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Atherosclerosis represents a major cause of death in the world. It is known that Lipofundin 20% induces atherosclerotic lesions
in rabbits, but its effects on serum lipids behaviour and redox environment have not been addressed. In this study, New
Zealand rabbits were treated with 2 mL/kg of Lipofundin for 8 days. Then, redox biomarkers and serum lipids were determined
spectrophotometrically. On the other hand, the development of atherosclerotic lesions was confirmed by eosin/hematoxylin
staining and electron microscopy. At the end of the experiment, total cholesterol, triglycerides, cholesterol-LDL, and cholesterol-
HDL levels were significantly increased. Also, a high index of biomolecules damage, a disruption of both enzymatic and
nonenzymatic defenses, and a reduction of nitric oxide were observed. Our data demonstrated that Lipofundin 20% induces
hyperlipidemia, which promotes an oxidative stress state. Due to the importance of these phenomena as risk factors for

atherogenesis, we suggest that Lipofundin induces atherosclerosis mainly through these mechanisms.

1. Introduction

Atherosclerosis is a chronic vascular disease and a leading
cause of death in the western world. It is well established
that hyperlipidemia and oxidative stress (OS) are major
contributors to atherogenic development [1]. The retention
of low-density lipoproteins (LDL) in the arterial wall [2]
and their oxidation by reactive oxygen species (ROS) ini-
tiates a complex series of biochemical and inflammatory
reactions [3, 4]. Oxidized LDL (ox-LDL) are internalized
by macrophages through the scavenger receptors, leading to
foam cell formation [5]. Furthermore, oxidized cholesterol
products present in blood and in arterial plaques increase
cholesterol biosynthesis, affect plasma membrane structure,

cell proliferation, and cell death, and promotes atherosclero-
sis development [6].

The rabbit is one of the most widely used animal
models in atherosclerosis research. One strategy to induce
atherosclerotic lesions in these animals is through an
intravenous administration of Lipofundin 20%, a lipid-rich
emulsion used in parenteral nutrition, which produces aortic
lesions, characterized by subendothelial lipid accumulation,
intimal thickening, and a distortion of vascular tissue archi-
tecture [7, 8]. The impact of Lipofundin 20% administration
on lipid levels and redox environment in New Zealand white
(NZW) rabbits had not been studied. In the present work, we
demonstrated that Lipofundin 20% induces a hyperlipemic



state and a systemic/aortic oxidative stress, which can lead to
atherosclerotic lesions development.

2. Materials and Methods

2.1. Animals. Standard NZW male rabbits, weighing 2.0
2.5kg and 12 weeks old, were obtained from CENPALAB
(Bejucal, Havana, Cuba). Rabbits were housed under con-
ventional conditions exposed to light-dark cycle of 12 h with
free access to water and food. Animal studies were performed
with the approval of Pharmacy and Food Sciences College
Institutional Animal Ethical Committee. All procedures were
performed in accordance with the guidelines stipulated by
the Institutional Animal Care Committee and the European
Union Guidelines for animal experimentation.

2.2. Lipofundin Composition. Lipofundin MCT/LCT 20%
(Braun Melsungen AG, Melsungen, Germany) is a lipid
emulsion containing soya oil 100 g, medium-chain triglyc-
erides 100g, glycerol 25g, egg lecithin 12¢g, a-tocopherol
170 = 40 mg, and sodium oleate/water for injection in suf-
ficient quantity to 1000 mL.

2.3. Experimental Design. Two groups of 10 rabbits were
used in the study. The first group received an intravenous
injection of phosphate-buffered saline (PBS), pH 7,4 (control
group), and the second one received a slow intravenous
injection of 2 mL/kg of Lipofundin MCT/LCT 20%, as an
infusion during 1-2 min [7, 8]. This procedure was repeated
daily during a period of 8 days. On day 9, the animals were
anesthetized with ketamine hydrochloride (5mg/kg i.m.)
and euthanized with an overdose of sodium pentobarbital
(90 mg/kg, i.v.). (Abbott Laboratories, Mexico SA de CV,
Mexico), and the vascular system was perfused with NaCl
0.9% solution at 4°C. Then, aortas were excised from
the aortic arch to abdominal segment, and adventitial fat
was removed. Aortic arches were used for histopathology
and redox evaluations due to the preferential development
of Lipofundin 20%-induced atherosclerotic lesions in this
segment [8]. For each evaluation, the samples of five animals
per group were used.

2.4. Serum Sample Collection. Blood samples (3 mL) were
obtained on day 0 (before Lipofundin administration) and
on day 9 (at the end of the study), for biochemical analyses.
Blood was withdrawn from the rabbit’s marginal ear vein.
These samples were immediately centrifuged at 2500¢g, at
4°C for 10 min. The serum was collected and aliquots were
stored at —80°C until analysis.

2.5. Aortic Homogenate Preparation. Aortic arches were
placed in ice-cold 0.1 mol/L Tris-HCl buffer, pH 7,6 contain-
ing 1.0 mmol/L EDTA and 0.2 mmol/L butylated hydroxy-
toluene (buffer A) and macerated before homogenization in
a tissue homogenizer (Edmund Biithler LBMA, Germany).
Homogenized tissue was then centrifuged at 4500g for
20min at 4°C, and the supernatants were collected and
stored at —80°C until redox biomarkers determinations.
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2.6. Histopathology

2.6.1. Eosin-Hematoxylin Staining. Aortic arches were rinsed
in PBS, pH 74, transversally cut, and fixed in 10%
formaldehyde solution. Samples were then embedded in
paraffin. Five-micrometer tissue sections were cut, air-dried
on glass slides, deparaffinized, and rehydrated. Finally, tissue
sections were stained with eosin and hematoxylin (HE)
under standard procedures. The sections were analyzed in an
optic microscope Olympus BX51.

2.7. Ultrastructural Analysis

2.7.1. Electron Transmission Microscopy. For transmission
electron microscopy (TEM), samples from rabbit aortic
arch were fixed for 1h at 4°C in 3.2% glutaraldehyde
(Agar Scientific, UK), 0.1 M phosphate buffer (pH 7,4)
and postfixed in 1% OsO4 for 1h. After graded ethanol
dehydration, samples were embedded in Spurr low-viscosity
epoxy resin for 24h at 37°C. Ultrathin sections were cut
into 400-500 A thick slice with an ultramicrotome (NOVA,
LKB), counterstained with uranyl acetate and lead citrate,
and analyzed in a TEM (JEOL JEEM-2000EX, JEOL, Japan).

2.7.2. Serum Lipid Assay. Serum total cholesterol, triglyc-
erides, LDLc, and HDLc were determined using commercial
enzymatic kits (Randox, Crumlin, UK).

2.7.3. Redox Biomarkers Determinations. All biochemical
parameters were determined by spectrophotometric meth-
ods using a Pharmacia 1000 Spectrophotometer (Phar-
macia LKB, Uppsala, Sweden). Total proteins levels were
determined using the method described by Bradford [9]
with bovine serum albumin as standard. SOD activity
was determined by using RANSOD kit (catalogue no. SD
125, Randox Labs, Crumlin, UK), where xanthine and
xanthine oxidase were used to generate superoxide anion
radicals (O37), which react with 2-(4-iodophenyl)-3-(4-
nitrophenol)-5-phenyltetrazolium chloride (INT) to form
a red formazan dye. SOD activity was measured by the
inhibition degree of this reaction. Catalase (CAT) activity
was determined by following the decomposition of hydrogen
peroxide (H,O;) at 240 nm at 10s intervals during 1 min
[10].

After precipitation of thiol proteins, the reduced glu-
tathione (GSH) levels were measured according to the
method of Sedlak and Lindsay [11] with Ellman’s reagent
(5,5'dithiobis-2-nitrobenzoic acid) (Sigma St. Louis, MO,
USA), and the absorbance was measured at 412 nm. Purified
GSH (Sigma St. Louis, MO, USA) was used to generate
standard curves.

The advanced oxidation protein products (AOPPs) were
measured as described previously [12]. Briefly, samples in
PBS (1 mL) were treated with 50 uL of potassium iodide
1.16 M followed by the addition of 100 uL of acetic acid.
The absorbance was immediately read at 340 nm. AOPP
concentration was expressed as M of chloramines-T.

Concentration of malondialdehyde (MDA) was deter-
mined using the LPO-586 kit obtained from Calbiochem
(La Jolla, CA, USA). In the assay, the production of a stable
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FiGure 1: Histopathological analysis of rabbit’s aortic tree. Eosin/hematoxylin staining reveals a normal morphology of aortas in control
animals (a) and (c), while aortas of Lipofundin group show an intimal thickening, characterized by a vascular tissue architecture distortion
and large extracellular spaces, probably filled with lipids (asterisks) (b) and (d). Arrow head: endothelial cells. Magnification 10X (a) and (b)

and 40x (c) and (d). Scale bar, 20 ym.

chromophore after 40 min of incubation at 45°C was mea-
sured at 586 nm. For standards, freshly prepared solutions of
malondialdehyde bis (dimethyl acetal) (Sigma St. Louis, MO,
USA) were employed and assayed under identical conditions
(13, 14].

In order to determine susceptibility to lipid peroxidation
and total reactive antioxidant power (TRAP), the samples
were incubated with a solution of copper sulphate (final
concentration 2mM) at 37°C for 24 h. The peroxidation
potential (PP) was calculated by subtracting the MDA levels
before the induction of lipid peroxidation from the one
obtained at 24 h [15].

Nitrites (NO; ) level, as a surrogate marker of nitric
oxide (NO*), were determined converting nitrates to nitrites
using nitrate reductase (Boehringer Mannheim Italy SpA,
Milan, Italy). Then, Griess reagent (1% sulphanilamide,
0.1% N-(1-Naphthyl)-ethylenediamine dihydrochloride in
0.25% phosphoric acid) was added [16]. Samples were
incubated at room temperature for 10 min, and absorbance
was measured at 540 nm.

2.8. Statistical Analysis. Statistical analysis was performed
using the SPSS program for Windows (version 11.5, SPSS
Inc). Bartlett’s Box-test was used to test the homogeneity
of variance. Differences between groups were determined
by student’s t-test (two-tailed). Data were expressed as the
mean =+ standard deviation (SD). A P value of < 0.05 was
considered statistically significant.

3. Results

3.1. Histopathology. The HE staining of aortic arch sections
from control rabbits showed neither intimal thickening nor
distortion in the vascular tissue architecture (Figures 1(a)
and 1(c)). In contrast, aortic sections from those animals
who received intravenously 2 mL/kg of Lipofundin 20%
during 8 days showed a thickening of the intima with appar-
ent lipid accumulation and distortion of tissue architecture
(Figures 1(b) and 1(d)).

Nonrelevant disease or abnormalities in other organs
were detected by macroscopic and microscopic examination.

3.2. Ultrastructural Analysis. On the other hand, the
ultrastructural analysis confirmed the results observed by
light microscopy. In the animals treated with Lipofundin was
observed an endothelial damage characterized by a loss of
endothelium integrity and the presence of abundant foam
cells and myofibroblasts in the intima and media layers.
Also, we observed a high extracellular lipid accumulation and
collagen fibers deposition (Figures 2(c), 2(d), 2(e), 2(f)). No
alterations in the aortic artery wall of control rabbits were
observed (Figures 2(a) and 2(b)).

3.3. Serum Lipids. Serum total cholesterol, triglycerides,
LDLc, and HDLc levels showed a significant increase (P <
0.05) in those animals who were treated during 8 days
with the lipid-rich emulsion Lipofundin, while no significant
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FiGurg 2: Ultrastructural analysis. Panels (a) and (b) correspond to animals of control group, while panels (b), (¢), (d), and (e) show
the effects of Lipofundin administration on atherosclerotic lesion formation. EC: endothelial cells, EL: extracellular lipids, VSMC: vascular
smooth muscle cells, N: nucleus, FC: foam cells, LV: lipid vacuolization, CF: collagen fibers, M: myofibroblasts. Scale bar 1 ym (a, b, ¢, d),

500 nm (e, f).

changes in serum lipids were observed in the control rabbits
throughout the study (Table 1).

3.4. Redox Biomarkers. Table2 shows the behavior of
serum and aortic redox parameters in both groups. The
biomolecules damages markers were significantly (P < 0.05)
modified after 8 days of Lipofundin administration com-
pared to nontreated group. At the end of the experimental
period, the MDA levels, one of the end-products of lipid
peroxidation, were higher in Lipofundin-treated animals
compared with controls. Besides, Lipofundin treatment
also caused a rise of AOPP levels in comparison with
control group. The activity of both antioxidant enzymes
SOD and CAT were significantly higher (P < 0.05) in
Lipofundin group at the end of the experiment compared
to control rabbits. The NO; levels and GSH concentration
decreased significantly after 8 days of Lipofundin treatment
in comparison to those of untreated animals (P < 0.05).
Finally, the susceptibility to lipid peroxidation was higher in

TaBLE 1: Effects of Lipofundin on serum lipid profile. Values rep-
resent the mean + standard deviation. Asterisks represent statistical
differences (P < 0.05).

Control Lipofundin
TC, mmol/L 1.78 = 0.06 3.10 = 0.13*
TG, mmol/L 1.51 £ 0.03 2.73 + 0.07*
HDLc, mmol/L 0.76 £ 0.04 1.20 + 0.04*
LDLc, mmol/L 0.18 = 0.01 0.83 + 0.03*

those animals who received Lipofundin. After 8 days, in these
animals was observed a significant increase of PP (P < 0.05),
compared to the one calculated in controls.

4. Discussion

The histopathological analyses of the aortic sections from
rabbits treated with Lipofundin 20% demonstrated the
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TasBLE 2: Effects of Lipofundin on redox biomarkers. Values repre-
sent the mean =+ standard deviation. Asterisks represent statistical
differences (P < 0.05). The concentration of aortic parameters is
expressed per milligrams of total proteins (Pr).

Control Lipofundin
Systemic redox biomarkers
MDA, uM 2.69 = 0.07 6.24 + 0.28*
AOPP, uM of chloramines 11.50 + 0.73 16.22 + 0.47*
PP, uM of MDA 4.63 = 0.18 9.13 + 0.34*
CAT, U/L/min 351.13 +19.03 477.50 + 30.46*
SOD, U/mL/min 22.03 = 26.44 32.00 + 1.60*

NO,, uM 179.18 + 11.44 134.33 + 5.09*
GSH, uM 309.03 + 26.44 191.21 + 8.26*
Aortic redox biomarkers
MDA, uM/mgPr 18.49 + 2.04 27.42 + 2.55%
‘;Sfrz’ rﬁ?r/lle(;fmgpr 1245 + 1.21 24.25 + 1.86*
PP, uM of MDA/mgPr 13.81 +1.83 25.26 + 2.29*
CAT, U/L/min/mgPr 1023.60 + 26.89 1609.68 + 84.37*
SOD, U/mL/min/mgPr 62.37 + 3.93 105.39 + 9.82*
NO,, uM/mgPr 95.29 + 2.54 43,96 + 6.03*

GSH, uM/mgPr 166.70 + 12.82 71.59 + 10.89*

capacity of Lipofundin to induce atherosclerotic lesions. As
described above, an intimal thickening and a distortion of
tissue architecture was observed by EH staining. Electron
microscopy confirmed the presence of foam cells, extracel-
lular lipid accumulation, collagen fibers deposition, vascular
smooth muscle cells (VSMC) migration, the presence of
myofibroblasts, and also the loss of endothelium integrity.
These events, induced by Lipofundin 20%, contribute with
the development and progression of atherosclerosis.

At the end of the experiment, we observed high serum
levels of triglycerides, total cholesterol, LDLc, and HDLc in
the animals treated with Lipofundin 20% in comparison
to control rabbits. Indeed, there is a causal relationship
between the elevated plasma lipids and the development of
atherosclerotic lesions [17-19].

Lipofundin 20%-induced hyperlipidemia could be asso-
ciated with the high content of triglycerides in this emulsion.
High levels of exogenous triglycerides promote ApoB100 and
cholesterol synthesis and eventually the assembly of very
low-density lipoproteins (VLDL) [20]. In fact, Lipofundin
10% caused a 60% increase in total serum cholesterol after
parenteral administration in a human study [21].

In addition, there is a mutual exchange of lipids and
apolipoproteins between serum lipoproteins and the infused
triglyceride/phospholipid particles [22]. The increase of
HDLc may be determined by a physiological response
against the elevated LDLc levels. It is known that HDL
protect from atherosclerotic development. However, based
on recent animal and epidemiological studies, it appears that
in addition to quantity [23] other properties of HDL, such as
antioxidant and anti-inflammatory power, are necessary for
atheroprotection [24, 25].

In this study, we demonstrated that Lipofundin-induced
hyperlipidemia was associated with a systemic and aortic OS.
Strong evidences for the involvement of free radicals pro-
duction in the onset of hyperlipidemia have been reported
previously [26]. Chronic generation and sustained high toxic
levels of ROS are associated with several pathological condi-
tions including cardiovascular diseases such as atherosclero-
sis [27]. During atherosclerotic lesions development, cellular
damages take place through mechanisms involving lipid
peroxidation and oxidative modifications of proteins [28].
On the other hand, a disruption of antioxidant enzymes
activity and a drastic reduction of nonenzymatic defenses
are also observed during atherogenesis [29]. High levels of
MDA in the sera and aortic tissue from rabbits bearing
atherosclerotic lesions, compared with those from control
group, suggest the role of LPO in the loss of redox cellular
status in the former animals which were under atherogenic
stimuli caused by Lipofundin treatment. MDA levels have
been considered not only an indicator of OS, but also as a
biochemical marker of atherogenesis [30, 31].

Oxidative modifications of proteins have been also impli-
cated in atherosclerosis [32]. Through AOPP determination,
we measured the chlorinated proteins levels, caused by
myeloperoxidase-derived hypochlorous acid (HOCI). It has
been shown that HOCl-modified proteins are present in
atherosclerotic lesions and predict the progression of the
disease [5]. The high levels of AOPP in those animals
that received the lipid emulsion suggest an active role of
macrophages infiltration and inflammatory process in the
development of atherosclerotic lesions in the present animal
model.

Antioxidant defenses, as expression of the balance
between generation and inactivation of oxidized metabolites,
represent a useful tool to examine the redox status [33, 34]. In
our study, the higher activity of extracellular SOD, detected
in the animals treated with Lipofundin, could be associated
with an increase in O3 generation, typically produced by
foam cells and macrophages at atherosclerotic lesion sites
[35]. Also, in atherogenic process, there is an increase in
vascular NADPH oxidase activity, the main source of O3 in
the vasculature [36].

CAT is another antioxidant enzyme present in the vascu-
lature, which plays an important role on redox environment
maintenance [37]. In our study, we found a high activity
of the enzyme in animals treated with Lipofundin. During
the beginning and development of atherogenic lesions, the
enzyme gene expression increases and in this way contributes
to retard the disease progression [38, 39]. Also, it has been
shown that in early steps of atherogenesis CAT activity is
incremented in response to oxidant stimulus mediated by ox-
LDL and ROS such as H,O; and lipoperoxides [40].

During atherogenesis, the reactive molecules that are
produced have the potential to deplete the surrounding
cells of their GSH levels, affecting their antioxidant defenses
and detoxification pathways [41]. Our results showed a
significant depletion of serum and aortic GSH levels in
the animals treated with the lipid emulsion compared to
the control rabbits. This fact could be associated with
the Lipofundin-mediated ROS generation and with the



high concentration of biomolecules damages detected in
Lipofundin-treated animals.

Finally, we evaluated the behaviour of NO; levels, as a
marker of NO*® bioavailability. NO* is a vasoactive molecule
which has an important role in vascular homeostasis mainte-
nance [42]. The decrease of NO* bioavailability is considered
an important indicator of vascular endothelial dysfunction
contributing to atherosclerosis development [43]. Our exper-
imental results showed a reduced bioavailability of NO*
in Lipofundin-treated rabbits compared with controls. This
deleterious effect for vascular function may contribute with
the Lipofundin-induced atherogenic development.

5. Conclusions

In summary, the present study demonstrated that Lipo-
fundin 20% induces hyperlipidemia, thereby promoting
a systemic and aortic OS and also contributing with
atherosclerotic lesions formation in NZW rabbits. This
work shows novel evidences of Lipofundin-induced oxidative
damages on lipids and proteins, the impairment of antioxi-
dant status, and the reduction of nitric oxide levels. These
results reinforce the attractive characteristics of Lipofundin
to be used as an inductor of experimental atherosclerosis
in rabbits. The reduction of experimental time and the
associated costs, compared with other established models, is
in our opinion the main advantage of this animal model of
atherosclerosis.
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