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Abstract: The Vickers hardness and Young’s modulus of the hydroxyapatite (HA) bioceramics
with a small amount of the multi-walled carbon nanotubes (MWCNTs) were studied by using
ultramicrotester Shimadzu for dynamic tests DUH-211. Small concentrations of MWCNTs were from
0.05 to 0.5 wt.%. The argon inert atmosphere and vacuum condition were taken for the prevention of
the MWCNTs oxidation. The Brunauer–Emmett–Teller (BET) surface area SBET of the HA-MWCNTs
composites was determined by thermal adsorption-desorption of nitrogen. It was found that for
HA-MWCNTs sintered in the Ar atmosphere, an increase in the concentration of nanotubes up to
0.5 wt.% leads to a decrease in porosity near 3 times in comparison to HA without MWCNTs additives.
The small amount of additives of multi-walled carbon nanotubes leads to an increase in hardness
of 1.3 times and compression strength of composite and compression strength of composite that is
comparable in absolute values with the literature data of enamel hardness (3–5 GPa) and compression
strength (95–370 MPa). The absolute values increase close to linearly with the increase of nanotube
concentrations. The Young’s modulus of sintered composite slightly changes with the variation
of concentrations of nanotubes and close to the enamel (75–100 GPa). The ratio of plastic work to
total work and the ratio of elastic (reversible) work to the total work of deformation of composite
HA/MWCNTs are practically constant at a studied range of MWCNTs concentration. The additives
of the multi-walled carbon nanotubes lead to both an increase in the elasticity index of ~1.5 times
and an increase in the resistance to plastic deformation of ~3 times, which improved the tribological
performance of the surface. Plastic and elastic (reversible) work slightly changed.

Keywords: bioceramics; hydroxyapatite; multi-walled carbon nanotubes; Young’s modulus; compression
strength; Vickers microhardness; plastic and elastic (reversible) works

1. Introduction

Different biomaterials, such as titanium dioxide, tricalcium phosphate (TCP), bioac-
tive glasses, calcium silicate, hydroxyapatite, polycaprolactone, glassy carbon, zirconia,
composites with carbon nanotubes, and other metallic and ceramic materials are used in
implants for bone tissue [1–11].

Although mechanical properties of bone scaffold materials have been improved over
recent decades, their use in orthopedics is still limited [4]. Glassy carbon has a brittleness
and susceptibility to fracture under tensile stress [5].

Titanium is a bioinert metal with good biostability, biocompatibility and long-term
durability [6]. At the same time, the organic fluids can lead to the dissolving of the titanium
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and forming ions that can react with body tissues and appear as a toxic response [7–10].
Zirconium can be degraded, can have corrosion and also has poor fracture toughness
similar to other metals [11].

The applications of hydroxyapatite (HA) [Ca10(PO4)6(OH)2] in bone implants are
limited due to the brittleness and low fracture toughness of this material [3,4]. At the
same time, over recent decades, it has attracted much attention due to biocompatibility,
osteoconductivity, bioactivity and its high chemical similarity to natural bone [4,12–14].

The improvement of the mechanical properties of HA can be realized by using rein-
forcing phases, including carbon nanotubes (CNTs). Remarkable properties of CNTs, such
as flexibility, low density, high electrical and thermal conductivity, high Young modulus,
fracture toughness, and the ability to transfer loads efficiently across an interconnected net-
work that can allow the use of small amounts of CNTs for obtaining the sufficiently better
mechanical properties of composites and prevent or delay the initiation and propagation of
cracks in the biocomposite [4,15–17].

The multi-walled carbon nanotubes (MWCNTs) help in bone repair by accelerating
its growth and have good bone-tissue compatibility [18]. Inflammatory reactions and
toxic effects in human bone are negligibly small in the case of integration of MWCNTs
into the bone [4,19,20]. The partial degradation of CNTs and their oxidation can occur
in vivo [21,22]. It was shown that the degradation rates of CNTs correlated with their
diameters and layer numbers [22,23]. Nanotubes with larger diameters have a smaller
degradation rate. On the other hand, the increase in the diameter of nanotubes leads to a
decrease in mechanical properties [24]. Therefore, MWCNTs with a diameter near 18 nm
are promising additives to the composites.

In ref. [25], the compression strength of hydroxyapatite composite was increased up to
15 times by adding the multi-walled carbon nanotubes with an average diameter of 18 nm
and a concentration of 0.5 wt.%. The 0.3% MWCNT additives in CS/Gel/nHAp composite
scaffolds provide better outcomes for porosity, hydrophilicity, and degradation rate than
composites with concentrations of MWCNTs above 0.6% [26].

Nanotubes-hydroxyapatite composites have been prepared using various synthesis
techniques, such as the sol–gel process [4,27,28], laser surface alloying [29], spark plasma
sintering [15], high-precision plasma spraying [30,31], electrophoretic deposition [32], in
situ growth of carbon nanotubes reinforced hydroxyapatite coating [33], pressure-less
sintering [34], annealing in vacuum [35].

Previously, both a small increase [36,37] and a decrease [37,38] in Young’s modulus of
the ceramics with the MWCNT additives were observed. Therefore, the influence of small
concentrations (less than 0.5 wt.%) of MWCNTs on the mechanical properties including
Young’s modulus of HA is required to be studied.

The aim of this study was dynamic measurements of Vickers hardness and Young’s
modulus of the bioceramics based on hydroxyapatite (HA) with a small amount (less than
0.5 wt.%) of the multi-walled carbon nanotubes (MWCNTs). We focus our attention on the
sintering of a composite in which an increase in mechanical properties is achieved by using
a very small amount of MWCNT additives (less than 0.5 wt.%) for minimizing possible toxic
effects. HA as the matrix is needed for obtaining the implant with high osseointegration
and biological activity. The improvement of the mechanical properties of HA is possible
by varying the amount of the MWCNT additives and sintering procedure regimes. The
change of porosity and the unique mechanical properties of MWCNTs are competitive
factors that can lead to the non-monotonic dependence of the mechanical properties of
the HA-MWCNTs. In addition, the influence of the MWCNTs on the plasticity index and
the resistance to plastic deformation that is important for the tribological performance of
the surface has not been studied yet. We will study the change in the plastic and elastic
(reversible) works with a variation of the concentration of MWCNTs. All these questions
are discussed in this study.
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2. Materials and Methods
2.1. Sintering of HAp–CNT Composite

The fabrication process for obtaining the bioactive composite “hydroxyapatite-multi-
walled carbon nanotubes” (HA-MWCNTs) was the same as for the samples in ref. [25]. It is
schematically shown in Scheme 1.
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Scheme 1. The fabrication process of obtaining the bioactive composite “hydroxyapatite-multi-walled
carbon nanotubes” (HA-MWCNTs).

HA powder was obtained by a wet method using the reaction between CaCO3 powder
(Merck, Darmstadt, Germany, analytical grade) and an H3PO4 solution (Merck, Darmstadt,
Germany, analytical grade). H3PO4 solution was rapidly poured into a CaCO3 suspension
followed by continuous mixing of the reactive medium for 24 h. The mass ratio of reagents
was chosen so as to obtain stoichiometric HA [39].

The chemical reaction is described by Equation:

5CaCO3 + 3H3PO4→Ca5(PO4)3OH + 4H2O + 5CO2 (1)

MWCNTs with low defectiveness and an average diameter of 18 nm were obtained
by CVD [40,41]. Concentrations of MWCNTs in the samples of HA (set 1) were 0.05 wt.%,
0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.5 wt.%, respectively. Samples were sintered for 1 h in an
argon atmosphere at 1100 ◦C. The increase in the temperature up to 1100 ◦C was achieved
at a constant heating rate of 20 K/min. Partial prevention of the oxidation of MWCNTs
was realized by using the argon atmosphere.

Another set of composites was obtained by mixing HA, polyvinyl alcohol (PVOH)
and 0.5 wt.%, MWCNTs (set 2). The synthesized HA powder (10 g) was added to a mixture
(1 g of PVOH and 10 mL of distilled water). PVOH was added for stabilizing the MWCNTs
suspension and in order to increase the overall porosity of the composite, since PVOH
evaporates during high-temperature annealing.

The obtained HA-PVOH-MWCNTs were thoroughly treated by ultrasound with
a frequency of 35 kHz for 1 h. The resulting powder was dried in an oven for a day
at a temperature of 230 ◦C. The compacted under pressure samples were sintered at a
temperature of 1100 ◦C at vacuum condition 5 × 10−6 mm Hg.

2.2. Characterization of the Samples

For the characterization of the samples, the X-ray diffraction (X-ray diffractometer
Philips, model APDW40C, in copper Kα λ = 0.154 nm) and Fourier transform infrared
spectroscopy in the mid-IR range (FTIR, BIO-RAD FFS 175 spectrometer, Feldkirchen,
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Germany, with a resolution of 0.5 cm−1) were used. The morphology and microstructure
of MWCNTs and the nanocomposites were studied using scanning electron microscopy
(SEM, JEOL JSM-7500FA, at 20 kV, Akishima, Japan). The obtained results of the structure
of HA and HA-MWCNTs composites agree with the results of the X-ray, IR and SEM
investigations in ref. [25]. The apparent porosity and bulk density of the sintered specimens
were estimated by Archimedes’ method. The compressive strength was studied previ-
ously [25]. The Vickers hardness and Young’s modulus of the polished sintered samples
were studied by using ultramicrotester Shimadzu for dynamic tests DUH-211. The samples
were polished with diamond paste on a standard metallographic wheel. For each specimen,
six indentations were made, and the average was taken as the representative value. The
Brunauer–Emmett–Teller (BET) surface area (SBET) of the samples was determined by ther-
mal adsorption-desorption of nitrogen in a “Sorbtometr-M” instrument (Katakon, Russia).
All the samples were degassed at 120 ◦C prior to nitrogen adsorption measurements. The
BET surface area was determined by a 5-point BET method using the adsorption data in
the relative pressure (P/P0) range of 0.5–0.8, where P0-is atmosphere pressure.

3. Results and Discussion

The SEM images of the hydroxyapatite (HA) ceramic with 0.5 wt.% multi-walled
carbon nanotubes (MWCNTs) sintered in the Ar atmosphere and its energy dispersive
X-ray (EDS) spectrum are shown in Figure 1a,b, respectively. From the EDS analysis, the
value of Ca/P = 1.71 has been obtained which leads to a smaller density than for the
stoichiometric HA (CA/P = 1.67) [42]. It is seen that ropes of several MWCNTs covered by
the HA in the composite fill the pores between the HA grains and play the role of “bridge”
between different grains, thereby strengthening the composites. Since MWCNTs are the
stiffer phase in the composite, their store most of the strain energy [43].

The SEM image of MWCNTs and EDS profile counts of C, Fe, Co are shown in
Figure 1c,d, respectively. According to the electron microscope studies, the mean diameter
of MWCNTs in our experiment is 18 nm and the metal catalyst particles are encapsulated
inside the nanotubes. According to energy dispersive X-ray spectroscopy of the MWCNTs,
carbon is the main element. The initial powder of nanotubes contains a small amount of
catalyst of Fe (0.17 at.%) and Co (0.09 at.%). The amount of other elements is negligibly
small. It means that the sample with the highest concentration of MWCNTs (0.5 wt%) on
1 g of HA has less than 1.5 × 10−5 g of particles of the metal catalyst. Therefore, the toxic
(Fe/Co) particles in the composite are almost completely absent. In addition, MWCNTs
lead to accelerating bone repair, good bone-tissue compatibility [18] and a negligibly small
toxic reaction [4,19,20,44]. The degradation rates of MWCNTs decrease with their increasing
diameters [22,23].
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and its energy dispersive X-ray spectroscopy (EDS) spectra (b). SEM image of multi-walled carbon
nanotubes, (c) EDS analysis (SEM image of the cross-section) and elemental mapping of C, Fe, Co (d).

The fracture toughness of the HA-MWCNTs composite was studied in ref. [45]. It was
found that the additives of MWCNTs with a concentration of up to 0.5 wt.% lead to an
increase in the fracture toughness of composite ceramics [45]. In ref. [46], it was shown
that the MWCNTs lead to an increase in the fracture toughness of ceramics due to their
higher strength than the HA matrix, and also due to the possible crack path deflection
from the planar geometry and decrease in the crack driving force. MWCNTs are able to
transfer loads efficiently across an interconnected network “MWCNTs-matrix” and prevent
or delay the initiation and propagation of cracks in the HA-MWCNTs composite [43,47].
The sintering activation due to the presence of MWCNT additives leads to the smaller
porosity and as a result, some reduction in the increase in the fracture toughness [46].

HA ceramics have low thermal diffusivity, and the temperature gradients occur
between the outer surface and central part of the sample during heterogeneous heat-
ing/cooling at sintering [48]. Macrostresses in HA ceramics are higher than in the case of
HA ceramics with the additives of MWCNTs. The additives of MWCNTs allow to increase
the thermal diffusivity and reduce internal residual macrostresses in the HA-MWCNTs
ceramics [48].

The relative porosity of the ceramics HA-MWCNTs was calculated. The porosity
of ceramic HA without additives is equal to 27.5%. The porosity of HA with 0.5 wt.%
MWCNTs (sintered in Ar atmosphere) is equal to ~8%. The decrease in the porosity of
3.4 times with an increase in the amount of MWCNTs to 0.5 wt.% agrees with the decrease
in porosity estimated by using the measurements of the specific surface SBET. The ratio
between specific surface SBET of pure HA and HA with 0.5 wt.% MWCNTs is equal to
~3. The amount of mesopores with diameters of 2–50 nm is significantly smaller than the
accuracy of the study by the nitrogen adsorption with the “Sorbtometr-M” instrument
(Katakon, Russia). It is evident that the macrospores make a major contribution to porosity.
The decrease in the porosity and the absence of microspores also agrees with the SEM
images of the obtained ceramics [25].

From the analysis of the SEM images, it was obtained that in the HA sample the
macropores with a size of more than 100 nm make a major contribution to porosity. The
obtained composite ceramics HA-MWCNTs have a two-phase structure. It is seen that
MWCNTs in the composite fill the pores between the HA grains. The calcium-phosphate
matrix is more dense and the macropores are filled by MWCNTs.
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The porosity of ceramics HA with concentrations of 0 wt.%, 0.2 wt.%, 0.3 wt.% and
0.5 wt.% MWCNTs (set 1) was 27.5%, 18%, 14.5% and 8%, respectively. It is seen that
composite ceramics with additives of MWCNTs have smaller porosity. The results of
porosity significantly change at various sintering conditions. The presence of PVOH for the
samples of set 2 sintered in a vacuum lead to a porosity similar to the porosity HA without
additives.

The next considerations were used in the choice of sintering conditions in our experi-
ment. The sintering conditions (temperature 1100 ◦C, time of sintering 1 h, relatively high
heating rate 20 K/min) were the same for all samples in set 1. According to ref. [42], the
bulk density of HA increases with increasing sintering temperature up to 1200 ◦C. The
density of hydroxyapatite is slightly changed with increasing sintering time above 1 h [49].

On the one side, an increase in sintering temperature and sintering time leads to the
formation of more dense ceramics. On the other side, the increase of these parameters
above chosen leads to an increase in the grain size [50,51], which has a negative effect on
mechanical properties.

The fracture toughness of pure HA decreases with increasing temperature above
1000 ◦C. The highest hardness of HA without additives was achieved in the tempera-
ture range 1050–1150 ◦C [42]. The decomposing of HA into ß-TCP and α-TCP start at a
temperature above 1100 ◦C [42,52].

The variation of the heating rate is also limited. On the one hand, the higher heating
rate (40 K/min) can lead to obtaining inhomogeneous ceramic with higher porosity and
lower mechanical properties. On the other hand, the lower heating rate (2–6 K/min) elimi-
nates the potential of MWCNTs to improve mechanical properties. Mukherjee et al. [53]
obtained the composite of the HA-1 wt.% MWCNTs and HA-2 wt.% MWCNTs with lower
Vickers hardness than HA without additives. Composite HA-0.5 wt.% MWCNTs have
lower flexural strength than HA without additives. At the same time, the bulk density of
the ceramics decreased with an increase in the amount of MWCNTs up to 5 wt.%, which is
apparently the main reason for the decrease in their mechanical properties. In the composite
HA-MWCNTs, the mass loss is observed at a heating rate of 5 K/min at the temperature
range of about 700–1200 ◦C, which may be due to both dehydroxylation and resulting
oxidation of the MWCNTs [54]. The increase in heating rate can minimize the effect of
oxidation of nanotubes. The smallest mass loss of MWCNTs was observed at a heating
rate in the range of 20–40 K/min [55]. In our study, the argon atmosphere, heating rate
of 20 K/min and aligning time of 1 h were chosen as optimal parameters to prevent the
oxidation effect of MWCNTs and obtain the HA-MWCNTs with as much as possible higher
mechanical properties.

The influence of the porosity of materials on the average Vickers hardness and average
compressive strength of ceramics HA-MWCNTs (sintered in Ar atmosphere, set 1) and
ceramics HA-PVOH-MWCNTs (sintered in a vacuum, set 2) is shown in Figure 2. Multiply
coefficient 0.009807 was used to convert Vickers hardness values from HV to Gpa. It is
seen that with the increase in the amount of MWCNTs in the samples of set 1, both the
Vickers hardness and compressive strength of the ceramics increase. It is seen that the HA
with 0.5 wt% MWCNTs has the highest Vickers hardness and compressive strength. The
compressive strength of the HA with 0.2 and 0.5 wt% MWCNTs is comparable with the
enamel compressive strength (95–370 Mpa) [56].
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For set 1, the dependencies of Vickers hardness and compressive strength vs. porosity
(P) are well-described by the linear plot with the same angle. It is indicated that the
MWCNT additives lead to the formation of more dense ceramics with smaller porosity
and higher Vickers hardness and compressive strength. Large porosity in the HA ceramics
is apparently due to the higher thermal gradient in the ceramic in comparison with the
HA-MWCNTs ceramics [48]. The increase in the porosity due to the presence of a thermal
gradient in ceramics has also been observed in refs. [36,57]. The MWCNTs probably
decrease the thermal gradients in the ceramics during the sintering due to the better
thermal and electrical conductivity of MWCNTs [58–60].

Rao et al. [49] described the data of the compressive strength σ of apatites as an
exponential dependence of porosity:

σ = 1.38 × 108 × e−4.6P, [Pa] (2)

The data of compressive strength σ of apatites [49] is shown in Figure 2 for comparison
by triangles. It is seen that our data compressive strength σ of HA–MWCNTs ceramics
sintered in the Ar atmosphere (squares) are higher than for apatites without MWCNT
additives (triangles). Thus, it is obvious that MWCNTs lead to an increase in hardness and
compression strength both due to the intensification of the sintering process and due to
the remarkable mechanical properties of the MWCNTs. Both for the compressive strength
of the HA-MWCNTs set [25], and for the Vickers hardness of the HA-MWCNTs set (Ar
atmosphere), the same slope of the linear curves is observed, which indicates the same
trends in the influence of MWCNTs additives on the resulting values of porosity and
mechanical properties composites based on HA. The set of composites HA-PVOH and
HA-PVOH-0.5 wt.%MWCNTs sintered at the vacuum condition (stars) has smaller values
of the Vickers hardness due to the higher porosity. Set 2 was excluded from further analysis
due to its low mechanical properties not being promising.

The Vickers hardness (HV) of the obtained bioceramics HA-MWCNTs (set 1) was
comparable with the literature data on enamel hardness, which has a value of 5.7 Gpa
on the top surface [61] and the lowest value is 3 Gpa of hardness on the “enamel-dentin
junction”-EDJ [62]. In ref. [53], the amount of MWCNTs impurity up to 0.5 wt% increases the
hardness of the ceramics like in our work. At the same time, we obtained higher absolute
values of the hardness of the composite with the same concentration of the MWCNTs,
which is apparently due to better sintering conditions in our experiment. In our work, the
heating rate of 20 K/min was used to increase the temperature up to 1100 ◦C. In ref. [53],
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the temperatures of the samples were increased with a heating rate of 3–6 ◦C/min up to
1250 ◦C. An increase in the heating rate decreases the effect of oxidation and decomposition
of MWCNT during the annealing [55]. The more optimal chosen temperature is the second
argument of the higher Vickers hardness.

Diffraction patterns of MWCNTs and composite ceramics HA-0.3 wt.%MWCNTs are
shown in Figure 3a. Hydroxyapatite (HA) without additives of multi-walled carbon nan-
otubes (MWCNTs) and HA with 0.5 wt.% MWCNTs were added for comparison [25]. It
was shown that all diffraction peaks are indexed to the hexagonal phase of hydroxyap-
atite with the space group of P63/m and coherent with the Joint Committee on Powder
Diffraction Standards (JCPDS-09-0432/1996). The formation of additional phases such as
CaO, -TCP, etc., and the broadening of the peaks in the HA matrix were not observed. The
crystallite size was near 50 nm [25]. MWCNTs show (002) peak, which is assigned to the
hexagonal ring structure of graphite sheets forming carbon nanotubes. The XRD results
have coincided with the FT-IR analyses of the ceramics (Figure 3b). The intensity of OH-
(632 cm−1) vibration modes was weak. It was found from the FT-IR measurements that
A-type carbonized apatite is predominantly formed and chosen conditions of sintering.
The MWCNTs additives lead to the carbonization of the structure of the hydroxyapatite
matrix as the result of partial oxidation of the nanotubes [25].
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Figure 3. XRD patterns of MWCNTs and composite ceramics HA-0.3 wt.%MWCNTs synthesized
at a temperature of 1100 ◦C in argon atmosphere (a). FT-IR spectroscopy of HA-0.3 wt.%MWCNTs
ceramics synthesized at a temperature of 1100 ◦C in argon atmosphere (b). Hydroxyapatite (HA)
without additives of multi-walled carbon nanotubes (MWCNTs) and HA with 0.5 wt.% MWCNTs are
added for comparison [25].

Lattice parameters (a = b, and c) for the hexagonal structure have been calculated by
using the equation [63]:

1
d2 =

4
3
× h2 + hk + k2

a2 +
l2

c2 , (3)

where d = λ/2 sin θ—lattice distance, h, k, l—Miller’s indexes (the reflection planes).
It is seen that the lattice parameter a increases (Figure 4a) and lattice parameter c

decreases (Figure 4b) with the increase in the MWCNTs additives in comparison with the
HA ceramic without MWCNTs. The change of the lattice parameters can be associated
with the possible replacement of hydroxyl groups (OH−) by carbonate groups as a result of
nanotube oxidation. In this case, carbonated hydroxyapatite of A-type is formed.



Materials 2022, 15, 5304 9 of 17

Materials 2022, 15, 5304 9 of 17 
 

 

It is seen that the lattice parameter a increases (Figure 4a) and lattice parameter c 
decreases (Figure 4b) with the increase in the MWCNTs additives in comparison with the 
HA ceramic without MWCNTs. The change of the lattice parameters can be associated 
with the possible replacement of hydroxyl groups (OH−) by carbonate groups as a result 
of nanotube oxidation. In this case, carbonated hydroxyapatite of A-type is formed. 

 
(a) 

 
(b) 

Figure 4. Lattice parameters (a = b, and c) for the hexagonal structure of the HAp composite ce-
ramic vs. MWCNTs amount. Fittings of the experimental points for lattice parameters (a and c) are 
shown by (a) red and (b) blue lines, respectively. 

Measurement of the elastic modulus has been performed on an ultramicrotester Shi-
madzu by using the indentation technique. The load vs. displacement curves for both HA 
and HA with MWCNTs are shown in Figure 5a–d. Six indentation tests have been con-
ducted for each specimen. 

Figure 4. Lattice parameters (a = b, and c) for the hexagonal structure of the HAp composite ceramic
vs. MWCNTs amount. Fittings of the experimental points for lattice parameters (a and c) are shown
by (a) red and (b) blue lines, respectively.

Measurement of the elastic modulus has been performed on an ultramicrotester
Shimadzu by using the indentation technique. The load vs. displacement curves for both
HA and HA with MWCNTs are shown in Figure 5a–d. Six indentation tests have been
conducted for each specimen.

The Young’s modulus of the composite vs. concentration of MWCNTs is shown in
Figure 6. Red circles show the calculated Young’s modulus for each of the six indentation
tests in each specimen. The average Young’s moduli are shown by open square symbols.
The black line (average Young’s modulus for the HA ceramics without additives) and
green line (the highest and lowers reference value of Young’s modulus for enamel [61,64]
are shown for the eye. The significant difference between the Young’s modulus of the
sintered composites HA-MWCNTs and the HA ceramics without MWCNTs additives
is not observed. At the same time, the Young’s modulus of the sintered composites is
comparable with the Young’s modulus of enamel [61]. The decrease in the Young’s modulus
of the ceramics may be due to the presence of the MWCNTs with large diameters and
the nonhomogeneous distribution of MWCNTs in the samples. The Young’s Modulus of
MWCNTs depends on the diameter of the nanotubes and can vary from an E ~1000 GPa (for
tubes with a diameter of 7 nm) to E ~10 GPa (diameter more than 40 nm) [24]. The increase
of the elastic modulus of HA–MWCNTs composite may be attributed to three major factors:
(i) the high Young’s modulus value of MWCNTs with small diameter; (ii) the decrease in
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the porosity [25,48,64,65] of the HA matrix with the increase in MWCNTs additives and
(iii) strong HAp/MWCNTs interface.
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The increase in the amount of the MWCNTs additives leads to an increase in the
Young’s modulus due to the decrease in the porosity of the HA. On the other side, it was
seen in the electron microscope images that the morphology of MWCNTs agglomerates is
significantly changed in the ceramics due to partial oxidation of the nanotubes during the
sintering [25]. This may lead to a smaller Young’s modulus of the MWCNTs and composite
ceramics HA-MWCNTs. Thus, the compensation of factors with the opposite effect in the
sample leads to a weak change in the Young’s modulus with an increase in the amount of
MWCNTs additives. It agrees with the literature data. Both a small increase [36,37] and
a decrease [37,38] in the Young’s modulus of the ceramics with the addition of MWCNTs
were observed.

Fractions of the plastic (Wp/Wt) and elastic (We/Wt) work of deformation during
indentation for the composite structure are shown in Figure 7, and were calculated by using
the Equations [66]:

Wt = We + Wp (4)
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Wt
=

1− 3
( h f

hm

)2
+ 2

( h f
hm

)3

1−
( h f

hm

)2 (5)

where Wt—total work, Wp—plastic work and We—elastic (reversible) work, hm is the depth
of the indent of the peak load and hf is the final depth of indentation after recovery. The
obtained values Wp/Wt in such an pproach also agree with the universal relationship
between hf/h and Wp/Wtot [67]:

wp

wt
= (1 + γ)

h f

hm
− γ (6)
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Figure 7. Left axes: Dependence of ratio plastic work to the total work of deformation of composite
HA/MWCNTs vs. concentration of MWCNTs (black circle—for indentation tests, and black—square
average value). Right axes: Dependence of ratio elastic (reversible) work to the total work of
deformation of composite HA/MWCNTs vs. concentration of MWCNTs (blue open triangle—for
indentation tests, and blue open square—average value).

The values We/Wt and Wp/Wt have significant interest in tribology for the prediction
of surface deformation based on the work of indentation and vice versa.

It is seen (Figure 7) that the plastic and elastic (reversible) works slightly change with
a variation of the concentration of MWCNTs and are approximately equal to half of the
total work.

Biomedical components require a protective coating with an optimized balance of
hardness and friction [68]. Both H/E (Figure 8a) and H3/E2 (Figure 8b) increase with the
increase in the amount of MWCNTs. The H/E ratio is related to the elastic strain to failure
of the surface [69]. The H3/E2 factor is used to describe the resistance of the material to
plastic deformation [70].
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It is seen that the additives of the MWCNTs lead to both increase in the elasticity index
(H/E) and the resistance (H3/E2) to plastic deformation. Therefore, the HA-MWCNTs
ceramics have a better tribological performance on the surface in comparison with pure
HA ceramics for medical application.

4. Conclusions

Hydroxyapatite-multi-walled carbon nanotubes (HA-MWCNTs) composite for med-
ical applications were synthesized. The argon inert atmosphere and vacuum condition
were taken for the prevention of the MWCNTs oxidation. Concentrations of multi-walled
carbon nanotubes were in the range of 0.05–0.5 wt%, an argon atmosphere and temperature
of 1100 ◦C were chosen for sintering. The small amount of additives of multi-walled
carbon nanotubes leads to an increase in hardness of 1.3 times. The Vickers hardness
values increase close to linearly with the increase in the nanotubes’ concentrations. A simi-
lar linear tendency with the variation in the porosity was observed for Vickers hardness
and compression strength of the composite. The Young’s modulus of sintered composite
slightly changes with the variation of concentrations of nanotubes and close to the enamel
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(75–100 GPa). The ratio of plastic work to total work and the ratio of elastic (reversible)
work to the total work of deformation of composite HA/MWCNTs are practically constant
at a studied range of MWCNTs concentration. The additives of the multi-walled carbon
nanotubes lead to both an increase in the elasticity index of ~1.5 times and an increase in the
resistance to plastic deformation of ~3 times, which improved the tribological performance
of the surface. Plastic and elastic (reversible) works slightly changed.
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