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Abstract

Pelagic seabirds are elusive species which are difficult to observe, thus determining their

spatial distribution during the migration period is a difficult task. Here we undertook the first

long-term study on the distribution of migrating shearwaters from data gathered within the

framework of citizen science projects. Specifically, we collected daily abundance (only

abundance given presence) of Balearic shearwaters from 2005 to 2017 from the online

databases Trektellen and eBird. We applied machine-learning techniques, specifically Ran-

dom Forest regression models, to predict shearwater abundance during migration using 15

environmental predictors. We built separated models for pre-breeding and post-breeding

migration. When evaluated for the total data sample, the models explained more than 52%

of the variation in shearwater abundance. The models also showed good ability to predict

shearwater distributions for both migration periods (correlation between observed and pre-

dicted abundance was about 70%). However, relative variable importance and variation

among the models built with different training data subsamples differed between migration

periods. Our results showed that data gathered in citizen science initiatives together with

recently available high-resolution satellite imagery, can be successfully applied to describe

the migratory spatio-temporal patterns of seabird species accurately. We show that a pre-

dictive modelling approach may offer a powerful and cost-effective tool for the long-term

monitoring of the migratory patterns in sensitive marine species, as well as to identify at sea

areas relevant for their protection. Modelling approaches can also be essential tools to

detect the impacts of climate and other global changes in this and other species within the

range of the training data.

Introduction

Many seabirds are upper trophic level consumers that can be used as indicators of the status

and change of pelagic ecosystems [1]. Seabirds are also relevant species from a conservation
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Vicente-Vı́rseda JA (2020) Citizen science for

predicting spatio-temporal patterns in seabird

abundance during migration. PLoS ONE 15(8):

e0236631. https://doi.org/10.1371/journal.

pone.0236631

Editor: Vitor Hugo Rodrigues Paiva, MARE –

Marine and Environmental Sciences Centre,

PORTUGAL

Received: October 23, 2019

Accepted: July 11, 2020

Published: August 14, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0236631

Copyright: © 2020 Martı́n et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Regarding the data

used in this study, Trektellen is a public database of

migration / seawatch counts and ringing results

http://orcid.org/0000-0001-6893-2187
https://doi.org/10.1371/journal.pone.0236631
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236631&domain=pdf&date_stamp=2020-08-14
https://doi.org/10.1371/journal.pone.0236631
https://doi.org/10.1371/journal.pone.0236631
https://doi.org/10.1371/journal.pone.0236631
http://creativecommons.org/licenses/by/4.0/


perspective. They are one of the most threatened groups of marine vertebrates, partly because

they are highly mobile. Migratory seabirds are particularly susceptible to a large number of

stressors, given the variety of habitats they use throughout their year-cycle [2]. Studies on

migration and at sea distribution of pelagic seabirds have received significant attention in

recent years, but there is still a gap in the knowledge on migration and at sea distribution in

many of these species [3]. As other migratory species, seabirds may stopover during the jour-

ney, although the exact location of these intermediate steps is frequently unknown [4]. Stop-

overs are key sites and conditions experienced by seabirds in this areas can affect individual

survival undermining the population size [3]. Therefore, conservation efforts should address

not only wintering and breeding grounds, but the en-route locations during migration [5].

However, pelagic seabirds are elusive species which are difficult to observe, thus determin-

ing their spatial distribution during the migration period is a difficult task [4, 6]. Ringing

recoveries and ocean sightings are useful for identifying very general movement patterns, but

they are not enough to determine stopover areas, which are of main importance for under-

standing the migratory patterns as well as to inform conservation planning at sea [7, 8]. The

continuous technical development of electronic devices for tracking animal movements (such

as geolocators, GPSs, and PTT devices) have contributed to the knowledge on the at-sea distri-

bution of many seabird species [9, 10]. However, even with good sample sizes, tracking data

may not represent the full species migratory range due to the variety of migratory strategies at

colony- and individual levels [7, 8, 11]. Therefore, important stopover areas and foraging

grounds for a given species may not be identified. This is particularly true for long-lived spe-

cies, such as many seabirds, which have a great capacity to alter migratory behavior in response

to environmental variability [7] and in relation to specific individual traits such as age, sex or

breeding colony [12, 13]. Consequently, electronic devices, even providing very detailed infor-

mation on individual seabird’s movements, have a limited ability to improve our understand-

ing of the adaptation of migration strategies to deal with a changing environment at both

population and species levels [14, 15]. In contrast, census methods do not allow to detect birds

when they use areas out of human sight, but they can provide a valuable overall picture despite

the missing information on the age and the colony where the bird breeds.

In this sense, the active public involvement in scientific research (i.e., citizen science) has

become a key source of high-quality data for scientists and policymakers [16]. Among others,

citizen science projects have enabled researchers to obtain a comprehensive picture of habitat

use in many different species [17, 18]. These citizen science projects provide millions of species

observations each year [19, 20]. But there are concerns regarding the scientific use of citizen

science data [21]. For instance, data collected by volunteers is assumed to be less accurate than

data collected professionally, although the few studies that compare the precision of volunteer

and professional data did not conclusively show this fact [22]. However, it seems clear that,

without proper standardized survey protocols and volunteer training, volunteer data may be

highly variable in terms of precision (e.g., errors in species identification or biases in count

estimates, uneven sampling effort, both in terms of temporal and spatial coverage, among oth-

ers). In contrast to these caveats, as compared with the detailed data gathered from electronic

devices, the massive datasets from citizen science projects have the advantage of offering low-

cost information on long-term temporal and large spatial extents from many different individ-

uals belonging to several populations (e.g., [23]). Prominent electronic citizen science data

bases in terms of number of users include eBird [24] and Trektellen [25]. These two biodiver-

sity-related citizen science projects gather records of birds provided by professional and ama-

teur ornithologists around the world. Although eBird is a common data source used by

scientist all over the world, Trektellen datasets, specifically addressing migratory bird counts,

have remained unexploited by the scientific community to the best of our knowledge.
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(https://www.trektellen.nl/). Trektellen database can
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particular species using the website tools. All the

environmental predictors used in the present study
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different data sources indicated in Table 1, as well

as from Trektellen website. Data sourced by eBird

can be obtained after registration and request at

https://ebird.org/. For further information, please

see https://ebird.org/science/download-ebird-data-

products.
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The Balearic shearwater (Puffinus mauretanicus) only breeds from February to June in the

Balearic Islands (Spain) and it is considered as critically endangered [26]. Balearic shearwaters

spend about one quarter of the year on migration [13]. To date, the existing scientific knowl-

edge on the Balearic shearwater migration is based on two studies using geolocation archival

tags conducted on colonies located in the same archipielago: (i) 26 individuals from the large

breeding colony in Mallorca (ca. 200 breeding pairs), tracked between 2010–2011 [13], data

(ii) on 16 individuals breeding in Eivissa Island (with 310 pairs estimated) monitored during

2011–2012 [15]. Additional surveys using ship transects along the coast of the western Iberian

Peninsula from 2004 to 2009 [27], and land- and boat-based surveys in 2007–2010 [14] have

also provided partial information on the at-sea distribution of this species during the non-

breeding season (July-January). Yet, these studies showed that areas used by shearwaters may

change from year to year in relation to interannual variability in the environmental conditions

[13, 14], as well as among different breeding colonies [15]. Moreover, with an estimated global

population of over 25,000 individuals, according to counts at sea [28], unused areas not

detected in these studies may be relevant for other Balearic shearwater populations [29].

During migration, Balearic shearwaters occur in relatively shallow, coastal waters along the

shoreline, allowing their observation from land-based sites [28, 30]. Therefore, citizen science

projects recording Balearic shearwaters from the coast may provide useful records for the

monitoring of this species along its migratory route, completing the partial picture offered by

geolocators [13, 15] and vessel surveys [14, 27]. Together with citizen science projects, there is

an increasing availability of large-scale environmental data (e.g., satellite imagery), which can

be used to predict species distributions over large areas.

Modelling techniques based on these datasets can be used to predict the distribution of the

Balearic shearwaters along the coast to identify the most likely marine habitats used during

migration, both over time and across space [31]. In contrast to models predicting animal

occurrence (such as Species Distribution Models -SDMs-; [32]) studies trying to model esti-

mates of relative abundance have been much less common (but see [27]), even when data are

acquired through systematic surveys. Moreover, approaches modelling abundance given only

presence have received little attention in Ecological Modelling [33].

We undertook a multi-year study of the spatio-temporal patterns in Balearic shearwater

abundance (specifically abundance given only presence) during migration using data gathered

within eBird [24] and Trektellen [25]. Particularly, we aimed to: (1) determine general regional

environmental predictors driving spatial use during migration, (2) assess whether these vari-

ables differ between pre-breeding (September to December) and post-breeding migration and

moult (May-August), and (3) determine possible trends in the migratory spatial patterns by

identifying latitudinal changes along the migration route in relation to environmental

variables.

Materials and methods

Study species

The Baleraric shearwater (Puffinus mauretanicus) is included as ‘Critically Endangered’ on the

IUCN Red List [26] and it is also considered as threatened bird for the European Union (i.e.,

rare or vulnerable bird species as listed in Annex I of the E.U. Bird Directive). Most of the pop-

ulation of Balearic shearwater leaves the Mediterranean each year after breeding [13] and

mostly remains in the Atlantic during the non-breeding season [34]. At sea, it usually occurs

in productive shelf areas related to oceanographic frontal systems [15, 27, 35]. During migra-

tion, Balearic shearwaters tend to fly very close to the shoreline [28], with an average off-shore

distance of about 1,190 m at the Strait of Gibraltar [36]. Fluctuations in Balearic shearwater
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migration, both seasonally and inter-annually, seem to be related to changes in food resources

[14, 37]. Balearic shearwater’s diet includes small pelagic but also demersal fish, frequently

obtained from trawling discards. The species can eventually feed on plankton and macrozoo-

plankton, specifically krill [38, 39].

The extent of the study area (Fig 1) covers the whole distribution range of the Balearic

shearwater throughout the year [26].

Model variables

Abundance of shearwaters. Daily abundance of the species was recorded from 1964 to

2018, both as opportunistic sighting records and within systematic effort-based surveys (i.e.,

with an standardized duration of the sampling effort) obtained from the online databases

Trektellen [25] and eBird [40]. Only records attributed to Balearic shearwaters were analysed.

Balearic shearwater generates much attention both from amateur and expert ornithologists

thus, it is usually well-known species and correctly identified when sighted. Due to the oppor-

tunistic nature of some of these data, we needed powerful modelling techniques to obtain

robust results (see below). Although it was possible to differentiate opportunistic and system-

atic surveys within the dataset, we opted for keeping all records for our analysis in order to test

the robustness of the modelling approach in case our methods will be extended to other species

for which this information is not available. Since some records contained in Trektellen data-

base may be also included in eBird, based on date and spatial location, we avoid duplicated

observations between databases. From Trektellen database, according to the migratory range

Fig 1. Balearic shearwater observations. Spatial distribution of observations of Balearic shearwaters considered in the analysis. a)

pre-breeding migration (n = 7,492); b) post-breeding migration (n = 4,690). Period 2005–2017. Symbols are proportional to the total

number of sightings in each spatial location. Orange: breeding range, blue: non-breeding distribution; areas darker in colour:

common presence, areas lighter in colour: scarce presence; from [34].

https://doi.org/10.1371/journal.pone.0236631.g001
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of the study species, we specifically obtained observations from 123 sighting points in France,

Portugal, Spain and UK, from 2005 to 2018, counting 7,619 different observations and totaling

378,112 birds. Regarding eBird records, there are not fixed sighting points, although we

obtained data on 258,730 birds observed in 8,244 different records from 1964 to 2018. How-

ever, to ensure the maximum seasonal representation of the dataset to be analysed (see S1 Fig

in S1 File), from this total sample of birds, we only modelled data collected during the migra-

tion period from 2005 to 2017 (see Results). We defined migratory periods based on the

known phenology of the Balearic shearwater. Specifically, we considered ‘post-breeding migra-

tion’, the northward migration of birds leaving the Mediterranean and molt, between May

1st—August 30th, and ‘pre-breeding migration’, corresponding to the southward migration of

birds from the Atlantic and returning to the breeding areas in the Mediterranean, from Sep-

tember to December [41, 42]. Birds at their breeding grounds in the Balearic Islands (i.e., birds

observed at land) were removed from the data sample.

Response variable and environmental predictors. Our response variable was Balearic

shearwater abundance (i.e., only abundance given presence thus, absence of abundance -i.e.,

zeros- was not considered in the analysis) [33], expressed as the number of birds sighted on a

given date at a given latitude / longitude, during migration. Shearwater abundance was mod-

elled using 15 environmental predictors (Table 1, see S1 File) that have been previously

described to be related with the spatial distribution at sea of this and other seabird species [4,

14, 27, 39–44].

In addition to the previous environmental variables, as discrete variables predicting shear-

water abundance we also considered spatial coordinates (longitude and latitude), as well as

date (i.e., julian date) and year of the observation for explicitly modelling seasonal and interan-

nual variation in shearwater abundance, respectively. Fluctuations in seabird abundance dur-

ing migration are closely related to changes in food resources (see Supplementary Methods in

S1 File). However, photoperiodic cues and/or endogenous rhythms may also modulate seabird

breeding and migration periods [43]. Therefore, apart from food availability, migration

Table 1. Description of environmental predictors.

Name Description unit Source Period

batim bathymetry meters EMODnet (European Marine Observation and Data Network) 2012

fish fishing intensity number of

vessels

JRC Data Catalogue; “Automatic Identification System” (AIS) 2014–

2015

tmmean mean temperature ˚ K NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

tmstd standard deviation of mean temperature ˚ K NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

uwmean mean wind speed (u-wind: east-west direction) m/s NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

uwstd standard deviation of mean wind speed (u-wind: east-west

direction)

m/s NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

vwmean mean wind speed (v-wind: north-south direction) m/s NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

vwstd standard deviation of mean wind speed (v-wind: north-

south direction)

m/s NCEP/NCAR Reanalysis dataset (NOAA ESRL Physical

Sciences Division)

1964–

2018

clorof chlorophyll concentration mg m-3 JRC Data Catalogue; MERIS 2004–

2017

NAO NAO index - Climate Prediction Center (US National Weather Service,

NOAA)

1950–

2018

moon daily fraction of the moon illuminated at midnight % U.S Naval Observatory & Astronomical Applications

Department

2005–

2018

https://doi.org/10.1371/journal.pone.0236631.t001
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decisions in Balearic shearwaters might be partially dictated by daylength and/or an internal

rhythm making the bird instinctively moving into the west-north, as long as the post-breeding

season progresses, and then into the south-east during the pre-breeding period. In this sense,

date, longitude and latitude variables allow us to include in the models the endogenous rhythm

of the bird. In addition, longitude and latitude can be indirect proxies of the effects that vari-

able wintering sites, length of the route and en-route environmental conditions may pose to

different migrant shearwaters. Finally, due to potential differences in the rates of change of the

environmental predictors across space, interactions between predictors and “latitude” and lon-

gitude, and between “year” and “latitude”, may allow to quantify both the spatial and temporal

heterogeneity in the migratory responses.

Statistical analysis

To avoid collinearity, from the total set of environmental predictors the correlation between

pairs of variables (i.e., Pearson correlation coefficient) was assessed (see Supplementary results

in the S1 File).

We applied machine-learning techniques to predict shearwater abundance, specifically

Random Forest regression models. This choice was based on a previous assessment of eight

different modelling techniques carried out on the same dataset [44]. Specifically, Generalized

Additive Models (GAM), Classification and Regression Trees (CART), Bootstrap Aggregation

(bagged CART), Extreme Gradient Boosting, Stochastic Gradient Boosting, K Nearest Neigh-

bours (KNN), Support Vector Machine (SVM) and Multilayer perceptron Neural Network

(MLP). Comparisons among modelling techniques were based on the Root Mean Square

Error (RMSE; the average difference between the observed known values of the outcome and

the predicted value by the model), and on the amount of variation explained (R2), measured as

the mean-squared error, divided by the variance of the original observations [45]):

R2 ¼ 1 �

P
i ðyi � ŷiÞ

2

P
i ðyi � �yiÞ

2

RMSE and R2 values were derived from a cross-validation procedure after randomly

splitting the abundance data into training and test data (setting aside 20% of the data for

testing the models). Although the differences between models were not always statistically

significant at a Bonferroni corrected p-level, the assessment of all these modelling tech-

niques showed that Random Forest performed better in terms of RMSE [46], R2 and in

terms of the correlation between observed and predicted abundance. Therefore, we used

packages caret [47] and randomForest [48] in R [49] to build Random Forest models in

the present study. We built separated models for pre-breeding and post-breeding migration.

As usual in count data, abundance of shearwaters followed a Poisson distribution [50].

Although there is a lack of assumptions in the distribution of the data in Random Forest

models, when we use an approach based on decision trees such as this where data partition-

ing is applied, we can obtain better results if we model a dependent variable homogenously

distributed, because the model dispersion increases as long as the variable increases. There-

fore, prior to build our models, we log-transformed (i.e., natural log) the abundance data.

This transformation increased the variance explained by the models (from 38% to 52.55%

during pre-breeding, and from 30.79% to 52.89% in the case of the post-breeding best-fit

models; see Results). All the random forest trees were built using the total set of predictors

described in Table 1.

Any random forest model apply bagging (i.e., bootstrap aggregating) to sub-sample the

data that are used for training, thus each new tree is fit from a bootstrap sample of the training
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observations zi = (xi,yi). We assessed the performance of our models based on the accuracy of

predictions derived from the Out- of-bag (OOB) error [46]. The OOB error is the average

error for each zi calculated using predictions from the trees that do not contain zi in their

respective bootstrap sample [51]. This allows the model to be fit and validated whilst being

trained, thus no additional cross-validation was required. On the other hand, Random Forest

has hyperparameters that must be tuned to avoid overfitting. To determine the parameter val-

ues offering the best fit, we specified a set of tuning values to be tested during the calibration of

the models. Specifically, we applied a grid search method, thus we evaluated the model over

different combinations of parameters included in the grid (values ranging between 1–15, at

one-unit intervals). When bagging the number of samples and hence the number of trees is

also a parameter to be selected. The optimal number of trees in the models was determined

from a range between 100 and 500 trees in such a way that the algorithm increases the number

of trees on run after run until the accuracy does not significantly improve. To identify the

model with the optimal parameter combination and number of trees (i.e., offering the best fit)

we compared the RMSE values of the models [46]. As an additional assessment of the models,

we quantified the amount of variation explained (R2), as a measure of how well out-of-bag pre-

dictions explained the target variance. The differences in RMSE and R2 between pre-breeding

and post-breeding models were measured as the lagged and iterated differences over the

model resamples in the bagging procedure.

To evaluate how well the models were able to predict the test set outcomes, we randomly

split the abundance data into training and test data subsets by setting aside 20% of the data for

testing the models [52]. Additional models were then calibrated on the training data and then

evaluated on the test data. Specifically, we quantified to what extent the abundance in test data

agreed with the model predicted abundance by means of the Pearson correlation coefficient.

Relative importance of the variables used for predicting shearwater abundance was assessed

by means of the number of trees where the variable was included and the minimal depth of the

variable in the tree (package randomForestExplainer in R). Minimal depth allows to determine

variable importance by the position of the variables in the decision trees in such a way that the

importance of the variable is based on the decision tree structure. In this way, variables that

tend to split close to the root node of a tree should have more importance in prediction [53].

Relative importance, as well as total variance explained, were derived from models built with

the total dataset (both training and testing).

As an example of the potential marine areas that can be identified from the models, we pre-

dicted shearwater abundance across the study area on the fifteenth of the month, from May to

December, based on the environmental conditions during 2017.

Results

An exploratory analysis of the data (see S1 Fig in S1 File) showed that observations of Balearic

shearwaters contained in the databases preceding the year 2005 and collected during 2018

were insufficient to model daily patterns during the migration periods. After the removal of

data recorded before 2005 and after 2017, 7,492 and 4,690 observations (i.e., rows in the data

matrix) remained for the pre-breeding and post-breeding migration periods, with a total of

233,863 birds during pre-breeding and 151,782 during post-breeding, respectively. These

observations covered the entire non-breeding range of the species (Fig 1).

After inspection of collinearity (i.e., significant Pearson correlation coefficient between

pairs of variables), we did not find highly correlated variables (r<0.3 for the total set of envi-

ronmental predictors in Table 1; see S2 Fig in S1 File), thus all the predictors considered in the

initial set were kept for model selection.
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According to the results derived from the bagging procedure, there was substantial varia-

tion among models built with different training data subsamples (measured as 95% confidence

interval) in terms of RMSE and R2, particularly during the post-breeding migration (Fig 2).

The estimates of the differences between pre-breeding and post-breeding models (i.e., lagged

and iterated differences over the model resamples), even though small, show that the accuracy

(RMSE) of the pre-breeding model was 3% significantly larger compared with the post-breed-

ing model (Bonferroni’s p-value adjustment < 0.01; p-value for H0: difference = 0). Contrast-

ingly, differences in the variance explained (R2) between the pre-breeding and the post-

breeding migration models were not statistically significant (Bonferroni’s p-value adjust-

ment = 0.7314). Predictive ability was substantially high during the post-breeding period,

when the correlation between observed and predicted abundance was 0.71, as well as in the

pre-breeding model, where the correspondence between observed and predicted values was

0.68. Models built with the total dataset for both pre-breeding and post-breeding migration

explained around 53% of the variation in shearwater abundance (computed from bootstrap

resampling with 25 repetitions).

Variable importance differed between migration periods (Fig 3), with a larger importance

of chlorophyll concentration during the post-breeding migration. Bathymetry showed a mod-

erate contribution to the abundance of shearwaters during both migration movements. If

there was no interannual variability in the spatial patterns of shearwater abundance, then the

“year” predictor should have a minor importance in the models. However, interannual vari-

ability (i.e., effect of “year”) was relevant during pre-breeding and post-breeding migration. In

relation to weather predictors, temperature and wind were variables significantly affecting the

abundance of shearwaters during both migration periods. In contrast, lunar cycle and NAO

index hardly contributed to the abundance patterns described in the models.

According to the predicted abundance of shearwaters for different values of year and lati-

tude, the number of migrating shearwaters appeared to be larger at higher latitudes in recent

years, although there was no clear trend over the study period (Fig 4).

Fig 2. Model comparison. Comparison of resamples (bagging) between pre- (RF pre) and post-breeding (RF post)

models. RMSE: Root Mean Squared Error; Rsquared: % variance explained. Mean and Confidence Interval (95%).

https://doi.org/10.1371/journal.pone.0236631.g002
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(a)

(b)

Fig 3. Relative importance of the variables. Relative variable importance (in terms of number of trees and minimum depth) in the

random forest models predicting Balearic shearwater abundance. a) pre-breeding migration; b) post-breeding migration. times_a_root:
total number of trees in which the variable is used for splitting the root node. mean_minimal_depth: mean minimal depth. Ten top

variables are highlighted in blue. The size of points reflects the number of nodes split on the variable.

https://doi.org/10.1371/journal.pone.0236631.g003
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Spatial predictions derived from pre- and post-breeding models (Fig 5) showed how abun-

dance of shearwaters decreases at sea locations in the Mediterranean from May to August and

then it gradually increases again from September to December. Overall, according to the mod-

els, Balearic Shearwaters use slightly different regions during their northward (May–August,

post-breeding) and southward migration (September–December, pre-breeding).

Fig 4. Interactions between variables. Predicted abundance of shearwaters (pedictions in the natural logarithmic scale) for

different values of year and latitude. (a) pre-breeding; (b) post-breeding migration models.

https://doi.org/10.1371/journal.pone.0236631.g004
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Discussion

Here we undertook the first long-term study on the spatio-temporal patterns of migrating Bal-

earic shearwaters from data gathered within the framework of citizen science projects. Our

results showed that data obtained in initiatives such as Trektellen and eBird, together with

large-scale open datasets (NCEP/NCAR, AIS, NOAA, among others), can be successfully

applied to describe the migratory distribution and abundance of seabird species accurately.

Although these large volumes of data maybe hard to analyze and interpret, and relevant inter-

pretations may be limited in scope, accurate information on the distribution of species during

the entire annual cycle can be derived from these datasets, even for populations of long-dis-

tance migratory bird species [24].

Presence-only SDMs (Species Distribution Models) are based on the relationship between

species presence and environmental conditions, predicting the environmental suitability for a

particular species, but not its actual distribution. This leads to weak relationships between pre-

dicted presence and the relative abundance of the species [54]. In contrast the above-men-

tioned approaches, models based on abundance given only presence have received little

attention in species distribution research [33]. Previous research found Balearic shearwater

Fig 5. Predicted abundance of Balearic shearwater across its distribution range during migration. Back-transformed predictions. Colour gradient indicates the

percentage of the maximum predicted abundance across the study area on the fifteenth of the month, from May to December (May-August: post-breeding;

September-December: pre-breeding), from environmental conditions (see Table 1) occurred in year 2017.

https://doi.org/10.1371/journal.pone.0236631.g005
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abundance to be extremely difficult to predict from and abundance-absence model, and it

failed to provide reliable predictions on the spatial distribution of shearwater numbers [27]. In

contrast to this earlier modelling attempt based on ship transect data, our models based on

abundance given only presence of shearwaters provided strongly correlated predictions with

the observed abundances and explained a significant proportion of the variance existing in the

numbers of migrating shearwaters.

In any research, the value of the derived knowledge directly relies on the quality of the data

used. Direct observations of birds collected by volunteers are a cost-effective source of data

that have been previously applied to develop spatial distribution maps of seabirds [55]. Never-

theless, observations of migratory movements collected from coastal land-based observatories

have been claimed to be fragmentary and biased thus, they have been frequently considered to

be deficient in determining migratory patterns [30]. In recent years, however, the new Big

Data approach has led to an increased interest in gathering massive quantities of datasets fre-

quently shared over the Internet. As other Big Data, observations derived from citizen initia-

tives frequently exhibit noise affecting their quality [56]. To deal with such a large amount of

data and its characteristic noise, machine learning techniques (i.e., the application of computa-

tional methods underlying experience-based decision making; [57], as those applied in our

study, offer an efficient tool, bringing new opportunities to take advantage of these massive

data [58]. In contrast to alternative approaches such as the use of tracking data [12, 13, 29] or

vessel surveys [14, 27], these massive datasets provide with low-cost information on long-term

temporal and large spatial extents. This allows to identify spatio-temporal patterns from many

different individuals belonging to several populations (e.g., [23]), as well as to quantify their

seasonal and interannual variation in the long-term. Contrastingly, citizen science data have

one main drawnback which is low data quality, due to low accuracy and precision, insufficient

sample sizes as well as insufficient temporal and spatial representation [22]. However, the

members of a community of citizen scientist have frequently training and expertise, thus they

can be considered as “expert amateurs”. Thanks to the expertise and high level of interest in

the topic of this citizen scientists makes that the identification of the study objects is similar

between experts and citizen scientists. This is particularly the case for eBird and Trektellen par-

ticipants, who must be familiar with, or at least interested on bird identification and, fre-

quently have as good or even better identification skills as professional ornithologists [59]. In

addition, thanks to the large number of participants in these citizen science projects, our

results show the high level of temporal and spatial representation of these datasets.

Our predictions should be taken rather as an illustration than as an exact calculation, since

they are based on a single snapshot on the fifteenth of the month in a particular year. However,

they support the validity of our models results, showing that the spatial predictions obtained

are consistent with previous findings on important marine areas for shearwaters identified

from tracking data and vessel surveys [13, 14, 27]. Although we are analysing no behavioural

data, to some extent, we can infer feeding and transiting areas from variable interactions (see

S4–S6 Figs in S1 File). For instance, locations with high abundance level, tailwinds, and low

chlorophyll concentration can be interpreted as locations with high flux of birds, in contrast to

locations with high-moderate abundance, no winds or moderate winds and high chlorophyll

concentration levels. Feeding or transiting, the predictions obtained supported that Alboran

Sea is an important area for migrating shearwaters [60], particularly during post-breeding

migration. Similarly, Gulf of Cadiz also showed high predicted abundance of shearwaters [61],

especially during the pre-breeding movement. Our results also suggested that Atlantic coast of

Portugal and France are migratory, stopover and/or moulting sites for Balearic shearwaters

both during pre and post-breeding migration. Similarly, the post-breeding model showed that

Western English Channel is an important area for Balearic shearwaters mainly during August,
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whereas high abundance of shearwaters is predicted along the Algerian/Tunisian coastline in

November. Furthermore, model predictions support previous research, which shows that a

variable fraction of the total Balearic shearwater population, mainly adult birds, appeared to

remain in the Mediterranean all year round [62].

But the major accomplishment of our modelling approach is the high temporal resolution

that we achieved with our models and the possibility of deriving daily spatial predictions that

take into consideration the spatio-temporal heterogeneity in migration patterns for specific

time frames. In this sense, most of the studies predicting animal spatial patterns have been

focused on the stationary distribution in more or less temporally invariable environments (but

see [63, 64]). In contrast, marine environment is highly dynamic and its conditions in a partic-

ular location are ever changing [65]. New available global data from satellite imagery are fre-

quently provided at high spatial and temporal resolutions, offering an excellent opportunity to

model highly mobile migratory species by informing on the heterogeneity at different spatio-

temporal scales affecting the en-route habitat use [17]. This high-resolution information allows

modelling daily or even hourly conditions at specific locations, such as in our study. We show

that these data, together with observations of birds collected in citizen science projects, can be

used to identify conservation concerns and targets at regional levels related to environmental

changes such as global warming or fisheries, among others, that are difficult to track using tra-

ditional approaches.

Differences between pre- and post-breeding migration

In addition, we show that predictive models based on citizen science data not only provide

accurate predictions but they contribute to a better understanding of the factors modulating

the migratory periods and to identify the seasonal and interannual variability existing in the at

sea locations during migration. Among others, fluctuations in migration abundance are usu-

ally related to changes in food resources [37]. Differences in chlorophyll-a concentration and

bathymetry of the at sea distribution of Balearic shearwaters between the two migration move-

ments suggest that birds leaving the Mediterranean target shallower waters where productivity

is higher, whereas shearwaters returning to the breeding grounds appear to be less conditioned

on food availability. In this way, the distribution of the shearwater abundance during the pre-

breeding period depends more on static predictors such as spatial location (i.e., longitude and

latitude) and bathymetry, whereas during the post-breeding it is more dependent on higher

spatially and temporally variable predictors such as food availability (i.e., chlorophyll). Most

likely, this is because, after breeding, migrating birds need to replenish energy reserves, thus

they will select key stopover locations along the trip where maximize their refueling opportu-

nities [66]. This stronger link between shearwater abundance and food availability likely lead

to the relatively larger variability (in terms of statistical significance) observed in the spatio-

temporal patterns of shearwaters during post-breeding compared to the pre-breeding

migration.

Trends in abundance related to changes in fisheries and/or in climate affecting the Balearic

shearwater distribution can be inspected from a range of latitude and year values over the

study period. Although there is no a straightforward pattern over the study period, it seems

that the abundance of the Balearic shearwater has increased in northern latitudes in recent

years. These results are consistent with the northward shift in the spatial range of Balearic

shearwaters along northwest European coasts that has been found in previous studies [37, 67,

68], apparently not directly related to climate change but meditated by recent changes in prey

fish and discard availability [14].
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Predictive models for delimiting marine protected areas

Understanding the spatial distribution of seabirds at sea is crucial for the protection of these

species and their habitats [1]. However, whereas the terrestrial breeding areas where seabirds

occur are usually well known, a gap still exists in the identification of protected areas at sea

(e.g., Natura 2000 network; [69]. Identification of marine protected areas for seabirds and

other highly mobile marine species is a difficult task [70] because their movements at sea and

the spatio-temporal variability associated remain largely unknown [29]. In this sense, a num-

ber of more or less successful approaches have been developed to identify marine Important

Bird and biodiversity Areas (IBAs), which are important foraging, migrating or wintering sites

for seabirds [71]. Our model predictions can be useful for delimiting important areas for the

conservation of the Balearic shearwater. Specifically, mapping model average and/or accumu-

late predictions over seasons and/or particular interannual time frames can provide useful

information on migratory routes and stopover sites, as well as on the seasonal and interannual

variability in such factors and patterns.

Caveats regarding data availability and predictive ability

According to our results, the predictive ability of the models describing Balearic shearwater

abundance patterns (particularly during post- breeding migration when according to the

RMSE values the variability in accuracy of the predicted abundance is larger) is subjected to

the dataset used in the model calibration. Balearic shearwater is a rare but a charismatic species

which generates high interest among birdwatchers. This fact, and its mostly coastal spatial dis-

tribution, facilitate an abundant and correctly identified record of this species from land-based

sites throughout its annual cycle and across its non-breeding range. In contrast, models built

for other species less well-known and/or more difficult to observe could not offer as good

results as those here shown for Balearic shearwaters. However, according to our results and

considering the increasing amount of data collected by volunteers in the framework of citizen

science initiatives all over the world, these datasets should be taken into consideration when

studying highly mobile animals.

Conclusions

We show that data gathered in citizen science initiatives together with recently available high-

resolution satellite imagery may offer a powerful and cost-effective tool for the long-term spa-

tial monitoring of the migratory patterns in sensitive marine species. Due to cost and logistic

constraints, long-term monitoring of seabirds is scarce [72]. In addition, seabird behavior at

sea is complex, with high variability in the locations mainly driven by spatial and temporal

changes in food availability affecting the size and the shape of the areas used. As an alternative

to more traditional approaches [73], modelling techniques can provide a comprehensive pic-

ture, both spatially and temporally, of the migratory patterns at the population level that can

be complementary to the detailed information at individual level obtained from tracking data.

Similar machine learning techniques as those applied in this study, may contribute to extract

information from other existing and future datasets collected by volunteers and inform marine

spatial planning at regional spatial scales for multiple species. Modelling approaches can also

become key tools to detect the impacts of climate and other global changes in the at sea distri-

bution of this and other marine species within the range of the training data. In this sense,

other seabird and sensitive vertebrate marine taxa of conservation concern such as sea turtles

[74] and marine mammals [75] could also benefit from our approach.
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