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In schizophrenia and related disorders, a deeper mechanistic understanding
of neocortical dysfunction will be essential to developing new diagnostic and
therapeutic techniques. To this end, combined transcranial magnetic stimulation and
electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously
perturb and measure neurophysiological correlates of cortical function, including
oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review,
we summarize the findings from a variety of studies that apply TMS/EEG to understand
the fundamental features of cortical dysfunction in schizophrenia. These results lend to
future applications of TMS/EEG in understanding the pathophysiological mechanisms
underlying cognitive deficits in schizophrenia.
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INTRODUCTION

Schizophrenia is a debilitating psychiatric disorder with a mean lifetime prevalence of 1% (Kahn
et al., 2015). Patients with schizophrenia present with diverse clinical symptoms; core features
include positive symptoms such as delusions and hallucinations and negative symptoms such
as reduced motivation and social withdrawal. The first episode of psychosis (defined broadly
as either hallucinations or delusional behavior) typically occurs in late adolescence or early
adulthood (late teenage years or early twenties), frequently preceded by a clinically heterogeneous
prodromal phase with varied features such as blunted affect, social withdrawal, delusions, and sub-
psychotic perceptual disturbances (Owen et al., 2016). Defining consensus diagnostic features of
this prodrome has been the subject of extensive debate (Tsuang et al., 2013). Accurately identifying
such at risk individuals may provide insights into the initial neurobiological alterations associated
with schizophrenia and also facilitate the testing of specific interventions designed to prevent
conversion to frank psychosis (Addington and Heinssen, 2012).

Neuroimaging studies in schizophrenia patients have consistently observed reduced cortical gray
matter volume in temporal and prefrontal areas, an anatomical change that may reflect neuronal
cell loss, lowered dendritic complexity, and/or synaptic density changes (Karlsgodt et al., 2010;
Dietsche et al., 2017). However, such microscopic neuropathological changes are both impractical
to measure in a clinical setting and may represent a secondary consequence of underlying network
dysfunction. In contrast, neurophysiological measures of cortical function obtained in awake and
interacting patients (and/or animal models) may offer a more practical biomarker of specific
cognitive deficits while also highlighting themes of cellular and/or molecular dysfunction (Linden,
2012). One example (which we discuss further below) is gamma rhythms: parvalbumin-expressing,
fast-spiking inhibitory interneurons (PV-INs) generate gamma frequency oscillations through
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phase-locked inhibitory firing, which may aid in the coordination
of local information processing and is modulated in a top-down
fashion (Uhlhaas and Singer, 2013). Altered gamma rhythms
have been implicated as a substrate for several cognitive deficits of
schizophrenia and remain popular as a major clinical biomarker
(Gonzalez-Burgos et al., 2015).

Transcranial magnetic stimulation (TMS) has emerged as
a powerful tool to non-invasively study cortical physiology in
humans (Hallett, 2000; Valero-Cabré et al., 2017). While early
applications of this technology were restricted to measuring or
mapping motor cortex activity, the development of compatible
electroencephalography (EEG) techniques has led to the growth
of combined TMS/EEG to measure and manipulate motor
and non-motor cortical function (Daskalakis et al., 2012;
Tremblay et al., 2019). In contrast to other non-invasive
modalities such as functional magnetic resonance imaging
(fMRI), the superior temporal resolution of TMS/EEG offers a
unique window into deficits in cellular function and synaptic
transmission across cortical networks (Premoli et al., 2014;
Kaskie and Ferrarelli, 2018; Hui et al., 2019). In this review,
we will introduce the lay reader to general concepts pertaining
to TMS/EEG and review recent studies that have employed
TMS-EEG to directly measure cortical dysfunction in patients
with schizophrenia.

APPLYING TMS/EEG

Transcranial magnetic stimulation uses an electromagnetic coil
to create a time-varying magnetic field within the cortex. This
changing magnetic field then induces an electrical current,
transiently affecting the firing of cortical neurons close to the coil
(Tremblay et al., 2019). Thus, TMS produces a spatiotemporally
localized change in neural activity. Through assessments of
behavioral measures (e.g., muscle twitching) and local neural
recordings, the extent of direct neural modulation has been
found to be approximately 2 mm in radius (Romero et al.,
2019). TMS-induced magnetic fields do not penetrate subcortical
structures, limiting the direct and selective stimulation of deep
brain regions. Nevertheless, these regions may be modulated
indirectly by stimulating a functionally connected cortical region
(McClintock et al., 2011).

When TMS is applied to the motor cortex, electromyography
(EMG) of the associated muscle shows a motor-evoked potential
(MEP) (Bestmann and Krakauer, 2015). If TMS is applied
to a non-motor area, there may be no MEP, but a TMS-
evoked potential (TEP) can be visualized through simultaneously
recorded EEG. This TEP is a surface representation of cortical
activity in response to the magnetic pulse (Figure 1). After
incorporating special methodological considerations to account
for the auditory and somatosensory components of TMS stimuli
(Conde et al., 2019), TEPs provide a quantitative measure of
cortical information spread across multiple domains. When
applied to patients with neuropsychiatric illness, changes in
the time course and frequency spectrum of TEP responses
may indicate disease- or treatment-related alterations in
neural oscillations and cortical inhibition. Similarly, when

compared along the spatial domain, altered TEPs provide
insights into changes in connectivity between brain regions
(Rogasch et al., 2014).

ALTERED NEURAL OSCILLATIONS

Neural oscillations are rhythmic fluctuations in the electrical
activity of populations of neurons, and these synchronized
oscillations may allow more efficient communication between
different brain regions (Uhlhaas et al., 2009; Buzsáki and
Schomburg, 2015). Neural oscillations can be measured
via extracranial EEG and resolved into specific bands of
frequency: delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (31–80 Hz) (Mathalon and Sohal,
2015). These synchronized oscillations are correlated with
frequency-specific cognitive functions in healthy individuals
(Uhlhaas, 2009), suggesting a possible link between the
processes underpinning dysfunctional neural oscillations
and the cognitive deficits seen in schizophrenia (Uhlhaas
and Singer, 2013). Many EEG-based studies have identified
disruptions in gamma band oscillatory power in schizophrenia
patients (see Hunt et al., 2017 for a review of these findings).
Unfortunately, these findings have varied in directionality,
suggesting that baseline alterations in gamma band power
may not be themselves predictive of schizophrenia. In
contrast, the finding of reduced task-based gamma power
in schizophrenia patients has been more consistent (Hunt et al.,
2017; Nguyen et al., 2020). Tasks such as the auditory steady
state response (ASSR) may provide a robust measurement of
gamma oscillations in the auditory cortex (O’Donnell et al.,
2013), whereas the Stroop and N-Back tasks can be used to
measure synchrony across multiple bands (Barr et al., 2017;
Popov et al., 2019).

Relative to the study of strictly task-based biomarkers,
TMS/EEG offers a more direct and spatially localized probe of
cortical oscillations. In one early TMS/EEG study, schizophrenia
patients and healthy controls underwent single-pulse TMS at
the premotor cortex, and high-density EEG showed that evoked
gamma oscillations in frontal areas of schizophrenia patients
were significantly decreased in amplitude and synchronization
(Ferrarelli et al., 2008). This finding has been replicated in an
independent TMS/EEG study (Canali et al., 2015). However,
patients in both studies were receiving chronic antipsychotic
therapy. A more recent TMS/EEG study on medication naive
first-episode psychosis patients found similar reductions in
the amplitude of evoked low gamma (27–33 Hz) oscillations
(Ferrarelli et al., 2019).

Similar findings have been observed in preclinical models
of schizophrenia; in two separate putative mouse models of
schizophrenia (chronic ketamine administration and 22q11.2-
analog deletion), mice displayed a deficit in evoked gamma
band activity together with deficits in the reliability of
neuronal coactivity patterns that could not be explained by
alterations in single neuron activity. Interestingly, acute ketamine
administration or acute pharmacogenetic suppression of PV-
INs did not have the same effect (Hamm et al., 2017),
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FIGURE 1 | Comparison of TMS/EEG and traditional TMS. While traditional TMS techniques have focused on areas with readily observable responses, such as
stimulation of motor cortex and detection of motor-evoked potentials, TMS/EEG allows us to observe cortical responses to stimulation with much greater spatial
resolution.

suggesting the presence of long-standing network adaptations
involving PV-INs.

Resonant frequencies offer a complimentary approach to
studying neural oscillations in schizophrenia. Upon a pulse
of TMS stimulation, different cortical areas tend to oscillate
at specific frequencies, with more frontal areas oscillating at
higher frequencies and more posterior regions oscillating at
lower frequencies. Even as the intensity or location of the TMS
pulse is varied, the EEG signal at each region continues to
oscillate at the same frequency. Thus, region-specific resonant
frequencies appear to be a deliberate physiological property
reflecting variations in regional neuronal organization and thus
may offer a useful tool for studying cortical region-specific
disturbances (Rosanova et al., 2009). In one study, resonant
frequencies in frontal regions were lower in schizophrenia
compared with healthy controls, with the largest deficits seen
in the prefrontal cortex, and these deficits correlated with
positive symptom severity (Ferrarelli et al., 2012). Another study
applied the same technique to patients with schizophrenia, major
depression, and bipolar disorder, and found that reductions
in resonant frequencies in frontal regions were shared among
all three disorders (Canali et al., 2015). Thus, alterations in
resonant frequencies as identified by TMS/EEG may correlate
with core cognitive deficits across a number of different
psychiatric disorders (Etkin et al., 2013), but larger multi-center
studies need to be conducted to confirm these findings. Taken
together, these studies support the potential of TMS/EEG in
better understanding dysfunctional oscillations in schizophrenia.
Further research is required to discern how these measures
may assist in differentiating between schizophrenia and other
psychiatric disorders.

ALTERED NEURAL INHIBITION

Gamma oscillations are produced by the firing patterns of
inhibitory PV-INs, cells which play a role in maintaining

an appropriate excitatory/inhibitory balance in the cortex in
mice (Sohal et al., 2009; Ferguson and Gao, 2018). Thus,
schizophrenia-associated alterations in either baseline or evoked
gamma activity in frontal cortical regions may be related to
deficits in frontal PV-IN function (Uhlhaas and Singer, 2013).
In support of this hypothesis, a meta-analysis of post mortem
studies has found an approximately 30% reduction in PV-IN
density within pre-frontal regions (Kaar et al., 2019). In line
with these findings, TMS/EMG studies that examine motor
cortex inhibition in humans have indeed shown a consistent
disinhibition effect in schizophrenia (Bunse et al., 2014), and this
effect has been replicated by research on non-motor areas using
TMS/EEG (Kaskie and Ferrarelli, 2018).

To study cortical inhibition via TMS/EEG, many studies make
use of a paired-pulse paradigm. Two separate TMS pulses (the
conditioning stimulus and the test stimulus) are applied to the
cortex; if they are applied within a 1–4 ms of each other, the
response to the test pulse is typically diminished relative to
the conditioning pulse and termed short interval intracortical
inhibition (SICI). In contrast, with intervals set to 50–200 ms, the
resulting inhibition is called long interval intracortical inhibition
(LICI) (Rogasch et al., 2014). These two inhibitory responses
are thought to require two distinct gamma-aminobutyric acid
(GABA) receptors: GABAA mediates SICI and GABAB mediates
LICI, and they can be differentiated by receptor-specific ligands
(McClintock et al., 2011; Premoli et al., 2014).

Recent studies have applied paired-pulse TMS/EEG to
measure inhibition of TEPs in the prefrontal cortex (Cash
et al., 2017). One study investigated LICI in the dorsolateral
prefrontal cortex of schizophrenia patients, OCD patients, and
healthy controls (Radhu et al., 2015). They found a deficit
in prefrontal cortex LICI specific to schizophrenia patients,
suggesting that it might represent a biomarker for GABAB
receptor dysfunction in schizophrenia. Interestingly, the study
was not able to find any differences in motor cortex LICI between
the three groups, raising the possibility that schizophrenia may
impart varying detrimental effects on regional circuitry (Radhu

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 554

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00554 May 26, 2020 Time: 17:52 # 4

Vittala et al. Understanding Schizophrenia With TMS/EEG

et al., 2015). A follow-up study characterized prefrontal LICI
in first-degree relatives of schizophrenia patients; in this at-risk
group, measures of LICI appeared to be intermediate between
the levels for healthy controls and schizophrenia patients.
However, this difference was not statistically significant, so
further study is warranted (Radhu et al., 2017). Prefrontal
SICI may also be deficient in schizophrenia. One study applied
paired-pulse TMS/EEG to the dorsolateral prefrontal cortex of
schizophrenia patients and healthy controls, and the results
showed that SICI was reduced in schizophrenia. This deficit
was also correlated with a measure of working memory (Noda
et al., 2017). Two other studies employing motor cortex TMS
identified similar findings (Takahashi et al., 2013; Bridgman
et al., 2016). While encouraging, all of these studies used
relatively small sample sizes and did not control for chronic
antipsychotic use. Future studies need to extend these results
to larger populations (including unmedicated patients) to
better understand schizophrenia-related changes in intracortical
inhibition at a circuit level. In addition, overall changes in SICI
and LICI may not be specific to schizophrenia (Radhu et al.,
2013; Jeng et al., 2019), but region-specific changes in these
biomarkers of cortical inhibition may help further distinguish
these various disorders (Menzies et al., 2007; Hashimoto
et al., 2008; Thompson et al., 2009; Luscher et al., 2011;
de Jonge et al., 2017).

ALTERED CONNECTIVITY

In addition to alterations in excitation/inhibition imbalance,
schizophrenia has also been broadly conceptualized as a

failure of efficient communication between neural systems
required for cognition and perception. Resting state fMRI
analyses have provided strong support along these lines,
demonstrating alterations in functional connectivity between
the prefrontal cortex and other brain regions (including
the temporal lobes, hippocampus, and striatum) in patients
with schizophrenia (Schmitt et al., 2011; Zhou et al., 2015;
Dong et al., 2018). In addition, EEG studies (without TMS)
have found impairments in synchrony between gamma band
neural oscillations across various brain regions (Wynn et al.,
2015; Schulz et al., 2017; Steinmann et al., 2017; Brennan
et al., 2018). Similar deficits have been observed in genetic
mouse models of schizophrenia; one study found decreased
prefrontal-hippocampal theta band synchronization in mice
during a working memory task (Sigurdsson et al., 2010).
Since neural synchrony is essential for effective communication
between neural circuits, synchronization deficits and functional
connectivity alterations are likely co-dependent (Uhlhaas and
Singer, 2010). With TMS/EEG applied to human subjects, it is
possible to study how alterations in synchrony and functional
connectivity between cortical regions correlate with specific
symptoms of schizophrenia.

To measure the functional connectivity between two cortical
regions with TMS/EEG, studies can apply a TMS pulse to one area
and then use the EEG data to determine how that pulse spread
to another region. Unlike approaches that rely on temporally
correlated patterns of activity (e.g., EEG coherence analyses or
resting state fMRI), responses to experimentally induced TMS
pulses can provide inferences about causality and directionality
of cortical information spread (Hallett et al., 2017). One study
delivered TMS pulses to the motor cortex and identified

FIGURE 2 | TMS/EEG correlates of schizophrenia (SZ). SZ patients tend to have reduced power in evoked gamma band oscillations compared to healthy controls
(HC). In addition, the natural frequency of frontal regions tends to be reduced. A greater spread of TMS-evoked potentials (TEPs) may be observed in SZ, though this
finding is still controversial. Finally, SZ patients tend to have reduced short-interval intracortical inhibition (SICI) and reduced long-interval intracortical inhibition (LICI).
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more prolonged and recurrent evoked excitation waves in
schizophrenia patients compared to healthy controls. This excess
cortical activation was also correlated with positive symptoms of
schizophrenia (Frantseva et al., 2014). Another TMS/EEG study
found similar results when they applied subthreshold pulses to
the left motor cortex and found evidence of excess connectivity
both within the motor cortex and between the motor cortex
and other brain regions in schizophrenia patients (Gupta et al.,
2019). Connectivity deficiencies may also be present in some
regions of the brain in schizophrenia: a third study applied TMS
pulses separately to prefrontal, premotor, motor, and parietal
cortex and used EEG source modeling to measure significant
current scattering (a proxy for intracortical connectivity). In
this study, schizophrenia was associated with lower significant
current scattering in prefrontal and premotor areas, and
this parameter alone provided good sensitivity and specificity
in separating schizophrenia patients from controls (Ferrarelli
et al., 2015). A final study identified reduced interhemispheric
facilitation between the premotor cortex and the contralateral
motor cortex in schizophrenia patients, and they noted that
deficits in facilitation were positively correlated with negative
symptom burden (Ribolsi et al., 2011). All four of these studies
provide evidence for dysfunctional connectivity in schizophrenia,
whether interhemispheric or intracortical, as a unifying feature of
schizophrenia. However, some of these analyses again included
patients on chronic antipsychotic medication, which may lead
to EEG alterations, so future studies should ensure inclusion of
first-episode psychosis patients to remedy this limitation.

By transiently modifying oscillatory activity, TMS/EEG
can offer causal insights into the role of beta/gamma
desynchronization in schizophrenia. For example, one study
applied TMS at varying frequencies to the prefrontal cortex
and simultaneously measured memory formation in healthy
subjects. Memory formation was most impaired when the
cortex was stimulated at a beta band frequency, implicating
desynchronization of beta activity in the process of normal
memory formation (Hanslmayr et al., 2014). Similar experiments
in schizophrenic patients could help characterize the role of
gamma activity in cognitive deficits or hallucinations observed
in schizophrenia. Numerous EEG-only studies have suggested
these correlations (Andreou et al., 2015; Steinmann et al.,
2017; Takahashi et al., 2018), but causality can be better
assessed with TMS/EEG.

DISCUSSION

In the ways described above, TMS-EEG offers a unique
opportunity to directly test a variety of specific hypotheses
pertaining to cortical dysfunction in schizophrenia. By analyzing
TEPs across multiple domains (see Figure 2 for a graphical
abstract of these findings), TMS/EEG may serve to complement
insights obtained from other techniques like fMRI and EEG.
Several questions remain to be answered. Do the modified
resonant frequencies seen in schizophrenia play a causal role in
producing specific symptoms, or are they an artifact of treatment?
Is there a causal relationship between neural synchronization
deficits and the cognitive symptoms of schizophrenia, and what
direction does this relationship have? What aspects of TMS/EEG
abnormalities in schizophrenia are most predictive and specific to
the disorder, and which can be used as diagnostic or prognostic
biomarkers? To address these questions, larger multi-center
TMS/EEG studies with medication-naïve patients are required
in order to both validate findings and provide more statistical
strength for hypothesis testing. TMS/EEG studies on patients
with other major psychiatric disorders, like depression, bipolar
disorder, and anxiety, will help identify signatures that are unique
to each of these disorders. Future studies that combine fMRI with
TMS/EEG may shed light on how task-related changes in cortical
activity may be richly modulated by a variety of subcortical
regions (Jung et al., 2020). Finally, as a neurophysiological
modality that can be scaled down to mice (Zhang et al., 2019),
TMS/EEG may also provide a platform for translationally sound
preclinical assessments of treatment and genetic risk.
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