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Glossary

Aicardi-Goutières syndrome (AGS): a genetically heterogeneous autoimmune

disease predominantly affecting the brain and skin, which is characterised by

the inappropriate activation of a type I IFN-mediated immune response, and

which closely mimics congenital viral infection.

Autoimmunity: aberrant immune responses of an organism against its own

cells and tissues. In the context of human disease, the term is typically reserved

for conditions linked to adaptive B and T cell responses [81]. However, for

the purpose of this article that covers different species from plants to humans,

we use autoimmunity more broadly to include pathologies caused by both

innate and adaptive immune responses.

Effector-triggered immunity (ETI): a plant immune response mediated by

intracellular receptors, which is activated by the detection of pathogen effector

molecules.

Nonsense mediated decay (NMD): a highly conserved mRNA surveillance

pathway, which targets aberrant transcripts for degradation.

Non-stop and no-go decay: surveillance pathways that identify and degrade

mRNAs, which lack a stop codon or are bound by stalled ribosomes, respectively.

Thus far, these pathways have been primarily characterised in yeast.

Pathogen-associated molecular patterns (PAMPs): conserved components of

microorganisms that are not normally found in host cells.

Pattern recognition receptors (PRRs): germline-encoded receptors of the

innate immune system, which recognise PAMPs to trigger immune responses.

PAMP-triggered immunity (PTI): the first line of defence against pathogens

used by plants, triggered by the recognition of PAMPs by PRRs present on the

cell surface.

RNA editing: a process by which the nucleotide sequence of an RNA molecule

is changed after its transcription, for example by deamination of adenosine to

inosine.

RNA exosome: a protein complex that degrades RNA in 30-to-50 direction and
Post-transcriptional control determines the fate of cellu-
lar RNA molecules. Nonsense-mediated decay (NMD)
provides quality control of mRNA, targeting faulty cellu-
lar transcripts for degradation by multiple nucleases
including the RNA exosome. Recent findings have
revealed a role for NMD in targeting viral RNA molecules,
thereby restricting virus infection. Interestingly, NMD is
also linked to immune responses at another level: muta-
tions affecting the NMD or RNA exosome machineries
cause chronic activation of defence programmes, result-
ing in autoimmune phenotypes. Here we place these
observations in the context of other links between in-
nate antiviral immunity and type I interferon mediated
disease and examine two models: one in which expres-
sion or function of pathogen sensors is perturbed and
one wherein host-derived RNA molecules with a propen-
sity to activate such sensors accumulate.

Post-transcriptional regulation of mRNA
The flow of genetic information from DNA to RNA to
protein is a highly regulated process. This not only allows
for gene products to be produced in appropriate amounts,
at the right time points and in the correct locales, but also
provides quality control. In many instances, post-tran-
scriptional control of mRNA contributes to this regulation.
In eukaryotic cells, post-transcriptional events can be
divided into those that occur in the cell nucleus and those
that take place in the cytoplasm. The former include
splicing, capping, and polyadenylation of primary tran-
scripts as well as nuclear export of processed mRNAs.
Once in the cytoplasm, mRNAs may localise to specific
areas within the cell, are translated and eventually de-
graded. mRNA translation and half-life vary greatly
between transcripts and are controlled by a variety of
mechanisms such as the miRNA pathway.

Other events in the cytoplasm, rather than controlling
the amount of protein product produced from an mRNA,
survey mRNA integrity and eliminate faulty transcripts. A
well-studied example is the nonsense-mediated decay
(NMD, see Glossary) pathway. Recent observations suggest
that NMD not only surveys cellular transcripts but also
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recognises RNAs derived from viruses [1,2]. By targeting
these transcripts for degradation, NMD counteracts virus
infections and thus represents a new virus restriction path-
way. We discuss these findings here in the context of the
innate cell-autonomous immune response to virus infection.
We also highlight potential implications of NMD and RNA
decay in autoimmune-type diseases [3,4]. These include a
role for NMD in increasing the activation threshold of innate
signalling pathways by limiting the expression of pathogen
sensors, as well as the possibility that nucleases such as the
RNA exosome degrade cellular RNAs with a propensity to
activate such sensors.

Basic principles of NMD
NMD is a highly conserved mRNA surveillance pathway
and has been reviewed in detail elsewhere [5–8]. Here, we
consists of a barrel-shaped catalytic core and accessory proteins that recruit

RNA substrates.

Systemic lupus erythematosus (SLE): a multisystem autoimmune disorder

characterised by the presence of autoantibodies against nucleic acids and type

I IFN production.

Type I interferons (IFNs): a family of secreted proteins (including IFN-b and

multiple subtypes of IFN-a) that function as cytokines and signal via the type I

IFN receptor to induce the expression of hundreds of interferon-stimulated

genes (ISGs), many of which encode antiviral proteins.
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will discuss only the basic principles of NMD (Figure 1).
NMD detects mRNAs harbouring premature translation
termination codons (PTCs) and then targets these tran-
scripts for degradation. PTCs can arise as a consequence of
gene mutations or errors during transcription. If translat-
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ed proteins. Such aberrant proteins can have adverse
effects; for example, truncation may result in dominant-
negative function. NMD therefore serves an important role
in that it ensures that only intact mRNAs are translated.
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How does NMD recognise faulty mRNAs bearing a PTC?
NMD depends on protein translation and is triggered by
ribosomes terminating translation in an ‘unusual’ position
along the mRNA (Figure 1). Such unusual translation
termination sites can be identified by different molecular
mechanisms. One is based on the distance between a PTC
and the poly(A) tail of an mRNA. Another mechanism
involves a protein complex called the exon-junction com-
plex [9]. Both mechanisms are further explained in
Figure 1. Once a PTC has been identified, a number of
proteins including the essential NMD effectors UPF1,
UPF2, and UPF3/3X assemble to form a complex. Addi-
tional proteins involved in NMD then associate with the
UPF proteins and initiate degradation of the mRNA. In
animals, this can include the endonuclease SMG6, which
cleaves the mRNA into two fragments, as well as SMG5
and SMG7, which recruit factors that remove the poly(A)
tail and cap structure of the mRNA. As a result, free 50- and
30-ends are generated and this allows exonucleases to
attack (Figure 1). One of these is the RNA exosome, a
multiprotein complex that degrades RNA in a 30-to-50

direction [10,11].

NMD restricts virus infection
Interestingly, NMD not only rids the cell of faulty, PTC-
containing mRNAs but also regulates expression levels of a
number of normal cellular transcripts. Indeed, around 10%
of the transcriptome is regulated by NMD [12–18]. A num-
ber of features can predispose an mRNA to NMD, including
long or intron-containing 30 untranslated regions (UTRs),
the presence of short open reading frames in the 50 UTR or
alternative splice events that introduce a PTC [19]. In
these scenarios, translation terminates either upstream
of an EJC or at a distance from the 30-end, subjecting the
transcript to NMD.

Many viruses produce RNAs with atypical features and
this is often a result of their compact genome structures.
For example, some viruses encode multiple proteins within
one polycistronic mRNA molecule [20]. Translation of open
reading frames at the 50-end of such transcripts terminates
far away from the 30-end, a situation resembling a long
30UTR. It is therefore conceivable that NMD detects viral
RNAs [21] and – by targeting them for degradation –
counteracts virus infection. This in turn is likely to drive
evolution of viruses that escape or actively antagonise
NMD.

A number of recent studies have validated these pre-
dictions. Screening for new virus restriction factors, the
Helenius and Voinnet groups identified UPF1 in mam-
malian cells and plants, respectively [1,2]. In one of these
studies, an siRNA screen revealed that depletion of
UPF1 increases the susceptibility of human cell lines
to infection with two positive-strand RNA viruses, Sem-
liki Forest virus (SFV) and Sindbis virus [2]. Depletion of
the NMD factors SMG5 and SMG7 also facilitates SFV
infection [2]. Balistreri et al. further showed that silenc-
ing of UPF1 stabilises the SFV genomic RNA, although
the molecular features that allow the NMD machinery to
recognise viral RNA remain to be determined [2]. The
other study employed a genetic screen in Arabidopsis
thaliana and found that mutations in the gene encoding
UPF1 facilitate infection with Potato virus X (PVX)
[1]. Consistent with this observation, overexpression of
a dominant-negative form of UPF1 increases suscepti-
bility of A. thaliana to PVX infection and also enhances
Turnip crinkle virus infection of Nicotiana clevelandii
[1]. Viral genomic and subgenomic RNAs, which are
both used as mRNAs, are more abundant in plant
tissues as a result of impaired UPF1 function [1]. This
effect is attributable, at least in part, to the presence of
internal stop codons in the genomic RNAs of these two
viruses and to long 3’UTRs in some of the subgenomic
RNAs [1].

Taken together, these two studies using viruses with
single-stranded, positive-sense RNA genomes show that
NMD can detect and degrade some viral RNAs. NMD
therefore constitutes a defence mechanism against infec-
tion with these viruses. It is interesting to ask if NMD
might also have antiviral function against other classes of
viruses. It is clear that the genomes of DNA viruses,
retroviruses and negative-sense RNA viruses cannot be
NMD targets because they are not translated. Indeed,
Balistreri et al. found that depletion of UPF1 did not
enhance infection of cells with respiratory syncytial virus
or Uukuniemi virus, both of which have a negative-sense
RNA genome [2]. Nevertheless, all viruses produce
mRNAs and these may be recognised by NMD if they
contain stop codons in unusual contexts. Consistent with
this idea, certain retroviral transcripts are stabilised in
cells with impaired UPF1 function [22–25]. Furthermore,
some retroviruses appear to counteract NMD. One exam-
ple is Rous Sarcoma virus: its unspliced RNA contains a
stability element downstream of an internal stop codon
[26]. Deletion of this RNA element predisposes the tran-
script to NMD [23,27]. It has been suggested that the
Rous Sarcoma virus stability element interferes with
UPF1 function, although the precise molecular mecha-
nism remains to be determined [26]. Another virus inter-
fering with NMD is human T-lymphotropic virus type 1,
which deploys its Tax and Rex proteins to prevent NMD
from degrading viral transcripts [22,24]. These observa-
tions show that some retroviruses antagonise NMD and
as such are suggestive of an antiviral function of NMD.
Whether mRNAs from DNA viruses are subject to NMD,
and if NMD plays an in vivo role in limiting virus repli-
cation in mammalian hosts will be important to investi-
gate. A recent study using hepatitis C virus (HCV) found
that the viral core protein binds the EJC component
WIBG (also known as PYM) [28]. This interaction dis-
places WIBG from the EJC and NMD efficiency appears
to be reduced in HCV infected cells [28]. These observa-
tions might at first glance indicate that NMD restricts
HCV and that the viral core protein counteracts this
effect by targeting WIBG. Interestingly, however, WIBG
depletion decreases HCV infection [28]. It may therefore
be that WIBG is a cellular cofactor supporting the virus
life cycle in a way unrelated to NMD and that NMD
inhibition is simply a by-product of WIBG engagement
by HCV.

It is tempting to speculate that other RNA quality
control pathways could also contribute to cellular defence
against virus invasion. Related to NMD are non-stop decay
181
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and no-go decay [29]. The former recognises mRNAs lack-
ing a stop codon altogether, while the latter detects stalled
ribosomes; both then target the transcript for degradation.
It is possible that viral RNAs – perhaps due to secondary
structure, codon usage or other unusual features – are
predisposed to recognition by these decay pathways. In-
deed, non-canonical translation mechanisms have been
described for many different viruses [30]. In addition to
NMD and other translation-dependent surveillance path-
ways, RNA decay and post-transcriptional control may be
much more broadly implicated in controlling virus infec-
tion. Several viruses directly interfere with the expression
or function of cellular RNases and other proteins involved
in RNA degradation [21]. Moreover, RNAi (Box 1) is widely
recognised as an ancient antiviral immune system operat-
ing in invertebrate animals and plants [31,32] and recent
work suggests that virus control by RNAi may also con-
tribute to host defence in mammals [33,34]. Post-transcrip-
tional control pathways are therefore increasingly
accepted to play important roles in controlling virus infec-
tion beyond their housekeeping functions in regulating
cellular gene expression.

Another important question is how NMD integrates
with other host defence responses. As discussed in further
detail in the next section, cells are equipped to sense
infection and to couple this to the induction of antiviral
effectors. In mammals, many of these effectors are induced
by type I interferon (IFN); this, however, does not appear to
be the case for NMD factors, which are constitutively
expressed and are not classified as interferon stimulated
genes (ISGs) [35]. The antiviral function of NMD is there-
fore cell-intrinsic in that it does not require induction.
NMD may thus represent a cellular barrier to virus infec-
Box 1. Antiviral RNA interference

RNAi is a post-transcriptional pathway that targets RNA molecules

for degradation and/or translational repression [88]. Target tran-

scripts are identified by base complementarity with short non-

coding RNAs such as siRNAs or miRNAs, and this results in the

recruitment of an RNA-induced silencing complex (RISC) to the

target RNA. A key RISC component is a member of the Argonaute

protein family. Some Argonaute proteins have endonuclease

activity and directly cleave their target, while other Argonautes

recruit additional factors to initiate RNA decay and/or translational

repression.

The RNase III enzyme Dicer produces the short non-coding RNAs

that guide the RISC to its targets. This is achieved by endonucleo-

lytic cleavage of double-stranded RNAs (dsRNAs) or hairpin RNAs.

These Dicer substrates are either encoded in the cell’s genome, as is

the case for miRNA precursors, or are exogenously delivered into

cells. The latter scenario is particularly relevant to virus infection.

Many viruses employ RNA-dependent RNA polymerases to replicate

their genomes and this can results in the accumulation of long virus-

derived dsRNA in cells [89].

Indeed, in invertebrate animals and plants, it is well established

that RNAi constitutes a potent antiviral pathway [31,32]. Dicer

recognises and cleaves viral dsRNA. This generates siRNAs, which

are loaded into RISC that then targets viral transcripts, and this

ultimately restricts the virus. It has recently been shown that at least

some types of mammalian cells have the capacity to generate virus-

specific siRNAs upon infection [33,34]. However, whether these

siRNAs actually contribute to host defence in mammals and how

antiviral RNAi and the type I IFN system relate to each other remain

matters of debate [90–94].
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tion that provides a first line of defence before virus sensing
and induction of other effectors occur.

Pathogen recognition, NMD, and autoimmunity
Across taxa, inducible cell-autonomous innate immune
responses to infections are typically initiated by germ-
line-encoded receptors often called pattern recognition
receptors (PRRs). These receptors are activated by a vari-
ety of stimuli, including pathogen-associated molecular
patterns (PAMPs), which were originally defined as con-
served products of microbial biosynthetic pathways that
are normally absent from host cells [36,37]. Some PRRs can
also detect alterations to cellular homeostasis caused by
infections [38] or are triggered by so-called danger-associ-
ated molecular patterns (DAMPs), endogenous molecules
produced by or released from cells that die, become dam-
aged or are stressed in the course of an infection [39]. Mam-
malian PRRs can be broadly divided into at least five
groups [40,41]. Toll-like receptors (TLRs) and C-type lec-
tin-like receptors (CLRs) are transmembrane proteins,
located at the plasma membrane or in endosomes. In
contrast, retinoic acid-inducible gene I (RIG-I)-like recep-
tors (RLRs), cytosolic DNA receptors (CDRs), and NOD-
like receptors (NLRs) are located in the cytosol. Receptors
related to mammalian PRRs are expressed by many other
organisms; for example, plants encode a variety of nucleo-
tide-binding site leucine-rich repeat (NBS-LRR) proteins,
which are related to mammalian NLRs.

In a study published back-to-back with those demon-
strating an antiviral function of NMD [1,2], Gloggnitzer
et al. investigated the role of NMD in the inducible innate
immune response in plants [3]. An overview of pathogen
recognition in plants is given in Box 2. A link between
Box 2. Immunity in plants

The first line of defence against infection in plants is called PAMP-

triggered immunity (PTI). PRRs present on the cell surface recognise

conserved PAMP motifs and then activate signalling cascades,

which culminate in the production of antimicrobial compounds

[95,96]. These are sufficient to provide resistance against non-

adapted pathogens; however, many pathogens introduce effector

proteins into the cytoplasm of target cells to enhance infection by

suppressing PTI and interfering with host signalling pathways. To

counteract this, plants have evolved a second tier of pathogen

detection termed effector-triggered immunity (ETI), which is de-

ployed following infection by virulent pathogens. Intracellular ETI

receptors, encoded by Resistance (R) genes, recognise pathogenic

effector proteins either directly or via their activities within the cell

[97]. This triggers signalling cascades and transcriptional repro-

gramming overlapping with those induced by PTI but with the

added advantage of a rapid but sustained and robust response

[98]. Most ETI receptors are members of a family of nucleotide-

binding site leucine-rich repeat (NBS-LRR) proteins which share

domains with mammalian NOD-like receptors (NLRs) [99,100]. Plant

NBS-LRRs can be subdivided into two subfamilies: one with an N-

terminal Toll/interleukin-1 receptor (TIR) domain, which shows

homology to Drosophila Toll and human interleukin 1 receptor

signalling domains (the TNLs), and one with a coiled-coil (CC)

domain (CNLs) [101]. These two families utilise distinct signalling

pathways to drive immune responses [102], which can include an

oxidative burst, hormonal changes, upregulation of immune genes

and a type of rapid cell death implemented to restrict pathogen

growth, termed the hypersensitive response [98].
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NMD and plant innate immunity had been suggested
earlier: impairment of NMD results in severe phenotypes
including seedling death, retarded growth and, interest-
ingly, activation of immune responses [42–47]. These
responses can be classified as ‘autoimmune’ given that
they occur in the absence of infection. Building on an
earlier study [47], Gloggnitzer et al. showed that the
phenotype of SMG7-deficient A. thaliana can be rescued
by introducing additional defects in the plant’s NBS-LRR
pathway [3]. These data demonstrate that NMD can pre-
vent spontaneous and detrimental NBS-LRR responses in
the absence of infection.

Theoretically, this observation can be explained in at
least two ways. Firstly, NMD might downregulate the
expression of NBS-LRRs or of proteins acting downstream
of NBS-LRRs in this pathway. Absence of NMD would then
result in a lower activation threshold and/or spontaneous
signalling of the pathway, due to increased expression of its
components. In support of this idea, altered cellular levels
of PRRs can cause autoimmunity in mammals, as illus-
trated by duplication of the Tlr7 gene in mice, which
results in systemic autoimmunity modelling the clinical
symptoms seen in the human autoimmune disease system-
ic lupus erythematosus (SLE) [48,49]. An alternative ex-
planation is that NMD might interfere with signals that
activate NBS-LRRs; for example, NMD may prevent the
accumulation of ligands that trigger this pathway.

The first of these scenarios provides an explanation for
autoimmunity in NMD-deficient plants. Gloggnitzer
et al. showed that NMD plays a key role in downregulating
mRNA levels of some NBS-LRRs belonging to the TNL
subfamily and that this increases thresholds for activation
of the plant effector-triggered immunity (ETI) response [3]
(Box 2). Indeed, some TNL-encoding mRNAs have typical
NMD-inducing features and display increased half-lives in
NMD-deficient plants [3]. Utilising crosses between lines
and plant genetics, Gloggnitzer et al. went on to show that
RPS6, a TNL-subfamily NBS-LRR, can mediate autoim-
munity in SMG7-deficient A. thaliana [3]. In the next
section, we will compare these findings in plants with
recent insights into a group of autoinflammatory and
autoimmune diseases in humans called type I interfero-
nopathies [50,110] and the links of these diseases with
RNA biology.

Type I IFN mediated diseases
Nucleic acids are potent activators of the innate immune
response in mammals and numerous specialised nucleic
acid-sensing PRRs and their downstream signalling cas-
cades have been identified [51] (Figure 2). The detection of
viral and bacterial nucleic acids triggers a powerful innate
immune response that is characterised by the production of
type I interferons (IFNs). Type I IFNs signal via the type I
interferon receptor to activate transcription of hundreds of
ISGs, many of which restrict virus infection [35]. This
thereby induces an antiviral state both in the infected cell
as well as in the surrounding tissue microenvironment.
The type I IFN-induced antiviral state prevents virus
replication and spread and constitutes an important bar-
rier to infection; this is evident, for example, from the fact
almost every mammalian virus counteracts and/or evades
the IFN response [52,53]. Moreover, type I IFNs facilitate
cell-mediated innate and adaptive immune responses
[54,55]. Type I IFNs are therefore crucial to successful
immunity against virus infection.

However, a growing number of human autoinflamma-
tory and autoimmune disorders are linked to type I IFNs,
most notably SLE. Collectively termed type I interferono-
pathies [50,110], these pathologies are driven by chronic
type I IFN production in the absence of virus infection
(Table 1). Similar to what was discussed earlier for auto-
immunity in plants, this could arise as a consequence
either of perturbations in the pathways that induce type
I IFN or of inappropriate generation and/or accumulation
of nucleic acids able to activate PRRs [50,110].

Aberrant STING and MDA5 activation
Examples for the first scenario are illustrated by mutations
in TMEM173 and IFIH1. Both of these cause inflammatory
conditions characterised by elevated type I IFN levels
(Table 1). The TMEM173 gene encodes STING, a protein
involved in the signal transduction cascade that leads to
type I IFN induction in response to cytosolic DNA
(Figure 2) [41]. Gain-of-function mutations in human
TMEM173 can give rise to a constitutively active STING
protein that activates type I IFN in the absence of an
upstream DNA trigger of this pathway [56,57]. IFIH1
encodes MDA5, a PRR that responds to RNA agonists
during virus infection (Figure 2) [51]. Heterozygous muta-
tions conferring gain-of-function characteristics to MDA5
were identified in some patients with Aicardi-Goutières
syndrome (AGS), causing type I IFN production in the
absence of exogenous MDA5 stimulation [58,59]. This
was attributed to enhanced binding of mutant MDA5 to
RNA [58]. These data suggest that MDA5’s activation
threshold and/or specificity for RNA agonists are altered
by AGS-associated mutations and imply the presence of an
undefined endogenous RNA agonist. In keeping with this, a
point mutation in Ifih1 in mice results in spontaneous type
I IFN-mediated lupus-like autoimmune disease in the
absence of infection, although this appears to be caused
by alterations in the conformation of MDA5 rather than an
inappropriate response to an endogenous RNA ligand
[60]. Nevertheless, this demonstrates further how dysre-
gulated PRR signalling can lead to autoimmunity. This
concept appears to be applicable across taxa, given that
aberrant overexpression of some NBS-LRRs in plants (see
above) results in autoimmune phenotypes [3].

RNA editing controls IFN induction
In addition to IFIH1 mutations, AGS can also occur as a
result of mutations in any one of six other genes (TREX1,
RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and
ADAR1) [111]. Chronic type I IFN production in all of
these cases is likely to relate to the second scenario: the
accumulation of aberrant nucleic acids with a propensity to
activate PRRs. We will illustrate this with the recent
example of ADAR1 and refer the reader to reviews for
the other AGS-associated genes [61–63].

ADAR1 belongs to the protein family of adenosine dea-
minases acting on RNA (ADARs) that bind to double
stranded RNA (dsRNA) and then convert adenosine to
183
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Figure 2. Nucleic acid detection by pattern recognition receptors. Virus infection delivers nucleic acids into infected cells. (Left) DNA is detected in the cytoplasm by cyclic

GMP-AMP synthase (cGAS), which then uses ATP and GTP to generate cyclic GMP-AMP (cGAMP). This second messenger subsequently binds to the ER-associated protein

STING which in turn activates TBK1. This kinase then phosphorylates the transcription factor IRF3, which forms a dimer and translocates to the cell nucleus to induce type I

IFN gene transcription. Aside from cGAS, additional proteins including IFI16, DDX41, MRE11, and DNA-PK may participate in cytosolic DNA recognition [51] but are not

shown here for simplicity. (Centre) Viral nucleic acids are also detected in endosomal compartments by TLR9 (DNA), TLR3 (dsRNA), and TLR7/8 (ssRNA). These PRRs signal

through the adaptor proteins MyD88 or TRIF to activate the kinases IKKa, TBK1, and IKKe resulting in phosphorylation, dimerisation and translocation of IRF3 or IRF7. (Right)

RNA in the cytoplasm of infected cells is recognised by RIG-I and MDA5, which interact with the mitochondrial protein MAVS to trigger TBK1/IKKe. Please note that a variety

of other proteins are involved in signal transduction that are not shown here for clarity.
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inosine [64]. This process is called RNA editing and can
have a variety of biological outcomes; for example, inosine
is decoded as guanosine during translation, resulting in
amino acid substitutions that alter protein function
[64]. The substrates of ADAR1 include both cellular and
viral dsRNAs and ADAR1 has been reported to have both
proviral and antiviral functions [64]. Two main isoforms
exist in mammalian cells: p110 is constitutively expressed
and p150 is IFN-inducible [65]. Mutations in human
ADAR1, predicted to be hypomorphic, have been identified
in patients with AGS and cause chronic IFN production
[66]. Similarly, mouse embryos lacking Adar1 show clear
evidence of a type I IFN response and die prenatally [67–
69]. Some of the human mutations impair the RNA editing
activity of ADAR1 to some extent in vitro, generally having
a greater effect on the editing activity of the ADAR1-p150
isoform [66,70]. Although it remains unclear whether this
is relevant to disease in vivo, it is tempting to speculate
that non-edited RNAs accumulate in cells when ADAR1
function is impaired and that these RNAs in turn chroni-
cally activate PRRs. In line with this idea, cultured
184
ADAR1-deficient cells show evidence of spontaneous type
I IFN production and respond more strongly to RIG-I
activation [71]. Conversely, ADAR1 overexpression in cells
curtails RIG-I-dependent responses [71]. Consistent with
this link between ADAR1 and RIG-I, Adar1 knockout
mouse embryos fail to induce type I IFN if they also lack
Mavs, the signalling adaptor for RIG-I and MDA5 [70]
(Figure 2). It is noteworthy that inosine containing RNA
may also function as an antagonist of IFN induction [72].

The RNA exosome and other nucleases prevent
spontaneous IFN responses
Finally, we would like to highlight another situation in
which accumulation of aberrant cellular RNAs results in
chronic type I IFN production and disease. The RNA
exosome is a multi-protein complex that degrades RNA
in a 30-to-50 direction and plays a key role in RNA proces-
sing and surveillance pathways such as NMD [11]. An
important activator of the RNA exosome in the cytoplasm
is SKIV2L, an RNA helicase which forms the Ski complex
together with two other subunits [11]. The Ski complex is



Table 1. Molecular causes of selected type I interferonopathies.

Gene (protein) Diseasea Effect of mutations Cellular consequences Refs

TREX1 AGS, SLE, FCL Loss-of-function Accumulation of DNA in the cytoplasm,

possibly derived from endogenous

retroelements [61]

[78,79,103]

RNASEH2A, RNASEH2B,

RNASEH2C (RNase H2)

AGS Loss-of-function Accumulation of ribonucleotides in genomic

DNA [104], possible accumulation of

RNA:DNA hybrids

[105]

SAMHD1 AGSb Loss-of-function Increased cellular dNTP pools [106]

ADAR1 AGS Altered or loss-

of-function

Possible accumulation of unedited RNA [66]

IFIH1 (MDA5) AGSc Gain-of-function Constitutively active MDA5 signalling [58,59]

TMEM173 (STING) SAVId Gain-of-function Constitutively active STING [56]

ISG15 IBGC Loss-of-function Loss of negative regulation of type I IFN

signalling

[107]

aAbbreviations: AGS, Aicardi-Goutiè res syndrome; SLE, Systemic lupus erythematosus; FCL, Familial chilblain lupus; SAVI, STING-associated vasculopathy with onset in

infancy; IBGC, Idiopathic basal ganglia calcification.

bAlso identified to cause cerebral vasculopathy and early onset stroke [108].

cAlso linked to Single-Merton syndrome [109].

dAlso identified in a family presenting with multiple systemic autoimmune diseases [57].
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thought to deliver RNA substrates to the catalytic core of
the RNA exosome [11].

In studying a rare disease called trichohepatoenteric
syndrome (THES), Eckard et al. found evidence that
patients with loss-of-function mutations in the SKIV2L
gene express elevated levels of type I IFNs [4]. This obser-
vation fits with a model in which SKIV2L-deficiency would
result in the accumulation of RNA substrates normally
degraded by the RNA exosome; these RNAs would then
trigger activation of a nucleic acid sensing PRR (Figure 2).
In line with this model, SKIV2L depletion confers an
enhanced in vitro type I IFN response to exogenous RNAs
known to activate RIG-I and MDA5 [4]. SKIV2L depletion
in cells also results in type I IFN induction following
experimental triggering of the unfolded protein response
(UPR) [4]. The UPR naturally occurs when the levels of
newly synthesised polypeptides in the ER exceed its pro-
tein-folding capacity [73]. Part of this stress response is the
unconventional splicing in the cytoplasm of specific
mRNAs encoding proteins involved in restoring homeosta-
sis [74,75]. The RNA by-products of this splicing reaction
had previously been shown to be capable of activating a
RIG-I-dependent type I IFN response [76]. Consistent with
these findings, Eckard et al. show that type I IFN induction
in SKIV2L-depleted cells during ER stress is MAVS-de-
pendent [4]. Taken together, these results suggest that
SKIV2L acts as a negative regulator of the RNA-activated
innate immune response by facilitating degradation of
endogenous RNAs generated during the UPR. Failure of
this degradation to occur can lead to unwanted type I IFN
production and disease.

Interestingly, polymorphisms in SKIV2L have previous-
ly been linked with susceptibility to SLE [77]. This suggests
that degradation of cellular RNAs by the RNA exosome may
play a role in the pathogenesis of multiple autoimmune
disorders, drawing parallels with TREX1, a 30-to-50 DNA
exonuclease implicated in SLE and AGS [78,79]. TREX1-
deficiency is likely to cause disease due a failure to degrade
endogenous DNA species [61,80]. Once accumulated, these
DNAs activate cytosolic DNA-sensing pathways and this
results in type I IFN induction central to the aetiology of
AGS and other interferonopathies [61,80]. The examples of
SKIV2L and TREX1 therefore illustrate the importance of
appropriate catabolism of potentially immunostimulatory
self-nucleic acids to prevent autoimmunity.

Concluding remarks
RNA decay pathways are increasingly recognised not only
to control the quantity and quality of proteins produced by
cells but also to contribute to host defence against infec-
tious microorganisms, particularly viruses. We have illus-
trated this concept using the example of NMD. Indeed, in
addition to its role in mRNA surveillance, NMD has re-
cently been identified as a novel mechanism for cell-intrin-
sic virus control [1,2] and appears to function analogously
to virus restriction factors. NMD also regulates the expres-
sion of factors involved in host defence such as PRRs [3]. It
will therefore be important to study if NMD efficiency is
regulated in the course of an infection (Box 3). Consistent
with this idea, Gloggnitzer et al. found that bacterial
infection or exposure to PAMPs reduces NMD efficiency
and stabilises mRNAs targeted by NMD, including some
TNL transcripts [3]. Similarly, Garcia et al. describe that
endogenous NMD targets are stabilised in virus-infected
plants [1]. It is interesting to ask if the host mediates
inhibition of NMD during infection, allowing for increased
expression of host proteins involved in the immune re-
sponse, or if NMD is actively repressed by pathogens,
avoiding degradation of the pathogen’s own transcripts,
as was shown for retroviral infections [22–25]. These two
possibilities are not mutually exclusive, and the answer to
this question will likely depend on the nature of the
infecting microorganism. The complexity of the interac-
tions between viruses and NMD is further underscored by
the observation that the EJC component WIBG may be a
cellular cofactor promoting HCV infection [28].

NMD deficiency in plants leads to an autoimmune
phenotype attributable to increased PRR expression that
results in aberrant induction of innate immune responses
[3]. In humans, mutations affecting the RNA exosome – a
185



Box 3. Outstanding Questions

� Does NMD defend cells against infection with DNA viruses,

retroviruses or negative-strand RNA viruses? What is the con-

tribution of NMD to antiviral immunity relative to other host

defence pathways such as the type I IFN system, particularly in in

vivo settings?

� Is NMD efficiency modulated by the infected host or by

pathogens, and what are the outcomes of this regulation? Can

NMD be targeted pharmacologically to boost innate immune

responses?

� Aside from NMD and the RNA exosome, do other RNA quality

control pathways (for example, non-stop decay and no-go decay)

or other nucleases (for example, the 50-to-30 RNase XRN1) control

viral infection or prevent accumulation of type I IFN-stimulatory

nucleic acids?

� What is the origin of endogenous nucleic acids that trigger

autoimmune and autoinflammatory diseases?

� What is the role of RNA quality control and RNA decay in

controlling endogenous retroviruses and retrotransposons?
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nuclease that contributes to decay of NMD targets – result
in chronic type I interferon production and disease [4]. This
is likely to be due to PRR recognition of an endogenous
RNA normally degraded by the RNA exosome. These two
examples highlight different molecular causes for unwant-
ed innate immune responses. In the former case, this is due
to a lowered activation threshold and a consequently over-
reactive and/or constitutively active innate signalling
pathway, whilst in the latter case endogenous molecules
with a propensity to activate PRRs build up in cells. These
paradigms are relevant to a number of other human muta-
tions that cause autoinflammatory and autoimmune dis-
eases and we have illustrated this with the examples
of IFIH1 and ADAR1. Both of these genes are linked to
AGS and encode proteins that either recognise and/or
modify RNA. It is therefore becoming increasingly evident
that the aetiology of AGS, and perhaps other diseases
associated with aberrant type I IFN responses is, at least
in some cases, intimately linked to RNA biology and RNA
sensing pathways.
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