0.954, a specificity of 0.5, a Matthews correlation coefficient of 0.365, and an F1 score of 0.966. This
indicates that the prediction model performed well in both internal and external validation.

Interpretation The developed prediction model, deployed in the network application, is capable of forecasting the risk
of intraoperative hemorrhage during CSEP. This tool can facilitate targeted preoperative assessment and clinical
decision-making for clinicians. Prospective data should be utilized in future studies to further validate the extended
applicability of the model.
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Research in context

Evidence before this study
The extent of hemorrhaging in patients with cesarean scar
ectopic pregnancy (CSEP) significantly impact surgical
outcomes. We conducted a comprehensive search on PubMed
and the Cochrane Library, without language restrictions, for
studies published within the last decade that focused on
predicting intraoperative bleeding in patients with CSEP,
using the search terms “(CSEP or CSP) and (intraoperative
hemorrhage) and (prediction)”. While some studies have
investigated factors influencing intraoperative bleeding in
patients with CSEP, most have utilized traditional statistical
methods to perform multivariate analysis based on single
factor and often overlooked potential covariance or nonlinear
relationships between variables, thereby diminishing its
effectiveness in addressing nonlinear problems.

Added value of this study
We developed a predictive model for intraoperative
hemorrhage in patients with CSEP using 9 predictive variables
derived from electronic medical record (EMR) data of four
hospitals, and demonstrated its external validity. The Bayes
algorithm yielded the highest accuracy (0.879), clinical net
benefit (7.86%), and AUC (0.882).

Implications of all the available evidence
We demonstrated that leveraging EMR data as predictive
variables and employing ML for predictive modeling could
advance personalized medicine and enhance healthcare
quality.
Introduction
Cesarean scar ectopic pregnancy (CSEP) is a complica-
tion of pregnancy following cesarean section, charac-
terized by early implantation in the scar tissue from a
previous cesarean section.1 As gestational weeks prog-
ress, failure to detect and promptly address this condi-
tion through surgery may lead to late-stage uterine
rupture, intraoperative hemorrhage, and potential jeop-
ardy to the mother’s life.2 Regardless of the surgical
approach employed for patients with CSEP, the extent of
intraoperative bleeding significantly impacts surgical
success.3 While recent studies have explored influencing
factors of intraoperative bleeding in patients with CSEP
using logistic regression for multivariate analysis based
on single factors,4–6 this method often overlooks poten-
tial covariance or nonlinear relationships between vari-
ables, thereby diminishing its effectiveness in
addressing nonlinear problems.7

In recent years, the machine learning (ML) approach
derived from electronic medical records (EMR) has
garnered attention and recognition from clinicians. The
widespread utilization of EMR in healthcare facilities
enables more precise and convenient collection of pa-
tients’ clinical data.8 Similarly, ML applications have
experienced exponential growth and accelerated inno-
vation in recent years.9 In comparison to traditional
statistical methods, ML algorithms exhibit fewer con-
straints on data and possess the capability to effectively
model complex datasets,10 leading to their increasing
adoption in the medical domain. For instance,
researchers have devised an acute kidney injury (AKI)
prediction model capable of accurately forecasting
moderate to severe AKI 48 h prior to its onset.11 Simi-
larly, You Won Lee et al.12 developed six machine
learning models and successfully applied them to pre-
dict malaria using patient information. However, due to
the complexity of the ML model, specifically the pres-
ence of a so-called ‘black box’, direct explanation is
challenging.13 Therefore, model interpretation tools play
a crucial role. We utilized the model interpretation tool
(ibreakdown) to construct a model interpreter and
visually present the contribution of each variable
concisely. Furthermore, this study also leverages the
shiny web-based tool for deploying the model to a
network application, facilitating direct utilization by
clinicians for program prediction without requiring R
installation or programming background knowledge.14
Methods
Study participants
This is a multicenter retrospective study that primarily
comprises EMR data from four tertiary medical in-
stitutions. This study comprises three primary stages:
the selection of research subjects and screening of
predictive variables, the construction and evaluation of
multiple prediction models, and the development of a
web-based application for the optimal model. The model
development data included 1118 patients with CSEP
treated at Qilu Hospital of Shandong University
www.thelancet.com Vol 78 December, 2024
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between January 1, 2008, and December 31, 2023; 189
patients with CSEP treated at Chongqing Health Center
for Women and Children and 373 patients with CSEP
treated at Dezhou Maternal and Child Health Care
Hospital during the same period. The treatment
methods are based on the diagnosis of transvaginal so-
nography combined with surgical strategies derived
from extensive clinical experience at the hospital. These
include ultrasound-guided suction curettage combined
with hysteroscopy surgery, laparoscopic-assisted suction
curettage combined with hysteroscopy surgery, and
laparoscopic scar pregnancy lesion clearance combined
with suction curettage. External validation data were
obtained from Liao Cheng Dong Chang Fu District
Maternal and Child Health Care Hospital for the period
between January 1, 2021, and December 31, 2023. The
hospital inclusion criteria are consistent, requiring pa-
tients to be aged between 25 and 40 years old with a
history of cesarean section. Furthermore, patients firstly
diagnosed with CSEP must have a confirmed single
pregnancy via transvaginal ultrasonography, with
absence of uterine rupture and stable hemodynamics.
Additionally, those without surgical contraindications
are required to undergo pregnancy termination and
participate in follow-up care. Lastly, the study excluded
individuals who were unable to tolerate surgery or had
other malignancies.

Outcomes
The primary outcome measure for model development
was intraoperative hemorrhage, defined as a blood loss
of 300 or more during the CSEP surgical procedure.3

Model predictors
Initially, 20 factors influencing major bleeding during
CSEP were identified through systematic reviews, meta-
analyses,15 and expert clinical opinions. These factors
encompass demographic characteristics, reproductive
history, medical background, clinical symptoms, and
ultrasound examination features. Furthermore, candi-
date variables underwent additional screening based on
principles of variable reduction to determine their in-
clusion in the model.16 Random Forest (RF) is a classi-
fication algorithm that consists of multiple decision
trees. It builds machine learning models by randomly
sampling the training data and searching for the optimal
splitting solution. Each decision tree in RF is built using
feature metrics aligned with the dataset attributes,17,18

effectively assessing the importance of each feature.19

Lasso can select variables and reduce model
complexity through a series of parameters, thus pre-
venting overfitting. The complexity of Lasso is controlled
by λ, ultimately resulting in a model with fewer vari-
ables. It conducts 10-fold cross-validation to determine
the λmin value, where the minimum error serves as the
criterion for selecting predictive variables.20,21 In contrast
to conventional feature selection algorithms, Boruta
www.thelancet.com Vol 78 December, 2024
operates as a wrapper-based approach for selecting fea-
tures. Its objective lies in identifying the feature set that
exhibits maximum relevance to the dependent variable
rather than focusing solely on creating an optimized
compact subset tailored for specific models.22 Through
iterative elimination of low-correlation features, it
effectively mitigates signal noise and yields consistent
classification performance.23 Meanwhile, Extreme
Gradient Boosting (XGBoost) stands out as an
influential ensemble learning technique rooted in the
framework of classification trees; it amalgamates lower-
precision classifiers into higher-precision ones via iter-
ative computations. The resulting integrated classifier
takes shape as a decision tree interconnected by
branches—a robust instrument for effective
classification.24

Specifically, we employed RF, Lasso, Boruta, and
XGBoost to model the 20 influencing factor variables.
Subsequently, we ranked the variables with non-zero
coefficients based on their impact on the outcome var-
iables and identified common variables by taking the
intersection of those selected by all four methods.

Statistics
The determination of an adequate minimum sample
size for developing a multivariate predictive model
hinges on ensuring a robust representation of in-
dividuals and outcome events in relation to predictor
parameters.25 The combined sample size from four
medical institutions provided ample support for utiliz-
ing 20 predictive variables in both modeling and vali-
dation phases. Specifically, there were 1680 cases in the
modeling dataset, encompassing 197 (11.73%) patients
who experienced intraoperative hemorrhage; while
external validation involved 295 cases. Wang X et al.’s
analysis26 demonstrated that given a known exposure
proportion, a sample size calculator can be employed for
computation purposes. When “Expected value of the
(Cox-Snell) R-squared of the new model” is set to 0.9,
“Number of candidate predictor parameters for poten-
tial inclusion in the new model” is set to 9, “Level of
shrinkage desired at internal validation after developing
the new model” is set to 0.9, “Overall outcome propor-
tion (for a prognostic model) or overall prevalence (for a
diagnostic model)” is set to 0.12, and “C-statistic re-
ported in an existing prediction model study” is set to
0.8, we estimate the sample size to be 589. Additionally,
we also refer to a widely applied principle, namely, 10
events per variable (10 EPV). Of course, for ML, the
larger the sample size, the more robust the prediction
model it can build. The study’s sample size aligns with
analytical requisites. Continuous variables in the dataset
are reported as means with standard deviations, whereas
categorical variables are summarized as counts and
percentages. The gaze function within the autoReg
package is designed to automatically apply appropriate
statistical methods based on the characteristics of the
3
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data (quantitative, qualitative, etc.) and generate
descriptive statistics. All statistical analyses were per-
formed using R statistical software version 4.3.3.

Model development and comparison
Within the tidymodels framework, the modeling data
were randomly partitioned into 80% for training and
20% for testing (internal validation). Subsequently, the
data underwent preprocessing, with categorical variables
being treated as dummy variables, near-zero variance
variables being eliminated, and numerical variables be-
ing standardized to mitigate overfitting. Finally, a pre-
diction model was constructed using the
aforementioned 9 predictor variables. The mice and vim
packages were employed for the processing of missing
data. Among 1680 patients, 19 cases presented with
partial missing data for some variables, with an overall
missing rate of 1.13%. The data missing was entirely
random. With the assistance of the RF algorithm, we
carried out 5 imputations with 50 iterations on the
original missing data and accomplished a sensitivity
analysis. Eight machine learning models were utilized
to forecast major bleeding during CSEP: naive bayes
(Bayes), multi-layer perception (MLP), decision tree
(DT), K-nearest neighbor algorithm (KNN), logistic
regression (LR), RF, support vector machine (SVM), and
XGBoost. Furthermore, the eight models were evaluated
and compared using accuracy, the area under the
receiver operating characteristic curve (AUC), and de-
cision curve analysis (DCA). Internal and external vali-
dations of the optimal model were conducted using
sensitivity, specificity, Matthews correlation coefficient,
and F1 score.

Model interpretation and network application
Interpretability denotes elucidating how ML models
produce results. The opacity inherent in ML models
often impedes their effective utilization in clinical
settings, prompting extensive inquiry into enhancing
their interpretability.27,28 Herein, we have devised an
intuitive model interpreter leveraging iBreakDown
package capabilities; it not only expounds upon pre-
dictive factors but also interprets projected patient
outcomes. This tool operates independently from any
particular model and utilizes input predictor variables
for result interpretation while enabling predictions
for individual cases and generating partial depen-
dence plots (PDP) for visualizing variable signifi-
cance. Furthermore, employing Shiny package
functionalities facilitated integrating 9 chosen pre-
dictive variables and optimal modeling into an inter-
active web application.

Ethics
The study reporting adheres to the Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) guidelines and has obtained informed
consent from all participants, and only anonymous data
was used in the analysis. The study has been reviewed
and approved by the Ethics Committee of Qilu Hospital,
Shandong University, with approval number KYLL-
202311-038.

Role of funding source
The funders of this study were not engaged in the study
design, data collection, analysis and interpretation, nor
did they participate in the composition of the paper. All
authors had the right to access the raw data, and the
corresponding author was responsible for determining
whether to publish.
Results
Population characteristics
The retrospective study utilized a sample size of 1680
patients with ectopic pregnancy in cesarean scar to
develop the predictive model. Initially, 1889 patients
were extracted from the EMR, but a subset was excluded
from the sample, comprising 169 patients with drug
pretreatment, 20 patients with gestational trophoblastic
disease, 11 patients who underwent difficult surgery,
and 9 patients with tumors. The remaining 1680 pa-
tients were randomly divided into separate training and
test sets (internal validation set) in an 8:2 ratio. Addi-
tionally, an external validation was performed using a
cohort of 295 patients. The AIC of the logistic regression
models fitted by the 5 imputed data sets were 825.61,
825.73, 824.7, 825.61, and 825.56, respectively. Taking
the third imputed data set with the smallest AIC as the
control, the remaining 4 imputed data sets were
compared with it, and the Deviances
were −0.9099, −0.1246, 0.1270, and 0.0462, respectively,
with small differences. Moreover, when these 5 imputed
data sets were respectively compared with the original
data, the p-values of the chi-square tests were 0.1111,
0.1199, 0.1138, 0.1032, and 0.1325, respectively, indi-
cating no significant differences between the imputed
data and the original data. Since the AIC of the third
imputed data set was the smallest among all the
imputed data sets, the third imputed data set was
selected as the complete imputed data without missing
values for analysis (Supplementary Fig. S1). Refer to
Fig. 1 for a detailed description of the study design.
Among the 1680 patients with CSEP, 197 (11.73%)
experienced intraoperative hemorrhage. For intergroup
comparison, the p values of gestational age, duration of
vaginal bleeding before surgery, average diameter of the
gestational sac or mass, anterior myometrium thick-
ness, Serum hemoglobin (HGB) level, Serum β-human
chorionic gonadotropin (β-hCG) level, gestational sac or
mass, vaginal bleeding or abdominal pain before
admission, uterine arteriovenous fistula, placenta
accrete spectrum disorders in early pregnancy, and
blood flow grading on ultrasound imaging (Adler
www.thelancet.com Vol 78 December, 2024
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Fig. 1: Flow chart for model development and validation.
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Grading) were all less than 0.05, indicating statistically
significant differences. Please refer to Table 1 for de-
mographic and clinical characteristics; Fig. 2 illustrates
the correlation between variables; and Fig. 3 presents an
impact diagram.

Variable screening
The RF algorithm generated 500 trees, and each split of
the decision tree randomly selected 4 predictive vari-
ables. The out-of-bag data misclassification rate was
10.18% (Supplementary Fig. S2). In comparison, mean
decrease accuracy (MDA) utilized information entropy
to address overfitting, while mean decrease gini (MDG)
was suitable for high-dimensional or noisy data29; thus,
this study opted for MDG. Ultimately, the 20 most
influential predictive variables affecting the risk of
intraoperative hemorrhage were ranked in descending
order of importance (Supplementary Figs. S3 and S4).

When λmin is set to 0.003 in the Lasso model, 15
predictive variables exhibit non-zero coefficients. The
screening process is detailed in Supplementary Figs. S5
and S6. The model’s bias demonstrates minimal varia-
tion within the interval [λ1se, λmin].30 The ranking of non-
zero predictive variables is presented in Supplementary
Fig. S7, where the coefficient for anti-myometrium
thickness is −4.95 and that for placental villus implan-
tation in early prediction is 2.25, contributing signifi-
cantly to forward and reverse prediction of main
outcome measures respectively. Boruta iteratively
removed statistically irrelevant features and identified all
features that exhibited strong or weak correlations with
the output variables.31 After 400 iterations of the algo-
rithm, 12 important variables were confirmed. Please
refer to Supplementary Figs. S8 and S9 for the changes
in importance scores of each variable during Boruta
operation and the evolution of Z-scores during opera-
tion. XGBoost’s faster computation speed is
www.thelancet.com Vol 78 December, 2024
advantageous, leading to accurate training results and
relaxed data requirements. The model demonstrated
strong generalization ability and increased scalability,32

ultimately identifying 19 predictor variables. The
importance of these variables is illustrated in
Supplementary Fig. S10.

The predictive variables identified by RF, Lasso,
Boruta, and XGBoost were selected as the common el-
ements for developing the prediction model. Nine pre-
dictive variables were included: gestational age, duration
of vaginal bleeding before surgery, average diameter of
the gestational sac or mass, anterior myometrium
thickness, Serum HGB level, Serum β-hCG level, uter-
ine arteriovenous fistula, placenta accrete spectrum
disorders in early pregnancy, and blood flow grading on
ultrasound imaging. Please refer to Supplementary
Fig. S11 for Wayne diagram.

Model development and performance comparison
In the training set, the Bayes model exhibited the
highest accuracy at 0.879 (95% CI: 0.857–0.901), fol-
lowed by the Logistic model at 0.818 (95% CI:
0.798–0.838). In terms of AUC value comparison, the
Bayes model achieved a value of 0.882 (95% CI:
0.860–0.904), slightly lower than the maximum value of
RF model at 0.888 (95% CI: 0.866–0.910). When
considering net return rate, the Bayes model demon-
strated a maximum threshold probability of 0.41 and a
corresponding maximum return rate of 7.86%, sur-
passing all other models in this aspect. In the training
set, when the cutoff value was set at 0.968, the sensitivity
and specificity were 0.769 and 0.868 respectively
(Supplementary Figs. S12–S14).

Internal and external validation of the final model
In internal validation, the accuracy of the Bayes model
on the test set was 0.869 (95% CI: 0.847–0.891), AUC
5
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Predictive variables Levels Without intraoperative
hemorrhage (bleeding
volume < 300 ml)
(N = 1483)

Intraoperative
hemorrhage (bleeding
volume ≥ 300 ml)
(N = 197)

p value

Age (y) Mean ± SD 33.7 ± 4.8 33.6 ± 4.7 0.632

Gestational age (d) Mean ± SD 55.6 ± 19.0 72.7 ± 22.2 <0.001

Number of pregnancies Mean ± SD 3.8 ± 1.6 3.7 ± 1.6 0.608

Number of miscarriages Mean ± SD 1.8 ± 1.4 1.9 ± 1.4 0.795

Number of previous cesarean sections Mean ± SD 1.5 ± 0.6 1.5 ± 0.6 0.376

Time since last cesarean delivery (m) Mean ± SD 62.1 ± 44.0 61.9 ± 43.4 0.969

Duration of vaginal bleeding before surgery (d) Mean ± SD 6.0 ± 10.2 12.2 ± 15.8 <0.001

Duration of abdominal pain (d) Mean ± SD 1.0 ± 4.1 1.9 ± 6.6 0.065

Average diameter of the gestational sac or mass (cm) Mean ± SD 2.4 ± 1.5 4.9 ± 2.0 <0.001

Anterior myometrium thickness (cm) Mean ± SD 0.3 ± 0.2 0.1 ± 0.1 <0.001

Serum HGB level (g/L) Mean ± SD 120.7 ± 14.4 111.6 ± 18.8 <0.001

Serum β-HCG level (mIU/ml) Mean ± SD 37329.2 ± 46169.7 50975.0 ± 66615.4 0.006

Gestational sac or mass Mass 310 (20.9%) 82 (41.6%) <0.001

Sac 1173 (79.1%) 115 (58.4%)

Past history of CSEP Negative 1454 (98%) 196 (99.5%) 0.248

Positive 29 (2%) 1 (0.5%)

Vaginal bleeding or abdominal pain before admission None 463 (31.2%) 47 (23.9%) <0.001

Bleeding 718 (48.4%) 135 (68.5%)

Abdominal pain 287 (19.4%) 15 (7.6%)

Both 15 (1%) 0 (0%)

Fetal cardiac activity Negative 898 (60.6%) 118 (59.9%) 0.921

Positive 585 (39.4%) 79 (40.1%)

Embryo bud Negative 754 (50.8%) 101 (51.3%) 0.971

Positive 729 (49.2%) 96 (48.7%)

Uterine arteriovenous fistula Negative 1470 (99.1%) 176 (89.3%) <0.001

Positive 13 (0.9%) 21 (10.7%)

Placenta accrete spectrum disorders in early pregnancy Negative 1472 (99.3%) 180 (91.4%) <0.001

Positive 11 (0.7%) 17 (8.6%)

Blood flow grading on ultrasound imaging None 181 (12.2%) 13 (6.6%) <0.001

Sparse 371 (25%) 25 (12.7%)

Rich 292 (19.7%) 82 (41.6%)

Very rich 639 (43.1%) 77 (39.1%)

Quantitative variables are reported as means and standard deviations, whereas qualitative variables are expressed as counts (percentages). p-values for quantitative variables
were calculated using the Student’s t-test to assess significance, while Pearson’s chi-square test was employed for qualitative variables. Total (n = 1680). CSEP: cesarean scar
ectopic pregnancy; SD: standard deviation; p < 0.05.

Table 1: Clinical data baseline table of study subjects grouped by intraoperative hemorrhage.
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was 0.822 (95% CI: 0.801–0.843), sensitivity was
0.938, specificity was 0.422, Matthews correlation
coefficient was 0.392, and F1 score was 0.925. In
external validation, the accuracy of the Bayes model
was 0.936 (95% CI: 0.913–0.959), AUC was 0.853
(95% CI: 0.832–0.874), sensitivity was 0.954, speci-
ficity was 0.5, and Matthews correlation coefficient
was 0.365, with an F1 score of 0.966. This indicated
that in external validation, the model had excellent
ability to identify intraoperative hemorrhage in pa-
tients with CSEP. The ROC curves, Lift curves, and
confusion matrices of the model in internal and
external validations are shown in Supplementary
Figs. S15–S20 respectively.
Interpretation of the model
The iBreakDown package can aid clinicians in making
predictions. To begin with, PDP were utilized to eluci-
date the influence of individual predictive variables on
the primary outcome measures. As depicted in
Supplementary Figs. S21 and S22, there is a positive
correlation between the average diameter of the gesta-
tional sac or mass and the prediction of intraoperative
hemorrhage during CSEP surgery; specifically, a larger
value corresponds to a higher risk of intraoperative
hemorrhage in patients with CSEP during surgery.
However, while there are fluctuations in the prediction
of intraoperative hemorrhage during CSEP surgery
when the anterior myometrium thickness is below
www.thelancet.com Vol 78 December, 2024
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Fig. 2: The relationship between variables is depicted graphically using scatter plots, density plots, histograms, and box plots to gain insights
into their distribution.
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0.7 cm, it generally exhibits a negative correlation—
indicating that a thinner myometrium is associated
with an increased risk of intraoperative hemorrhage in
patients with CSEP during surgery. This finding aligns
with clinical practice. Furthermore, patient prediction
results are primarily employed to forecast individual
probabilities of experiencing intraoperative
Fig. 3: The Sankey diagram effectively illustrates the allocation of the res

www.thelancet.com Vol 78 December, 2024
hemorrhage. By randomly selecting main outcome
measures as individuals with and without intra-
operative risk of significant adverse events and calcu-
lating their predicted probabilities (0 and 0.863
respectively), we obtained results consistent with those
observed in actual main outcome measures
(Supplementary Figs. S23 and S24).
earch subject across various predictor variables.

7
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Development of convenient applications
Our developed prediction model can be executed locally
or deployed on the Internet via Shiny, enabling the
sharing of applications without the need for R-code
software. Upon inputting the actual values of the 9
predicted variables required by the model, the applica-
tion will automatically calculate the probability of intra-
operative hemorrhage in patients with CSEP, as
depicted in Fig. 4. The web application is accessible
online (https://cnsdql.shinyapps.io/csep-prediction-
model/, test account: SuperManagerr, password: QiLu-
hospitall). New users can also register for free using
their personal email.
Discussion
This study has developed a ML model based on EMR
data from multiple center hospitals, demonstrating
strong discriminative ability and clinical utility in pre-
dicting the risk of intraoperative hemorrhage in patients
with CSEP. The model’s performance has been exter-
nally validated at another medical institution. In com-
parison with previously published models, this novel
model achieved superior predictive accuracy through
rigorous variable selection, development, validation,
interpretation, and network deployment. It is charac-
terized by its convenience and practicality, offering
substantial clinical value to guide rapid decision-making
for clinicians. This can facilitate targeted preoperative
preparations such as ensuring an adequate supply of
blood transfusion units or selecting experienced surgical
Fig. 4: The application will automatically estimate the likelihood of intra
pregnancy.
teams. Ultimately, these measures have the potential to
significantly reduce intraoperative complications and
improve surgical success rates while informing post-
operative care priorities.

It is widely acknowledged that ML models offer su-
perior predictive performance compared to traditional
linear models.33 This advantage enables the construction
of a relatively robust model from complex data.34 ML
excels in handling heterogeneous multidimensional
data, as demonstrated by the inclusion of nine predictive
variables in this study, such as the average diameter of
the gestational sac or mass and the thickness of the
anterior myometrium, which exhibited high heteroge-
neity. Furthermore, the utilization of EMR data in this
study ensured accuracy through manual review prior to
implementation. Leveraging EMR data as predictive
variables and employing ML for predictive modeling can
facilitate personalized medicine and enhance care
quality.35 Additionally, visualization strategies were
employed to elucidate the predictive model and develop
practical network applications. This step is essential for
dispelling concerns regarding black box models and
reinstating confidence in ML within the medical field.36

Moreover, during model development, cross-validation,
internal validation, and external validation were uti-
lized to maximize reproducibility by pre-setting random
seeds—a prerequisite for ensuring clinical significance
through model interpretability.37

Recent studies have focused on intraoperative hem-
orrhage among patients with CSEP. Yang F et al.5 uti-
lized logistic regression analysis to develop a predictive
operative hemorrhage in CSEP patients. CSEP: cesarean scar ectopic
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model based on MRI indicators for three key influ-
encing factors from a cohort comprising 187 cases
across tertiary medical facilities in Southwest China
aimed at assessing intraoperative hemorrhage risk
during cesarean sections. Their model achieved an AUC
value of 0.896 during training and 0.915 during valida-
tion; however, due to limited sample size and absence of
external validation, further scrutiny is required
regarding its predictive performance. Similarly, Lin Y
et al.6 conducted an analysis using logistic regression
within a tertiary medical institution involving only 55
cases, and identified clinical classification and gesta-
tional sac diameter as significant contributors towards
major intraoperative bleeding. In addition to small
sample sizes, in line with previous models utilizing
similar methods, it was noted that logistical regression
struggles with addressing variable nonlinearity.7 As
emphasized by Lin Y, the findings necessitate additional
confirmation through increased case numbers and
randomized controlled trials.

We developed and externally validated an intra-
operative hemorrhage prediction model for patients with
CSEP using 9 clinical variables available in the EMR of 4
hospitals. RF, Lasso, Boruta, and XGBoost were
employed to screen the 20 influential variables from the
model development data with the aim of addressing
collinearity through L1 regularization. We selected these
20 variables for specific reasons. First, the purpose of this
study was to develop a practical predictive application that
could be used in clinical settings, so we needed to select a
small number of patient markers that were easily acces-
sible. Considering practicality, if one marker can achieve
the prediction goal, it should not include other variables.
More importantly, these predictor variables are preoper-
ative markers. Second, based on previous literature and
meta-analysis results, these 20 variables are commonly
used indicators in similar studies. Finally, it is worth
noting that the data used in this study covers 15 years of
patient information and was analyzed retrospectively; in
addition, these 20 variables are the most comprehensive
and easily accessible records in our electronic medical
records. To identify the best fitting effect, we applied
eight ML algorithms to fit each of the 9 predictive vari-
ables individually. Ultimately, the Bayes algorithm yiel-
ded a model with superior accuracy (0.879), clinical net
benefit (7.86%), and AUC (0.882). Similarly, this model
demonstrated excellent performance on both internal and
external validation sets.

Ban Yet al.3 reported that the average diameter of the
gestational sac or mass and anterior myometrium
thickness were independent factors influencing intra-
operative hemorrhage, and subsequently developed a
clinical practical classification based on this finding. Our
study yields consistent results, with these two variables
emerging as primary indicators contributing signifi-
cantly to intraoperative hemorrhage. This is further
supported by our Shiny-developed network application.
www.thelancet.com Vol 78 December, 2024
Intraoperative hemorrhage during CSEP represents
a significant surgical complication. Upon diagnosis,
proactive measures must be implemented for its man-
agement. Equally crucial is the accurate prediction of
false negative (missed diagnosis rate) and false positive
(misdiagnosis rate) outcomes by the model, necessi-
tating a high level of accuracy. Notably, the Bayesian
model demonstrated superior performance. Intrigu-
ingly, the final cutoff value for the Bayesian model was
0.968, with a sensitivity of 0.769, specificity of 0.868, and
a maximum Youden index of 0.637 achieved. This in-
dicates that an individual prediction probability
exceeding 0.968 is essential to fully confirm the risk of
major bleeding. Furthermore, in accordance with ROC
curve principles, reducing the cutoff value can enhance
sensitivity while decreasing specificity. However, the
outcome is a reduction in the missed diagnosis rate and
an increase in the misdiagnosis rate. For instance, with
a cutoff value of 0.5, the sensitivity is 0.924, specificity is
0.513, and the Youden index is 0.437; resulting in a
missed diagnosis rate of 7.6% and a misdiagnosis rate
of 48.7%. It should be noted that such adjustments are
made under the premise that misdiagnosis will not
significantly impact clinical benefits. Nevertheless, given
that intraoperative hemorrhage as an outcome variable
is binary, any non-zero result from the ibreakdown
package for patients with CSEP indicates a risk of
intraoperative hemorrhage.

We need to acknowledge several limitations of our
study. Firstly, this study was conducted in China and the
selection of study subjects was primarily based on local
populations, with treatment strategies matched accord-
ing to practical clinical types. Therefore, there may be
potential biases in extrapolating the results to global
populations, which is a common issue with such pre-
diction models.7,8,38 However, it can be easily recalibrated
for use in other countries39 and we welcome the op-
portunity to do so. Secondly, there is currently no
standard for calculating sample size for ML-based pre-
diction models,8 therefore, we have adopted multiple
validation methods to enhance the model’s ability to
predict intraoperative hemorrhage in patients undergo-
ing CSEP surgery. Thirdly, the 9 predictive variables
selected by the development model already exist at
admission; however, in real-world clinical settings,
intraoperative factors such as operation time and doc-
tors’ experience also affect the risk of intraoperative
massive bleeding. Additionally, as advancements have
been made in diagnostic and therapeutic techniques
over the past 15 years when our study subjects were
treated, theoretically this could lead to a reduction in
intraoperative bleeding during CSEP surgeries. Conse-
quently when extrapolated to the general population it
may result in an increased rate of misdiagnosis within
our model. To address this issue we are collecting data
from more hospitals over recent years and hope to
further optimize the model using recent data from
9
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multiple centers.7 Finally, the data used for model
development was obtained from patients admitted into a
specific medical institution rather than large databases,
which might introduce Berkson bias.40,41 Fortunately,
compared with published studies,5,6 our sample size is
relatively large. Therefore, we believe that developed
model will help us better understand risk of major intra-
operative bleeding among patient undergoing CSEP.

In conclusion, we have developed a clinically advan-
tageous, convenient, and practical network application.
While prospective validation is still necessary, it is now
feasible to anticipate the risk of significant complica-
tions in CSEP surgery, thereby enabling physicians to
make targeted clinical decisions proactively.
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