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Abstract

Introduction: Learning health systems can help estimate chronic disease prevalence

through distributed data networks (DDNs). Concerns remain about bias introduced

to DDN prevalence estimates when individuals seeking care across systems are

counted multiple times. This paper describes a process to deduplicate individuals for

DDN prevalence estimates.

Methods: We operationalized a two-step deduplication process, leveraging health

information exchange (HIE)-assigned network identifiers, within the Colorado Health

Observation Regional Data Service (CHORDS) DDN. We generated prevalence esti-

mates for type 1 and type 2 diabetes among pediatric patients (0-17 years) with at

least one 2017 encounter in one of two geographically-proximate DDN partners. We

assessed the extent of cross-system duplication and its effect on prevalence

estimates.

Results: We identified 218 437 unique pediatric patients seen across systems during

2017, including 7628 (3.5%) seen in both. We found no measurable difference in

prevalence after deduplication. The number of cases we identified differed slightly by

data reconciliation strategy. Concordance of linked patients' demographic attributes

varied by attribute.

Conclusions: We implemented an HIE-dependent, extensible process that ded-

uplicates individuals for less biased prevalence estimates in a DDN. Our null pilot

findings have limited generalizability. Overlap was small and likely insufficient to

influence prevalence estimates. Other factors, including the number and size of part-

ners, the matching algorithm, and the electronic phenotype may influence the degree
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of deduplication bias. Additional use cases may help improve understanding of dupli-

cation bias and reveal other principles and insights. This study informed how DDNs

could support learning health systems' response to public health challenges and

improve regional health.
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1 | INTRODUCTION

Learning health systems (LHSs) that leverage data for rapid, continu-

ous improvement operate amid broader secular epidemics of chronic

disease and substance use that exceed any one healthcare system's

ability to address.1-4 Public health problems freely transcend county

boundaries and provider networks. A nationwide LHS, based on a fed-

erated data sharing model,5 proposes to combine LHS concepts with

established public health strategies, such as estimating disease preva-

lence.6 One common LHS challenge is reconciling fragmented data

collected across an ecosystem of electronic health records (EHRs).

Record fragmentation limits a single system's ability to learn from

patients' experiences and outcomes at the individual or population

level. A treatment (or exposure) may be recorded in one healthcare

system, while related outcomes may be recorded in another. Concep-

tually, this identity management (IM) challenge includes several com-

ponent activities: (a) uniquely identifying and linking individuals across

multiple data sources and distinct healthcare organizations,

(b) aggregating individual-level health data from multiple sources, and

(c) reconciling data and discrepancies across sources (eg, removing

duplicates, resolving changing residence data over time). For example,

while healthcare organizations identify unique individuals and assign

medical record numbers using internal IM tools, health information

exchanges (HIEs) facilitate Health Insurance Portability and Account-

ability Act-(HIPAA) compliant, data sharing from one covered entity to

another using cross-entity IM (eg, master patient index).7,8

EHR distributed data networks (DDNs) can leverage federal

investments for research, quality improvement and public health, val-

ued domains for any LHS. Federated data sharing, recognized by

funding agencies,9 and adopted by clinical data research networks,10,11

can preserve privacy and security as data remain behind firewalls of

DDN-participating healthcare organizations, until queried for specific

approved uses. The importance of IM in a DDN is likely influenced by

the specific use case and geographic proximity of participating organi-

zations. For example, whereas some PCORnet clinical data research

networks may have limited geographic overlap and duplication of

patients, others have implemented IM solutions.12,13 Regional DDNs

designed for quality improvement or public health surveillance in a

defined region may be especially likely to experience patient duplica-

tion. Risks of duplication bias in public health DDNs have been recog-

nized but lack data to inform decisions.14 Prevalence estimates from

DDNs can be biased when individuals access multiple health systems

are represented more than once,15 however the degree of bias may

differ by use case.

Efforts to define, scope, and address problems caused by duplica-

tion for a variety of public health use cases are needed.16 Building on

previous DDN-based surveillance17-19 we sought to implement and

evaluate methods to deduplicate DDN prevalence estimates. For pilot

use cases we selected T1DM and T2DM, health conditions that

require enhanced coordination across primary and specialty care set-

tings. Across settings multiple records may exist for the same child,

leading to potentially biased prevalence estimates. Our goal was to

empirically evaluate a scalable process to deduplicate T1DM or T2DM

prevalence estimates among pediatric patients receiving healthcare

services at two large health systems in the same region.

2 | METHODS

2.1 | Setting

The Denver metropolitan area, an urban and suburban region, has col-

laboratively developed a DDN (ie, Colorado Health Observation

Regional Data Service [CHORDS]) through a consortium of state/local

public health departments, health systems, federally qualified health

centers (FQHCs), community mental health centers, a regional HIE, a

university, non-profit organizations, and other key stakeholders. Data

from EHRs are normalized to a common data model and queried using

DDN data aggregation software (ie, PopMedNet [PMN]).20 A detailed

description of the development of CHORDS has been published else-

where.17 This study focuses on an IM approach that could scale to

deduplicating prevalence estimates in the seven-county Denver met-

ropolitan area, which includes over 50% of Colorado's 5.8 million

residents.

2.2 | Populations

Two health systems contributing data to the CHORDS Network

(“data partners”) participated in this study. Data partner 1 (DP1) is a

large, integrated safety-net health system recognized as an LHS9 that

provides care for the majority of low-income individuals in the City

and County of Denver (�30% of Denver's population). Data partner

2 (DP2) is a large pediatric tertiary care facility that participates in a
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network LHS.10 Children seen in primary care at DP1 are routinely

referred to DP2 for many types of specialty care. Patients with T1DM

are referred to a specialty diabetes program affiliated with DP2 that

did not contribute data to this study. Both data partners have multiple

locations throughout the Denver metropolitan area. DP1 and DP2

operate locations as close as 3 miles of one another.

The eligible population (denominator) for this evaluation were

children (less than 18 years of age on the date of the encounter) with

at least one 2017 healthcare encounter at either data partner, residing

in the seven-county Denver metropolitan. Individuals with incomplete

information for unique identification by the HIE were excluded

(n = 47 347, 2% of all records; see Figure 1).

For its chronic disease surveillance mission the CHORDS Net-

work leverages numerous case definitions drawn from the Centers for

Medicare and Medicaid Services Chronic Conditions Data Ware-

house.21 Cases were identified individuals with at least one Interna-

tional Classification of Disease (ICD) code for a billing or problem list

diagnosis of T1DM or T2DM. Individuals with at least one T1DM

diagnosis, at either data partner, were classified as T1DM cases. Like-

wise, a single T2DM diagnosis resulted in a person being classified as

a T2DM case. We did not distinguish cases with both T1DM and

T2DM diagnosis codes.

2.3 | Data sources and distributed network

Data Governance: Data partners executed a Data Use Agreement

(DUA) to share a record-level limited dataset and business associate

F IGURE 1 Strobe flow diagram representing the number of unique patients across two distributed data network partners participating in a
study of identity management's influence of type 1 and type 2 diabetes prevalence
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agreements (BAA) to share personally identifiable information (PII)

with the HIE. The HIE has participation agreements with each data

partner and routinely manages patients' identities as part of its core

business functions. The HIE assigned a unique network-wide identifier

(ie, LINK_ID) for each patient, which linked patients across data part-

ners. The Colorado Multiple Institutional Review Board reviewed the

CHORDS Network as non-human subjects research for public

health uses.

Patient Matching: Data partners generated a panel file containing

pertinent demographic data for every individual seen from their data

warehouse (Figure 2). Each record in the panel file included a site-

specific identifier (PERSON_ID) and a series of pre-specified PII fields.

Data partners transmitted panel files to/from the HIE using secure file

transfer protocols (SFTP). The HIE used a proprietary referential

matching process that combined a database of PII, with rules-based,

probabilistic linkage methods to identify unique individuals in the

panel file and assign a unique, network-wide identifier for linkage

(LINK_ID). The HIE returned the LINK_ID and PERSON_ID for each

patient back to each data partner.

CHORDS Data Model: CHORDS used a data model (ie, Virtual Data

Warehouse) adapted from other common data models.22,23 Both data

partners extracted, transformed, and loaded (ETL) EHR data into 24 dis-

tinct tables, with specific fields and data formats organized for PMN

queries. Network identifiers were stored in the LINKAGE table (Figure 2),

where one or more rows were associated with each LINK_ID. More than

one row was required when the patient matching algorithm identified

duplicates within a data partner and assigned the same network-wide

identifier (LINK_ID) to several different individuals (eg, PERSON_ID).

Distributed Query Logic: We developed a two-step query process:

(a) select a cohort of unique individuals across data partners and (b) classify

those individuals into cases (yes/no). Limited exchange of associated PII

permitted demographic (age, gender, and race/ethnicity) and geographic

(census tract) stratification. We designed an automated process to recon-

cile medical, demographic, and geographic information that conflicted

across partners (eg, an individual may be diagnosed at one data partner

and not another). Manual reconciliation was resource-intensive and infea-

sible. Automated reconciliation required decisions to identify which

value(s) to use in estimating prevalence. Individual-level data exchange

was limited to three variables: LINK_ID, diagnosis status and final 2017

visit date. Individual demographic and geographic data were selected from

the system whose data were used in Step 2. Below, we describe the two-

step (ie, cohort selection and stratification) query processes:

Cohort Reconciliation: For each condition (T1DM or T2DM) a

cohort was selected by generating lists of all eligible individuals (see

above) with an initial query. Query results contained three fields: the

LINK_ID, a binary indicator for case status and last visit date. With

these fields a single data partner was selected to contribute a given

patient's data (medical, demographic, geographic) to prevalence

F IGURE 2 Generating stratified, deduplicated estimates of diabetes prevalence through a distributed query process that minimizes exchange
of phi
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estimates. Rules for data partner selection are described below (mock

results are represented in Table 1).

• Decision 1: When an individual (CID1) was seen by both data part-

ners, yet only one identified the patient as a case, select the record

from the data partner identifying the patient as a case.

• Decision 2: When an individual (CID2 or CID3) was seen by both

data partners, and has the same case status, select the record from

the data partner with the most recent 2017 visit.

• Decision 3: When an individual (CID4 or CID5) was seen by both

data partners, and has the same case status and the same most

recent 2017 visit date, select the data partner at random.

TABLE 1 Example of reconciliation process for selecting data partners to contribute demographic and geographic data for individuals seen in
multiple health care systems (selection criteria are highlighted)

Network identifier

Diagnosis present Final 2017 visit date

Selected data partner

Date partner Data partner

1 2 1 2

CID1 Yes No January 1, 2017 December 31, 2017 1

CID2 Yes Yes December 31, 2017 January 1, 2017 1

CID3 No No January 1, 2017 December 31, 2017 2

CID4 Yes Yes January 1, 2017 January 1, 2017 2 (random)

CID5 No No December 31, 2017 December 31, 2017 1 (random)

TABLE 2 Distribution of
demographic characteristics and disease
prevalence for patient populations
(<19 years old) with any encounter
during the study period among two data
partners, seven-county Denver metro
area, 2017

Data partner

P-value1 2

Number of patients 58 351 167 569 n/a

Diabetes prevalence (per 1000)

Type 1 1.6 4.1 <.0001

Type 2 1.2 0.9 .03

Sex (percent) <.0001

Female 50 48

Male 50 52

Unknown 0 <1

Age group in years (percent) <.0001

0-3 21 33

4-6 16 16

7-9 16 15

10-12 17 14

13-15 17 14

16-17 13 8

Race and ethnicity (percent) <.0001

Non-Hispanic (NH) White 13 46

Hispanic 68 32

NH Black 14 8

NH Asian 4 3

NH American Indian or Alaska Native <1 <1

NH multiple races 1 4

NH race unknown or not reported 2 7

Residing in census tract with > = 20% below federal

poverty level (percent)a
<.0001

Yes 44 18

No 56 82

Note: P-values calculated using Pearson's Chi-squared test.
aSome addresses could not be geolocated to the census tract.
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The query tool applied these logical rules to produce two

mutually-exclusive lists of LINK_IDs - one for each data partner.

Stratification: The second query produced aggregate counts, lim-

ited to the lists of patients identified through reconciliation. Each data

partner's care population and cases were grouped by demographic

and geographic factors. American Community Survey data for neigh-

borhood poverty (ie, greater than 20% of population living below the

federal poverty level: yes/no) was assigned for each patient, based on

census tract of residence. We conducted additional analyses, limited

to data on ambulatory encounters and following the same analytic

approach, to assess the impact of care setting on prevalence estimates

and on duplication bias. Once data partners incorporated the Network

Identifier and ensured patient populations were distinct, each data

partner returned tables of counts. Stratum-specific counts were

summed across data partners and used to generate prevalence esti-

mates for the cohort overall and for each stratum.

2.4 | Analytic approach

Outcome: The primary outcomes of interest were the prevalence of

T1DM and T2DM in a pediatric population. Estimated prevalence

before deduplication, within and between systems, was calculated by

dividing total number of individuals with a diabetes diagnosis (of a

given type) by the number of eligible patients. De-duplicated preva-

lence estimates divided the unique number of cases by the unique

number of eligible patients. We reported confidence intervals (95%)

for all prevalence estimates. Because the process of selecting data for

an individual may influence case counts and prevalence estimates we

tested three alternative decision rules: selecting the data source with

the latest 2017 encounter, while ignoring case status (Alternate 1);

selecting the data source with the initial 2017 encounter, while ignor-

ing case status (Alternate 2); and selecting the data partner at random

(Alternate 3).

TABLE 3 Distribution of
demographic characteristics and disease
prevalence for patient populations
(<19 years old) with any encounter
during the study period among two data
partners, by duplicate status, seven-
county Denver metro area, 2017

Duplicate status

Yes No P-value

Number of patients 7628 210 809

Diabetes prevalence (per 1000)

Type 1 5 3.4 .03

Type 2 4 0.8 <.0001

Sex (percent) .13

Female 49 48

Male 51 52

Unknown 0 <1

Age Group in Years (percent) <.0001

0-3 20 30

4-6 19 16

7-9 17 15

10-12 15 15

13-15 17 15

16-18 11 9

Race and ethnicity (percent) <.0001

Non-Hispanic (NH) White 10% 40%

Hispanic 64% 39%

NH Black 16% 9%

NH Asian 4% 3%

NH American Indian or Alaska Native <1% <1%

NH multiple races 1% 3%

NH race unknown or not reported 3% 6%

Residing in census tract with > = 20% below federal

poverty level (percent)a
<.0001

Yes 46% 23%

No 54% 77%

aSome addresses could not be geolocated to the census tract.
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3 | RESULTS

Among 58 351 eligible children seen at DP1 and 167 569 seen at

DP2 (Table 2), the DP2 population had a higher T1DM prevalence

and a lower T2DM prevalence compared to the DP1 population.

DP2's population was younger, had a greater proportion of male and

white patients, and a smaller proportion of patients of Hispanic eth-

nicity than the DP1 population.

Aggregation across data partners, without deduplication, would

have estimated 226 100 children from the Denver region seen by

these two data partners. We identified 218 437 unique individuals

after deduplication, with 7628 (3.5%) seen in both systems (Table 3).

Individuals seen by both data partners had a higher prevalence of both

T1DM and T2DM than individuals seen in a single system. Compared

to individuals seen in only one system, duplicates were more likely to

be identified as Hispanic, non-Hispanic black, or non-Hispanic Asian,

and were substantially more likely to reside in a higher poverty

neighborhood.

The prevalence estimates of T1DM and T2DM before and after

deduplication are presented in Table 4. Prevalence did not change

after IM processes for either condition. There was no observed

change in prevalence for any demographic or geographic subgroup

after deduplication, even for the subgroups that were most affected

by deduplication (eg, Hispanic patients).

Concordance of recorded demographic attributes for duplicate

patients was variable. Duplicate patients had high recorded gender

agreement (98%) and were likely to have the same case status

(>99% for both T1DM and T2DM). However, substantial discor-

dance of recorded race and ethnicity was observed between sys-

tems. Agreement of Hispanic ethnicity was relatively high (86%), yet

race was in an agreement between systems for only 53% of individ-

uals; race data were often missing or unknown in one system, but

not the other.

While insufficient to affect the post-deduplication prevalence

estimate for either condition, the selection method did influence the

number of cases that we identified. The approach prioritizing diagno-

sis identified the largest number of cases (758 T1DM cases;

201 T2DM cases). Implementing alternate selection logic resulted in

7 to 10 fewer cases of T1DM and 5 to 11 fewer cases of T2DM,

depending on the algorithm.

TABLE 4 Prevalence (per 1000) of Type 1 and Type 2 diabetes among patient populations (<19 years) for all encounter types from two
health care systems, before and after deduplication, seven-county Denver Metropolitan Area, Colorado, 2017

Deduplication

Type 1 Type 2

Before After Before After

Overall 3.4 (3.2, 3.6) 3.5 (3.3, 3.7) 1.0 (0.9, 1.1) 0.9 (0.8, 1.0)

Sex

Female 3.6 (3.2, 4.0) 3.7 (3.3, 4.1) 1.1 (0.9, 1.3) 1.0 (0.8, 1.2)

Male 3.3 (3.0, 3.6) 3.3 (3.0, 3.6) 0.8 (0.6, 1.0) 0.8 (0.6, 1.0)

Age in years

0-3 0.4 (0.2, 0.6) 0.4 (0.2, 0.6) 0 (0, 0) 0 (0, 0)

4-6 1.6 (1.2, 2.0) 1.6 (1.2, 2.0) 0 (0, 0) 0 (0, 0)

7-9 3.2 (2.6, 3.8) 3.2 (2.6, 3.8) 0.3 (0.1, 0.5) 0.3 (0.1, 0.5)

10-12 5.5 (4.7, 6.3) 5.6 (4.8, 6.4) 0.8 (0.5, 1.1) 0.8 (0.5, 1.1)

13-15 7.1 (6.2, 8.0) 7.2 (6.3, 8.1) 2.2 (1.7, 2.7) 2.0 (1.5, 2.5)

16-17 7.5 (6.3, 8.7) 7.7 (6.5, 8.9) 4.9 (4.0, 5.8) 4.8 (3.8, 5.8)

Race

Non-Hispanic (NH) White 5.5 (5.0, 6.0) 5.5 (5.0, 6.0) 0.5 (0.3, 0.7) 0.5 (0.3, 0.7)

Hispanic 1.9 (1.6, 2.2) 1.9 (1.6, 2.2) 1.4 (1.2, 1.6) 1.3 (1.1, 1.5)

NH Black 3.1 (2.3, 3.9) 3.0 (2.2, 3.8) 1.8 (1.2, 2.4) 1.6 (1.0, 2.2)

NH Asian 1.0 (0.3, 1.7) 1.1 (0.3, 1.9) 0.6 (0.0, 1.2) 0.6 (0.0, 1.2)

NH American Indian or Alaska Native 4.3 (�0.6, 9.2) 4.5 (�0.6, 9.6) 2.9 (�1.1, 6.9) 3.0 (�1.1, 7.2)

NH multiple races 2.5 (1.3, 3.7) 2.5 (1.3, 3.7) 0.4 (�0.1, 0.9) 0.4 (�0.1, 0.9)

NH race unknown or not reported 3.4 (2.4, 4.4) 3.4 (2.4, 4.4) 0.2 (0.0, 0.4) 0.2 (�0.1, 0.5)

Residing in census tract with > = 20% below federal poverty levela

Yes 2.2 (1.8, 2.6) 2.1 (1.7, 2.5) 1.4 (1.1, 1.7) 1.3 (1.0, 1.6)

No 3.9 (3.6, 4.2) 3.9 (3.6, 4.2) 0.8 (0.7, 0.9) 0.8 (0.7, 0.9)

aSome addresses could not be geolocated to the census tract.
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When restricting the analysis to ambulatory encounters, we

observed a lower prevalence of T1DM (2.5 cases per 1000, 95% CI:

2.2-2.8) than the prevalence including all encounter types (3.5 cases

per 1000, 95% CI: 3.3-3.7). There was no evidence that restricting to

ambulatory encounters affected T2DM prevalence. As with the all-

encounter-types analysis, in the ambulatory encounter-only analysis,

there was no observable change in prevalence after deduplication

overall or for any demographic subgroups (results not displayed). We

also identified fewer diabetes cases of either type in the ambulatory-

only analysis than in the all-encounters analysis. We identified

399 fewer T1DM cases (53% of 758) and 58 fewer T2DM cases (29%

of 201), depending on the choice of care setting (primarily) as well as

the selection algorithm.

4 | DISCUSSION

This study describes a process we designed to link and deduplicate

individuals for prevalence estimate activities using a regional DDN. To

our knowledge, this is one of the very few studies to report

implementing HIPAA-compliant IM across a DDN to generate

deduplicated prevalence estimates.24

The process we designed and tested generated and stored

a network-wide identifier for use in distributed public health

queries. The two-step query process limited the amount of PII

exchanged to a parsimonious limited data set. While we chose

T1DM and T2DM in youth as the chronic conditions to test in

the development of the algorithm, the deduplication method could

be adapted to other chronic conditions including refinement for

more prevalent or episodic conditions (eg, depression or substance

use disorder). In addition, more refined case definitions for T1DM

and T2DM could improve the accuracy of the reported prevalence

estimates.

Importantly, unlike many population-based surveys used for pub-

lic health surveillance, DDN-based prevalence estimates integrated

with the LHS mindset provide a powerful approach to evaluating

interventions in a given region. Prevalence is a metric that can help

health systems, county health departments and others continuously

learn how to best respond to pressing public health challenges, includ-

ing but not limited to diabetes.

In this initial pilot test of our process, involving only two data

partners, deduplication had no measurable effect on pediatric diabetes

prevalence estimates. Very low disease prevalence estimates may

have resulted in fewer opportunities for cross utilization. Analyses

were limited to only two data partners; neither was a referral center

for diabetes. The relatively small degree of overlap between the data

partners was unexpected - given referring relationships and geo-

graphic proximity - and likely contributed to the null finding. Having

selected just 1 year, there might have been greater utilization overlap

if we extended the observation period. Approximately 4% of the

218 437 pediatric patients included in this pilot were represented in

both systems during 2017 (n = 7628). The prevalence of T1DM and

T2DM was higher in the duplicate population, but duplicates

represented a very small share of the overall number of patients. Fur-

thermore, individuals who were not assigned network identifier values

(eg, missing critical matching variables) were excluded from this analy-

sis. Our findings might have been different if the prevalence of diabe-

tes or the degree of overlap differed considerably from the population

that was included. Based on our work designing and evaluating this

process, we identified several ways duplication bias might impact

prevalence estimates.

Duplication Bias and Potential Impact on Prevalence: Duplication, if

unaccounted for, has the potential to bias both prevalence estimate

components (number of cases and people in the underlying popula-

tion). Using simulated data, we represent potential overlap and bias

among two hypothetical DDN data partners in Figure 3 and Table 5.

Different degrees of overlap in the numerator and denominator have

differing effects on deduplicated prevalence. Aggregated prevalence

estimates are unbiased when data partners' populations are disjoint

(ie, n(A
T

B) = 0, n(C
T

D) = 0) or when there is complete overlap (ie,

C = D). Otherwise, bias is a matter of degree and can either inflate or

deflate the prevalence estimate.

When there is no overlap among cases and high overlap among

non-cases (eg, 100%), the aggregated prevalence is biased downward,

with a greater downward bias in a lower prevalence scenario. When

there is complete overlap among cases and no overlap among non-

cases, the aggregated prevalence is inflated - likewise, to a greater

degree when prevalence is lower.

The vast majority of DDNs, however, contain more than two data

partners and have different sized populations - both of which increase

the complexity of estimating duplication bias effects. For example, cal-

culating the deduplicated number of cases between two data partners

(n(A) + n(B) � n(A
T

B)) is simpler than calculating the deduplicated

number of cases involving three data partners (n(X) + n(Y) + n(Z) �
n(X

T
Y) � n(X

T
Z) � n(Y

T
Z) + n(X

T
Y
T

Z)). Additional research

leveraging set theory could help clarify the various ways in which

prevalence could be biased as the number of data partners in a net-

work increases. Furthermore, advanced simulations and analyses of

real-world data could help explore the impact of duplication bias

under different scenarios (eg, different matching algorithms), which

could help DDNs evaluate which deduplication processes would be

F IGURE 3 Opportunities for duplication bias when estimating
disease prevalence from two data partners

8 of 11 SCOTT ET AL.



worthwhile to implement. Regardless, in addition to the factors repre-

sented in Table 5 (higher/lower prevalence, overlap among cases,

overlap among non-cases), we hypothesize that the degree of duplica-

tion bias on prevalence estimation may also be influenced by other

factors, including the relative sizes of the data partner patient

populations (larger datasets may “overwhelm” data from smaller data

partners), the sensitivity/specificity of the electronic phenotype, the

accuracy of the patient matching algorithm, and whether the

condition is chronic or episodic. Of course, more “traditional” sources
of bias (eg, poor representativeness, poor data quality, disease mis-

classification) are still important to address. For example, patients had

higher concordance on case status and gender than on ethnicity and

race. Other studies have documented concerning levels of missing or

misclassified race and ethnicity values in EHR data. One study

reported that self-recorded race and ethnicity differed from EHR data

more than half of the time.25 Furthermore, if the matching algorithm

has not been validated across population subgroups, the accuracy of

the match might differ by race and ethnicity. The discordance we

observed could be an artifact of misclassified race or ethnicity, differ-

ential matching by race or ethnicity, or a combination thereof.

Electronic Phenotype: At the time of this research more sophisti-

cated case definitions for diabetes (eg, leveraging lab results) had not

been tested or implemented in the CHORDS Network. Previous

research has both underscored the importance of diabetes as a focus

for EHR-based surveillance, as well as the importance of accurate case

definitions.26-28 This study focused on developing and describing

DDN methods for deduplication using a relatively simple case defini-

tion to assess the impact of that method. No doubt, the accuracy of

our reported prevalence estimates would improve with more sophisti-

cated case definitions for type 1 and type 2 diabetes.

Patient Matching: Partnering with the HIE for patient matching

provided several advantages. The HIE possessed the legal authority to

receive and utilize PII to identify individuals across systems. The HIE

also possessed the technical capacity to process millions of DDN

records for IM. The patient-matching component of our process,

based on referential linkage methods, relies on a proprietary database.

Evaluating the performance of the referential matching process, rela-

tive to other methods, was outside the scope of this study. That said,

proprietary referential databases are created using publicly-available

data that are simply more available for adults than for children (who

have had less time to generate such data). As such, the accuracy of

referential matching for pediatric prevalence research requires further

validation. Network identifiers generated with other matching

methods,29,30 when managed in the LINKAGE table, could be queried

through the same two-step process.

Population Representativeness: For both T1DM and T2DM, our

local prevalence estimates were higher than reported national

estimates,4 which could reflect a number of issues including local vari-

ation in Denver vs the country, the accuracy of the phenotype used

(see above), the use of care-seeking populations as denominators,

non-representativeness of these two systems' populations compared

to the general population or a continued rise in prevalence of both

types of diabetes among youth since previous estimates were

reported.

5 | CONCLUSION

We successfully implemented a process to deduplicate patients across

health care systems to generate type 1 and type 2 diabetes

TABLE 5 Factors influencing prevalence (per 1000) under several scenarios of overlapping populations at two hypothetical data partners
(DP1, DP2) with 1000 patients each

DP1 prevalence

per 1000

DP2 prevalence

per 1000

Case

overlap (n)

Population

overlap (n)

Aggregated

prevalence per 1000

Deduplicated

prevalence per 1000

Set theory notation n(A)/n(C) x 1000 n(B)/n(D) x 1000 n(A
T

B) n(C
T

D) (n(A) + n(B)) / (n(C) + n(D)) (n[A
S

B]) / (n[C
S

D])

Low prevalence: No overlap 5 5 0 0 5 5

Low prevalence: High

population overlap

5 5 0 995 5 9.95

Low prevalence: Complete

case overlap

5 5 5 5 5 2.51

Low prevalence: Complete

overlap

5 5 5 1000 5 5

High prevalence: No overlap 500 500 0 0 500 500

High prevalence: High

population overlap

500 500 0 500 500 666.6

High prevalence: Complete

case overlap

500 500 500 500 500 333.3

High prevalence: Complete

overlap

500 500 500 1000 500 500

Note: Aside from the top row, which uses set theory notation to represent the meaning of each column, each row illustrates how different combinations of

conditions impact duplication bias in the prevalence estimate. Conditions that influence the degree of bias include: the prevalence of a condition (eg, low

or high), the degree of overlap in the overall population [none, high (complete among non-cases), or complete], and the degree of overlap in the case

population (none or complete). Bias is introduced when overlap is disproportionate among cases and non-cases.
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prevalence estimates within a regional DDN. The process leveraged a

master patient index at an HIE and limited exchange of protected

health information to the minimum necessary. The process should be

extensible to deduplicate data for specific patients from any number

of data partners, and adaptable to other linkage methods, health con-

ditions and cohort selection criteria. Results from this evaluation sug-

gests several factors influence the duplication bias effect on cross-

institution prevalence estimates, including the relative size of patient

populations, the representativeness of patients among participating

data partners, organizational or patient self-referral patterns, and

shared patient populations. This process has informed how DDN

prevalence estimates might be used to help learning health systems

respond to public health challenges, track patients across a healthcare

ecosystem and improve population health. Additional use cases

(beyond diabetes) may refine our efforts to reduce bias and reveal

other principles and insights.
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