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Abstract: The molecular structure of the 8-hydroxyquinoline–bis (2-phenylpyridyl) iridium
(IrQ(ppy)2) dual emitter organometallic compound is determined based on detailed 1D and 2D nuclear
magnetic resonance (NMR), to identify metal-ligands coordination, isomerization and chemical yield
of the desired compound. Meanwhile, the extended X-ray absorption fine structure (EXAFS) was
used to determine the interatomic distances around the iridium ion. From the NMR results, this
compound IrQ(ppy)2 exhibits a trans isomerization with a distribution of coordinated N-atoms in
a similar way to facial Ir(ppy)3. The EXAFS measurements confirm the structural model of the
IrQ(ppy)2 compound where the oxygen atoms from the quinoline ligands induce the splitting of
the next-nearest neighboring C in the second shell of the Ir3+ ions. The high-performance liquid
chromatography (HPLC), as a part of the detailed molecular analysis, confirms the purity of the
desired IrQ(ppy)2 organometallic compound as being more than 95%, together with the progress
of the chemical reactions towards the final compound. The theoretical model of the IrQ(ppy)2,
concerning the expected bond lengths, is compared with the structural model from the EXAFS and
XRD measurements.
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1. Introduction

The use of organometallic compounds in new technologies such as organic light-emitting diodes
(OLED) [1–8], photovoltaic applications [9] or catalysis [10], requires different approaches during the
chemical synthesis of these compounds, going from the photoluminescence, electroluminescence and
internal quantum efficiency to the charge transport and the amorphous-crystalline interplay between
these organometallic molecules [11–18].

Starting with classical monoligand compounds containing quinoline (q) and phenylpyridine
(ppy) derivatives, such as Alq3 and Ir(ppy)3, which give single color electroluminescence [1,19],
the architecture of these organometallics evolves towards more complex structures. These structures
enable multicolor electroluminescence such as in the case of 8-hydroxyquinoline–bis (2-phenylpyridyl)
iridium, known as IrQ(ppy)2, with a general formula C31H22IrN3O, or better external quantum
efficiency in the OLED structures.

Depending on the desired organometallic compound, the chemical synthesis requires one, two
or multiple reaction steps, following the Nogoyama procedure [20–24]. Generally, these syntheses
are characterized by incomplete reactions and the formation of by-products. Therefore, the resulting
compounds could form different molecular configurations close or far from the targeted structure.
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For example, in the case of IrQ(ppy)2 the chemical synthesis is done in two steps in which the
[(CˆN)2Ir-µ-Cl]2 intermediate compound from the first step reaction with phenylpiridine ligands is
used in the second step reaction with quinoline ligands. The second step could lead to three different
structures like IrQ(ppy)2, IrQ2(ppy) or even IrQ3 with different photophysical properties. The first
structure yields dual green-red electroluminescence [25], while the last one gives pure red color in the
OLED structures [26]. The red electroluminescent OLED represents a special class due to their low
bandgap, which can lead to non-radiative emissions [27–29].

High-performance liquid chromatography (HPLC) and nuclear magnetic resonance spectroscopy
(NMR) are the best techniques used to investigate the progress of the chemical reactions, the final
products and their purity.

Regarding organometallic compounds, NMR spectroscopy measurements allow the identification
of parameters related to the metal–ligand coordination, isomerization or even the ratio between
ligands. All of these parameters are closely related to each other and describe a way to obtain a pure
compound [30–33]. Furthermore, NMR spectroscopy measurements can determine the chemical yield
of these reactions through the assignment of the off-structure peaks [34].

Complementarily, the enhanced X-ray absorption fine structure (EXAFS) measurements allow
identification of interatomic distances for a complete view of the molecular structure of the
organometallic compounds. The Ir-L3 EXAFS absorptions allow us to accurately determine the
metal environment in the Ir(III) organic complexes with efficient phosphorescence emission. Such
knowledge enables the validation of the preparation stages of these compounds by comparison with
the crystallographic data. The EXAFS measurements were already applied to other organometallic
compounds like [IrCp*(OH)2(Me2-NHC)] (final compound from the second step of reaction, prepared
from the bis-Cl intermediate compound; Me2-NHC = N-dimethylimidazolin-2-ylidene, Cp* =

pentamethy-lcyclopentadienyl), used as a catalyst for water oxidation at the electrode surface [35]. This
method allows us to investigate the oxidation processes of the iridium complex, possibly towards IrO3,
which is also catalytically active [36], and/or the iridium coordination in different chemical compounds.

This paper proposes a complete investigation by HPLC, NMR, EXAFS and XRD techniques, to
identify the chemical structure of IrQ(ppy)2 organometallic compound. It is focused on the molecular
structure, resulting from the chemical synthesis, the ratio between phenylpyridine and quinoline
ligands, the modality of coordination (CˆN), the photochemical isomerization (cis, trans). The bonding
between the metal and ligands (Ir-N, Ir-C, Ir-O) was also determined and compared with the interatomic
distances obtained from XRD of an existing crystallographic structure.

2. Materials and Methods

The IrQ(ppy)2 synthesis implies a few additional steps which can influence the efficiency of
the chemical reaction and the crystallization process of the obtained powder. For example, a faster
crystallization from dichloromethane can reduce the physical oxidation of the organometallic compound
but influences the isomerization and crystallography of the obtained powder.

Ir(III) complex 8-hydroxyquinoline–bis (2-phenylpyridyl) iridium (IrQ(ppy)2) organometallic
compound was chemically synthesized with two types of ligand: 2-phenylpyridine and quinoline,
in a standard two-step reaction procedure, described previously [7]. Briefly, a mixture of iridium
chloride hexahydrate and 2-phenylpyridine in 2-ethoxyethanol was refluxed in an argon atmosphere
for 12 h at 150 ◦C. The yellow precipitate was cooled at room temperature and washed with ethanol
and then dried in vacuum forming a [(CˆN)2Ir-µ-Cl]2 bridged dimer. The reaction of the resulting
dimer with 8-hydroxyquinoline, in the second step, led to the formation of the final complex, IrQ(ppy)2.
The obtained mixture was heated to reflux under a nitrogen atmosphere for 8 h at 140 ◦C. The crude
product, obtained after filtration, was dissolved in CH2Cl2 and concentrated in a vacuum. All chemicals
were taken from Sigma Aldrich (St. Louis, MO, USA) and used without further purification.

Iridium coordination with the quinoline and phenylpiridine ligands in the IrQ(ppy)2 compound
was investigated by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy using the Ir-L3
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absorption band (11,215 eV). The Ir-L3 absorption line was recorded in transmission mode by using
the X-ray absorption spectrometer (Rigaku R-XAS Looper, Rigaku, Tokyo, Japan, Country) [37,38].
The continuous radiation was obtained from an X-ray tube with molybdenum target and LaB6 filament
and the monochromatic light was obtained with a curved Ge (220) single-crystal monochromator. A
scintillation detector measured the transmitted intensities. The EXAFS analysis was done as a standard
procedure, using the REX2000 package [39]. The refinement procedure involves the subtraction of
pre-edge and post-edge backgrounds from the experimental spectra. The EXAFS χ(k) functions were
calculated from the post-edge oscillations of the Ir-L3 band normalized through the smooth atomic
absorption (post-edge background). The spectral conversion from the k-space into physical r-space was
done with the Fourier transformed procedure. The radial functions exhibit several maxima assigned
to the atomic distances around the neighboring iridium absorbing atoms. The first main maxima
correspond to the first shell atoms which surround the central Ir and were isolated by Hanning-function
windows. The fitting procedure gives the coordination numbers and interatomic distances between the
iridium absorbing atoms and the atoms from the first and second shells of coordination. The theoretical
EXAFS spectra concerning electron backscattering amplitudes, phases, and inelastic mean free path
were obtained with the FEFF6 code [40].

HPLC spectra were recorded with a Thermo Scientific Ultimate 3000™ UHPLC+ (Thermo Fisher
Scientific, Waltham, MA USA), with a DIONEX binary RS PUMP, RS Autosampler, RS Column
Compartment equipped with RS Diode Array Detector, RS Fluorescence Detector. The equipment was
fitted with a Varian Pursuit 5 C18 column (250 × 4.6 mm2). Samples were analyzed using an isocratic
method, with acetonitrile as the eluent at 20 ◦C with a flow rate of 1 mL min−1.

NMR data were obtained using an Agilent Technologies DD2 600 MHz NMR spectrometer (Bruker
BioSpin GmbH, Rheinstetten, Germany) having a 5 mm PFG Triple Resonance Cold probe at 25 ◦C. 1H
and 13C chemical shifts (δ) are referenced to the signal of deuterated chloroform. The organometallic
compound, IrQ(ppy)2 (0.28 wt/v %), was characterized by 1H, 13C, and 15N-NMR spectroscopy.
The assignments of proton and carbon atoms were based on heteronuclear multiple-bond correlation
spectroscopy (1H-13C-HMBC), heteronuclear single quantum coherence spectroscopy (1H-13C-HSQC),
correlation spectroscopy(1H-1H−COSY), total correlation spectroscopy (1H-1H-TOCSY) and nuclear
Overhauser effect spectroscopy (1H-1H-NOESY) experiments. NMR spectra were processed using
M-Nova software (version 14.1.1).

The X-ray diffraction (XRD) measurements were made on IrQ(ppy)2 powder using a Bruker D8
Advance type X-ray diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with copper target X-ray
tube and LynxEye one-dimensional detector. The X-ray tube parameters were fixed at 40 kV and
40 mA. CuKα1 radiation (λ = 1.54056 Å) was used as an X-ray source. Crystal Sleuth software (2006)
was used for the analysis of XRD data.

3. Results and Discussion

The earlier papers containing the X-ray crystal structures of the similar organometallic compounds
reported a significant trans-effect of the Ir-C, which induces the formation of the Ir-Cl bridge bonds
trans to the Ir-C bonds. Based on this trans-effect, the structure illustrated in Figure 1, leads to an
isomer with the C- and N-donor atoms having a trans position to each other [41–43].
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Figure 1. Synthesis route of IrQ(ppy)2.

The synthetic route to IrQ(ppy)2 implies the reaction between the [(CˆN)2Ir-µ-Cl]2 dimers and
8-hydroxyquinoline ligand in the presence of Na2CO3 catalyst. In this reaction, cleavage of the chlorine
bridge and binding of the quinoline ligand occurs, by NˆO coordination mode.

3.1. EXAFS Measurements

To verify the molecular structure of IrQ(ppy)2, we performed the EXAFS spectroscopy to determine
the Ir coordinations by using a Rigaku X-ray spectrometer.

The Ir-L3 EXAFS measurements allow us to accurately determine the metal environment in the
Ir(III) organic complexes with efficient phosphorescence emission. Such knowledge will enable us to
verify the correctness of the preparation stages of these compounds, by comparison with the molecular
structure experimentally derived by XRD.

Figure 2 has shown the X-ray absorption coefficient for the Ir-L3 edge after refinement and
normalization with the sample thickness. The oscillations around the Ir-L3 edge allows the calculations
for the bonding between the metal and ligands (Ir-N, Ir-C, Ir-O), in the first and second shell but also
the interatomic distances in both shells. The photoelectron transitions between Ir 2p3/2 and the upper
states 5d3/2,5/2 give the line absorption for the Ir-L3. Between 11.20 and 11.28 keV, the line is quite
intense, suggesting an efficient 2p3/2-5d electron transfer to Ir unoccupied.
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Figure 2. X-ray absorption spectra of the IrQ(ppy)2 organometallic compounds.

The EXAFS of IrQ(ppy)2 (Figure 3) has sharp and intense features for the k between 0 to 6 and
weakens between 7 to 11. This fact allows better calculation for distances in the first and the second
shell but with some errors for the third shell.
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Figure 3. Extended X-ray absorption fine structure EXAFS k3χ(k) spectra of IrQ(ppy)2 experiments.

Figure 4 shows the magnitude of the Fourier transforms of the Ir L3-EXAFS spectra of the
intermediate and final compounds, over the k-range 2–11 Å−1. The results of the fit (coordination
numbers and interatomic Ir-neighbour distances) were compared with molecular bonds from
experimentally derived X-ray diffraction on powder, for IrQ(ppy)2 final compound [26].
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In the IrQ(ppy)2 compound, the Ir environment from the XRD measurements consists of 2 C,
3 N and 1 O nearest neighbors (first shell) at the average distances 2.03, 2.08 and 2.15 Å, respectively,
and 11 C next-nearest neighbors at an average distance of 2.98 Å (Table 1). EXAFS provides for this
compound 4 (C, N, O) nearest neighbors at 1.97 Å and a split next-nearest neighboring C shell, with
5 C at 2.63 Å and 6 C at 2.96 Å.

The EXAFS results for the first shell indicate a mean value of 1.97 Å because all three species, C, N,
O, are seen as mean elements corroborated with their coordination number and cannot be individually
assigned. The mean coordination number represents a superimposed contribution with distances
varying between 1.82 to 2.04 Å, which induces a decrease in the oscillations in amplitude. This fact
was observed in other iridium-based compounds where the contributions of the atoms from the first
shell of Ir are not resolved and give a single shell [43].
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Table 1. Average coordination number obtained by EXAFS curve fitting.

Shells

Structural Model Based
on XRD a EXAFS b

N/R (Å) N R (Å) σ2 (Å2)
x10−3

1st shell

1 O/2.15 Å
1 N/2.13 Å
2 N/2.03 Å
2 C/2.03 Å

6 (C,N,O) 1.97 ± 0.02 Å 10 ± 3

2nd shell 11 C/2.98 Å
5 C
6 C

2.63 ± 0.02 Å
2.96 ± 0.03 Å

8 ± 3
6 ± 2

a—data from literature; [26] for the final compound; b—our work.

Two main discrepancies are therefore noticeable between EXAFS and the model obtained from
XRD analysis: a contraction of the interatomic distances between Ir and its nearest neighbors and a
split of the next-nearest neighboring C shell, for IrQ(ppy)2. The splitting was also observed by Feiters
et al. detected by EXAFS as a weakening of contribution, and adequately simulated with a split shell,
but different distances [44]. A possible explanation in our case is related to the lower electronegativity
of oxygen which tightens the rings of quinoline ligand moving the carbon atoms towards iridium.
Concerning the contraction of the interatomic distances between Ir and its nearest neighbors, this
might be related to the π–π stacking between molecules in the crystalline structures, as can also be
seen in the XRD measurements.

3.2. High-Performance Liquid Chromatography

The reaction between the [(CˆN)2Ir-µ-Cl]2 intermediate dimers and 8-hydroxyquinoline (Q)
was investigated by HPLC to prove the conversion from the dimer to the desired IrQ(ppy)2 and to
analyze the purity of the end-product. Solutions of dimers, quinoline and end-product, as well as
2-phenylpyridine (ppy), in acetonitrile AcCN, were independently injected into an HPLC system
equipped with a diode array detector.

The chromatograms (Figure 5a,b) obtained showed distinct retention times between the dimer
(3.23 min), end-product (3.73 min) and quinoline (5.10 min). However, the retention time for
2-phenylpyridine was similar to that of the end-product (i.e., 3.73 min). To distinguish between the
two peaks, the chromatograms at four distinct wavelengths (261, 340, 403 and 450 nm) were analyzed.
2-phenylpyrdine has a peak with strong absorbance at 261 nm, but the absorbance at the other three
wavelengths is negligible, whereas the absorbance for IrQ(ppy)2 is evident at all four wavelengths.
The broader absorbance spectrum is expected due to the presence of the MLCT bands. The differences
in the peaks of IrQ(ppy)2 and 2-phenylpyridine can also be observed in the 3D field spectra. In addition
to confirming the presence of distinct species and the formation of the end-product, HPLC suggested a
purity of more than 95% according to peak integration.
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3.3. Nuclear Magnetic Resonance

In addition to HPLC, the reaction was analyzed by 1H NMR and 13C NMR spectroscopy. The 1H
NMR spectra of the 2-phenylpyridine ligand, [(CˆN)2Ir-µ-Cl]2 dimers and IrQ(ppy)2 compounds
(Figure 6) illustrate the presence of one compound in solution. The proton H6B of the 2-phenylpyridine
ligand is chemically shifted from δ 7.48 to 5.93 and 6.45 ppm, upon coordination to the metal,
in comparison with the iridium dimer and IrQ(ppy)2, respectively, which implies the expected effect of
cyclometalation at C1B (C1B′ ).
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Interestingly, the most downfield proton H6A, neighboring the N atom, in the free 2-phenylpyridine
ligand, exhibits a low-field shift from δ 8.70 ppm in the ligand to δ 9.24 ppm in the dimer, owing to
deshielding by the proximal electronegative nitrogen. In the IrQ(ppy)2 molecules, the first proton H6A
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shifts further (from δ 9.24 ppm in the dimer to δ 8.80 ppm in the complex) upon the cyclometalation
process with the 8-hydroxyquinoline ligand. This shift can be used as a diagnostic method to prove the
coordination processes [45].

Full 1H and 13C NMR spectroscopy characterization and assignment were carried out using 2D
techniques including 1H-1H COSY, 1H-13C HMBC, 1H-13C HSQC, 1H-1H TOCSY and 1H-1H NOESY.

The signals in the 1D 1H and 13C NMR spectra of the IrQ(ppy)2 organometallic compound showed
the expected number of protons: 22 protons (16 protons belonging to two phenylpyridine and six
protons to quinoline ring) and the expected 31 carbon atoms (11 × 2 = 22 from phenylpyridine and
nine from quinoline ligands) from which nine carbon atoms are quaternary. TOCSY spectra of the
IrQ(ppy)2 organometallic compound show six distinct groups of protons that were assigned to the six
aromatic rings in the structure. (ESI, Figure S1)

There are two groups with three protons connected through bonds only in the quinoline ligand
(Table 2), therefore the groups with three protons described before come from the quinoline ligand.
The complete assignment of all the quinoline protons thus requires a thorough analysis of its 1H-1H
COSY and 1H-1H TOCSY spectra.

Table 2. Quinoline protons identified from total correlation spectroscopy (TOCSY) map.

No of Sets 1 H- δ (ppm)

5 7.98 7.67 7.11

6 7.03 6.80 7.42

From those two groups of 3three protons (H4C, H5C, H6C; H4D, H5D, H6D), we aim to identify the
location of each proton in the pyridine and benzene rings in the quinoline ligand. In the COSY spectra
of pyridine and benzene rings of quinoline ligand (see ESI, Figure S2), the proton at δ 7.98 ppm shows
strong interaction with a proton (δ 7.11 ppm) and weak interaction with a proton at δ 7.67 ppm. In the
1H-1H COSY spectrum (ESI, Figure S3), the proton at δ 8.80 ppm shows strong interaction with the
proton at δ 7.00 ppm, which may be a vicinal coupled, and weak coupling with protons at δ 7.79 and
7.62 ppm (see ESI, Figure S3). The proton at δ 7.79 ppm shows strong coupling with the proton at δ
7.62 ppm (vicinal coupling) and weak couplings with protons at δ 8.80 and 7.00 ppm. The proton at δ
7.00 ppm shows coupling with the proton at δ = 7.62 ppm. Similarly, the right order of the protons
in the next aromatic rings in phenylpyridine ligands was identified based on 1H-1H COSY (Table 3).
In the 15N-HMBC spectrum (ESI, Figure S4), the only proton at δ 7.67 ppm shows a signal. Thus, it
follows that the proton at δ 7.67 ppm could be attributed to H6C because the corresponding carbon
is bound to N. This proton at δ 7.67 ppm shows in the COSY spectrum a weak interaction with δ

7.98 ppm proton and we can distinguish between the signals at δ 7.11 and 7.98 ppm that correspond to
H5C and H4C protons. The strong interaction in the COSY spectrum between the protons at δ 7.98 and
δ 7.11 ppm completes this assumption. In this way, we assigned the protons from the pyridine ring of
the quinoline ligand. The rest of the protons (δ 7.03, δ 6.80, and δ 7.42 ppm) could be assigned to the
benzene ring. From the COSY spectrum of the benzene ring, the proton at 7.03 ppm shows strong
interaction with the proton at 7.42 ppm and weak interaction with the proton at 6.80 ppm. These
coupling interactions were not enough to distinguish the position of each proton in the benzene ring.

Table 3. Phenylpyridine protons identified from TOCSY map.

No of Sets 1 H- δ (ppm)

1 8.80 7.00 7.62 7.79

2 7.86 7.63 6.79 7.53

3 6.45 6.79 7.60 6.92

4 6.30 6.77 7.60 6.85
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The strong correlation between δ 6.80 and δ 7.42 ppm in the 1H-1H COSY spectrum allows the
assignment of the proton at δ 7.42 ppm to H5D. Next, the last proton from the benzene ring at δ
7.03 ppm could be assigned to H6D. In the 1H-1H COSY spectrum, the proton at δ 7.03 ppm (H6D)
shows a signal at 7.11 ppm (H5C), which confirms the assignments in the benzene ring (H4D, H5D, H6D)
of the quinoline ligand.

Regarding phenylpyridine ligand, from TOCSY maps we found four sets with four protons, as
assigned in Table 3. (ESI, Figure S1).

In the 1H-15N-HMBC spectrum (ESI, Figure S4), the protons at δ 8.80 and 7.53 ppm show
strong signals, which enable us to assign these protons and their groups with the pyridine ring from
phenylpyridine ligand. Moreover, these protons are located proximal to the N atom in pyridine rings.
Therefore, the protons at δ 8.80 and 7.53 ppm could be attributed to H6A and H6A’. Based on previously
observed correlations in 1H-1H COSY spectrum, the signals at δ 8.80, 7.00, 7.62, and 7.79 ppm can be
assigned to H6A, H5A, H4A and H3A, respectively (ESI, Figure S4).

The relative orientation of ligands was determined by acquiring the 1H-1H NOESY spectra
(Figure 7). In the 1H-1H NOESY spectrum, the signals appear because the protons are close together
in space and not through bonds. Proton H5D (δ 7.42 ppm) from the benzene ring of quinoline ligand
shows a strong correlation in the 1H-1H NOESY spectrum with H6D (δ 7.03 ppm), which is its neighbor,
and H5A’ (δ 6.79 ppm) from pyridine ring of phenylpyridine ligand. In this way, we can confirm the
position of the pyridine ring from phenylpyridine ligand in the IrQ(ppy)2 structure. More interesting
was the observation of the correlations between H4A (δ 7.62 ppm) and H5B’ (δ 6.77 ppm) and between
H3A (δ 7.79 ppm) and H4B’ (δ 7.60 ppm), which determined the orientation of phenylpyridine ligands
to each other. NOESY experiment has shown that in the structure of IrQ(ppy)2 molecule the pyridine
ring A and phenyl ring B are tilled.Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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The coordination of bidentate nitrogen from the quinoline ligand to the IrQ(ppy)2 core preserves
a trans configuration of the pyridine groups similar to the one in the precursor [(CˆN)2Ir-µ-Cl]2 dimers
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and this observation have been confirmed both by 1H-1H COSY and 1H-1H NOESY experiments.
These results are similar to the literature for mononuclear iridium(III) complexes displaying the IrN4C2

coordination [44].
Kappaun et al. described a similar compound, ppy2Irq, together with other quinolinolate

complexes, but from the NMR measurements, the authors concluded a cis disposition for the two
carbon ligands and the trans position for the 2-phenylpyridine nitrogen atoms [46]. Their organometallic
molecule was not found to be luminescent, even in degassed solvents, the explanation being connected
with an unfavorable mixing of singlet and triplet excited states for this compound. Our compound
exhibits dual emission, green and red and similar electroluminescence with orange all over color [25].

For a correct assignment, these results might be compared with those obtained from 1H-13C-HSQC
and 1H-13C-HMBC (ESI, Figures S5 and S6). The 1H-13C-HSQC experiment was used to determine
chemical shifts of individual carbon atoms, which directly bound protons. All nine quaternary carbons
(see Table S1, rows in red from ESI) in the IrQ(ppy)2 organometallic compound were assigned based
on correlations in 1H-13C-HSQC (ESI, Figure S5)

These spectra reveal correlations between carbons and protons that are separated by two, three
and sometimes four bonds. These results agree with the 1H-1H COSY and 1H-1H NOESY results.
Briefly, in the pyridine ring of phenylpyridine ligand, correlations between the proton H6A and carbons
2A, 4A, 5A can be identified. The proton H5B shows correlations with carbons 4B and 3B. The proton
H5B′ shows a correlation with quaternary carbon 1B′. In the 1H-13C-HMBC spectrum, the proton H5D

shows a strong correlation with carbon 1D, and proton 6A′ shows a strong correlation with the carbon
5A′. (ESI, Figure S6).

All NMR measurements reveal a trans isomerization of the IrQ(ppy)2 similar to the Ir(ppy)3

organometallic and the chemical yield of this compound was estimated to be 85%–90%.

3.4. X-ray Diffraction Analysis

The measured powder by NMR (in solutions) and EXAFS studies were subjected to X-ray
diffraction analysis. After the final step of the reaction, between [(CˆN)2Ir-µ-Cl]2 compound and the
8-hydroxyquinoline ligand, the solvent was eliminated with a rotary evaporator. The resulting slur
was dissolved in dichloromethane to remove the catalyst and other impurities. This solution was
then filtered and the IrQ(ppy)2 powder was obtained after recrystallization from solution. The drying
procedure significantly influences the crystallography of the final compound.

XRD measurements revealed a monoclinic structure for the IrQ(ppy)2 (Figure 8) with the following
parameters: a = 11.8; b = 9.7 and c = 22.9 and angles α = β = γ = 90#. Similarly, Chun Yi obtained a
monoclinic structure (P2(1)/n) for the IrQ(ppy)2 with the following parameters: a = 11.5; b = 9.4 and c
= 22.6 and angles α = γ = 90#, but with β = 93.12◦, which is the angle between the basal plane and the
c axis [26].

The XRD patterns show a different orientation between the monoclinic structure of IrQ(ppy)2

reported by Chun Yi and our sample, suggesting a faster crystallization along with the c-axis leading
to needle-like structures (nanowires) and a slower one along the a and b axis.

The IrQ(ppy)2 powder can be easily oxidized in the atmosphere during crystallization from the
solution, which significantly reduces the phosphorescent properties of this compound.

For an efficient phosphoresce, the recrystallization process was done in a vacuum at 50 ◦C which
induces a faster growth of IrQ(ppy)2 nanocrystals along the c-axis. When the recrystallization is done
at room temperature, the structure is almost similar to that obtained by Chun Yi [26].
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In the powder form, a π–π stacking process between the adjacent IrQ(ppy)2 takes place and
distances between quinoline ligands compete with the intermolecular interactions [18,47] which
induces inter-ligand energy transfer (ILET) [48]. The emission processes follow the excitation in the
1MLCT state and an efficient transfer to the 3MLCT due to the strong spin-orbit coupling.

4. Conclusions

The EXAFS measurements confirm the IrQ(ppy)2 organometallic compound in comparison with
the previous XRD data. The presence of the oxygen atoms influences the splitting of the next-nearest
neighboring C in the second shell from the Ir3+ ions. The contraction of the interatomic distances in the
first shell can be correlated with the π-π stacking between quinoline ligands during the crystallization
process. The interatomic distances in the first and second shells obtained from the EXAFS measurements
were compared with the trans structure obtained from NMR studied.

The signals in the 1D NMR spectra showed the expected number of protons: 22 protons (eight
ppy H resonances twice and six quinoline H resonances). The proton signals were assigned to their
position in the bicycling system of the ligand by COSY, HMBC, HSQC, TOCSY and NOESY and
reveal the presence of 31 carbon atoms, from which nine carbon atoms are quaternary. All these
measurements suggest the formation of the desired compound IrQ(ppy)2, containing two pyridine
ligands in trans isomers with a distribution of nitrogen ions in a similar way with facial Ir(ppy)3.
These three N ions form a triangle which can be seen in the 15N-HMBC and, in comparison with
fac-Ir(ppy)3, the trans-IrQ(ppy)2 presents higher photoluminescence quantum efficiency compared
with the equivalent cis-IrQ(ppy)2 and dual green-red electroluminescence. The efficiencies of chemical
reaction resulting from NMR measurements for IrQ(ppy)2 vary between 85% and 90% for different
samples, while from HPLC the chemical reaction is over 95%.

Finally, XRD measurements confirm the monoclinic structure of the obtained IrQ(ppy)2 powder,
where the contraction of the interatomic distances between Ir and its nearest neighbors suggests a π–π
stacking between quinoline ligands during the crystallization process, along the c-axis, due to a faster
crystallization process obtained during the evaporation of the solvent.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/7/1617/s1,
Figure S1: TOCSY spectrum of IrQ(ppy)2. Figure S2: COSY spectrum of quinoline ligand. Figure S3: COSY
spectrum of phenylpyridine ligand. Figure S4: 1H-15N HMBC of IrQ(ppy)2. Figure S5: 1H-13C HSQC spectrum of
IrQ(ppy)2, Figure S6: 1H-13C HMBC spectrum of IrQ(ppy)2. Table S1: Assignments of IrQ(ppy)2 organometallic
compound from 1H-NMR and 13C-NMR.
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