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Abstract

Introduction

Patients with sepsis who present to an emergency department (ED) have highly variable

underlying disease severity, and can be categorized from low to high risk. Development of a

risk stratification tool for these patients is important for appropriate triage and early treat-

ment. The aim of this study was to develop machine learning models predicting 31-day mor-

tality in patients presenting to the ED with sepsis and to compare these to internal medicine

physicians and clinical risk scores.

Methods

A single-center, retrospective cohort study was conducted amongst 1,344 emergency

department patients fulfilling sepsis criteria. Laboratory and clinical data that was available

in the first two hours of presentation from these patients were randomly partitioned into a

development (n = 1,244) and validation dataset (n = 100). Machine learning models were

trained and evaluated on the development dataset and compared to internal medicine physi-

cians and risk scores in the independent validation dataset. The primary outcome was 31-

day mortality.

Results

A number of 1,344 patients were included of whom 174 (13.0%) died. Machine learning

models trained with laboratory or a combination of laboratory + clinical data achieved an

area-under-the ROC curve of 0.82 (95% CI: 0.80–0.84) and 0.84 (95% CI: 0.81–0.87) for

predicting 31-day mortality, respectively. In the validation set, models outperformed internal

medicine physicians and clinical risk scores in sensitivity (92% vs. 72% vs. 78%;p<0.001,all

comparisons) while retaining comparable specificity (78% vs. 74% vs. 72%;p>0.02). The

model had higher diagnostic accuracy with an area-under-the-ROC curve of 0.85 (95%CI:
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0.78–0.92) compared to abbMEDS (0.63,0.54–0.73), mREMS (0.63,0.54–0.72) and internal

medicine physicians (0.74,0.65–0.82).

Conclusion

Machine learning models outperformed internal medicine physicians and clinical risk scores

in predicting 31-day mortality. These models are a promising tool to aid in risk stratification

of patients presenting to the ED with sepsis.

Introduction

Among emergency department (ED) presentations, a substantial number of patients present

with symptoms of sepsis [1]. Sepsis is defined as a systemic inflammatory response syndrome

(SIRS) to an infection and is associated with a wide variety of risks including septic shock and

death [2]. Mortality rates of sepsis are as high as 16%, potentially increasing up to 40% when

suffering from septic shock [2, 3]. Novel clinical decision support (CDS) systems capable of

identifying low- or high-risk patients could become important for early treatment and triage

of ED patients, but also for preventing unnecessary referrals to the intensive care unit (ICU).

EDs are one of the most overcrowded units of a modern hospital, highlighting the importance

of proper allocation and management of resources [1]. Development of a risk stratification

tool for patients with sepsis may improve health outcome in this group, but may also contrib-

ute to resolve the problem of overcrowded EDs.

Currently, a wide variety of clinical risk scores are used in routine clinical care to facilitate

risk stratification of patients with sepsis [4]. These include the relatively simple (quick) sequen-

tial organ failure assessment ((q)SOFA) score [5, 6], but also more complex scores such as the

abbreviated Mortality in Emergency Department Sepsis (abbMEDS) score and modified

Rapid Emergency Medicine Score (mREMS) [7, 8]. These traditional risk scores have shown

varying performance for predicting 28-day mortality (area under the receiver operating char-

acteristic curve (AUC) for abbMEDS: 0.62–0.85, mREMS: 0.62–0.84 and SOFA: 0.61–0.82) [3,

8–11]. In addition, clinical judgment of the attending physician in the ED plays an important

role in risk stratification. The judgment of physicians was found to be a moderate to good pre-

dictor (AUC of 0.68–0.81) of mortality in the ED [12, 13].

Interestingly, a new group of CDS systems are being developed based on machine learning

(ML) technology [14]. Machine learning can extract information from complex, non-linear

data and provide insights to support clinical decision making. Hence, the first studies emerged

that report machine learning-based mortality prediction models using data from patients with

sepsis presenting to the ED [15–26]. Unfortunately, these studies did not provide a comparison

with physicians in terms of prognostic performance. Recently, a new group of machine learn-

ing algorithms termed gradient boosting trees emerged; showing superior performance com-

pared to other ML models in some problems within the medical domain [27, 28]. Exploring if

these models can outperform clinical risk scores and clinical judgment of physicians in their

ability to identify low- or high-risk patients is a necessary step to explore the potential value of

machine learning models in clinical practice.

The aim of this study was to develop machine learning-based prediction models for all-

cause mortality at 31 days based on available laboratory and clinical data from patients pre-

senting to the ED with sepsis. Subsequently, we compared the performance of these machine

learning models with judgment of internal medicine physicians and clinical risk scores; abb-

MEDS, mREMS and SOFA.
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Methods

Study design and setting

We performed a retrospective cohort study among all patients who presented to the ED at the

Maastricht University Medical Centre+ between January 1, 2015 and December 31, 2016. All

patients aged�18 years being referred to the internal medicine physician with sepsis, defined

as a proven or suspected infection, and two or more SIRS and/or qSOFA criteria (S1 File) were

included in this study [2, 5, 29]. Patients with missing clinical data or with less than four labo-

ratory results were excluded. Also, patients who refused to give consent were excluded. This

study was approved by the medical ethical committee (METC 2019–1044) and the hospital

board of the Maastricht University Medical Centre+. Furthermore, the study follows the

STROBE guidelines and was conducted according to the principles of the Declaration of Hel-

sinki [30]. The ethics committee waived the requirement for informed consent.

Data collection and processing

We collected clinical and laboratory data from all patients included in the study available

within two hours after initial ED presentation. Clinical data were manually extracted through

the electronic health record of the patient and included characteristics such as vital signs,

hemodynamic parameters, and medical history (S1 Table). Biomarkers requested for standard

clinical care were acquired through the laboratory information system. Biomarkers that were

ordered in less than 1/1000 patients were excluded from the analysis. A list of included bio-

markers is provided in S1 Table. Missing values did not require any processing as our machine

learning model is capable of dealing with missing data. Instead, we created an additional vari-

able for each biomarker with a discrete ‘absence’ or ‘presence’ feature to enable our model to

distinguish between the absence and presence of a laboratory test within a patient. These fea-

tures were included in both datasets. Finally, we derived two datasets from the processed data:

1. Laboratory dataset: this dataset consisted of age, sex, time of laboratory request and all

requested laboratory biomarkers within two hours after the initial laboratory request

2. Laboratory + clinical dataset: this dataset contained all variables from the laboratory dataset,

and additionally clinical, vital and physical (e.g. length and weight) characteristics of the

patient

A full overview of all variables present in each dataset is described in S1 Table. Datasets

were anonymized and randomly divided into two subsets: 1) a development subset

(n = 1,244), used for model training and evaluation, and 2) an independent validation subset

(n = 100), used for final validation and comparison of models with judgment of acute internal

medicine physicians and clinical risk scores. A schematic overview of the study design and

model development is depicted in Fig 1. Data processing and manipulation was performed

using Python programming language (version 3.7.1) using packages numpy (version 1.17) and

Pandas (version 0.24).

Outcome measure

Septic shock during presentation was defined as systolic blood pressure (SBP)�90 mmHg and

mean arterial pressure (MAP)�65 mmHg despite adequate fluid resuscitation. The outcome

measure for this study was death within 31 days (1 month) after initial ED presentation. All-

cause mortality information was acquired through electronic health records.
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Model training and evaluation

Our proposed predictive model uses individual patient data available within two hours after

initial ED presentation and generates the probability of mortality within 31 days. This predic-

tion task can be solved by a variety of statistical and machine learning models. In the current

study we evaluated logistic regression, random forest, multi-layer perceptron neural networks

and XGBoost (S2 File and S2 Table) on the laboratory dataset. We selected XGBoost as our

machine learning model of choice as this was proven to possess the highest baseline perfor-

mance (S2 Table). XGBoost is a recent implementation of gradient tree boosting systems

which involve combining the predictions of many “weak” decision trees into a strong predictor

[27]. This recent implementation is characterized by integral support of missing data and regu-

larization mechanisms to prevent overfitting [27]. XGBoost models and their development can

be altered by adjusting the parameters of the technique, referred to as “hyperparameters”. Due

to sample size limitations and the scope of our study, we decided not to optimize our hyper-

parameters and predefined them as described in S3 Table.

We employed stratified K-fold cross validation to assess the generalizability of our predic-

tion models. Briefly, we randomly partitioned the development subset (n = 1,244) into five,

equally sized, folds. During each round of cross-validation, four of these folds were used to

Fig 1. Overview of study design and model development. (A) We included 1,344 patients with a diagnosis of sepsis who

presented to the ED. Patients were randomly partitioned in a development subset (n = 1,244), used to train and evaluate

performance of machine learning models, and a validation subset (n = 100), used to compare models with internal medicine

physicians and clinical risk scores. Cross-validation was used to obtain a robust estimate of model performance in the

development subset. (B) The machine learning model with the highest cross-validation performance was compared internal

medicine physicians and clinical risk scores to predict 31-days mortality.

https://doi.org/10.1371/journal.pone.0245157.g001
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train our models (“train set”) and the fifth was used to evaluate performance (“test set”). This

was done in such a manner that every fold would be labeled as test set only once. We moni-

tored training and test set errors to ensure that training increased performance on the test set.

Accordingly, training was terminated after 5,000 rounds or when performance on the test set

did not further improve for 10 rounds. We evaluated developed models trained with (i) the

laboratory dataset or (ii) the laboratory + clinical dataset, resulting in a total of two indepen-

dent cross-validations.

Model explanation

To explain the output of our XGBoost models, we used the SHapley Additive exPlanations

(SHAP) algorithm, to help us understand how a single feature affects the output of the model

[31–33]. SHAP uses a game theoretic approach to explain the output of any machine learning

model. It connects optimal credit allocation with local explanations using the classic Shapley

values from game theory and their related extensions [34, 35]. A Shapley value states, given the

current set of variables, how much a variable in the context of its interaction with other vari-

ables contributes to the difference between the actual prediction and the mean prediction.

That is, the mean prediction plus the sum of the Shapley values for all variables equals the

actual prediction. It is important to understand that this is fundamentally different to direct

variable effects known from e.g. (generalized) linear models. The SHAP value for a variable

should not be seen as its direct -and isolated effect- but as its aggregated effect when interacting

with other variables in the model. In our specific case, positive Shapley values contribute

towards a positive prediction (death), whilst low or negative Shapely values contribute towards

a negative prediction (survival). ML training and evaluation was done in Python using pack-

ages Keras (version 2.2.2), XGBoost (version 0.90), SHAP (version 0.34.0) and scikit-learn

(version 0.22.1). The analysis code for this study is available on reasonable request.

Comparison of machine learning with internal medicine physicians and

clinical risk scores

Performance of machine learning models was compared with clinical judgment of acute inter-

nal medicine physicians (n = 4) and clinical risk scores in a validation subset of patients with

sepsis (n = 100) which were not previously exposed to the ML model. We selected the best per-

forming machine learning model from cross-validation and trained this with identical hyper-

parameters as previously described on the full development subset. A machine learning

prediction of higher than 0.50 was considered as a positive prediction. Next, we calculated the

mREMS, abbMEDS and SOFA clinical risk scores as described previously (S1 File) [8, 36].

Acute internal medicine physicians (n = 4; 2 experienced consultants in acute internal medi-

cine and 2 experienced residents acute internal medicine) were asked to predict 31-day mortal-

ity in the validation subset, based on retrospectively collected clinical and laboratory data. This

data was presented in the form of a simulated electronic health record.

Statistical analysis

Descriptive analysis of baseline characteristics was performed using IBM SPSS Statistics for

Windows (version 24.0). Continuous variables were reported as means with standard devia-

tion (SD) or medians with interquartile ranges (IQRs) depending on the distribution of the

data. Categorical variables were reported as proportions. Cross-validated models were assessed

by receiver operating characteristic (ROC) curves and compared by their AUC using the Wil-

coxon matched-pairs signed rank test. Besides diagnostic performance, we assessed calibration

in cross-validations with reliability curves [37] and brier scores [38]. In our final validation
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subset, we compared the predictive performance of our best performing ML model to the

judgment of acute internal medicine physicians and clinical risk scores with respect to sensitiv-

ity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and

AUC. Differences in AUC were tested using the method of DeLong et al [39]. Confidence

intervals for proportions (e.g. sensitivity) were calculated using binomial testing and compared

using McNemar’s test. To analyze individual differences between internal medicine physicians,

we performed two additional sensitivity analyses. First, the Cohen κ statistic was used to mea-

sure the inter-observer agreement between the internal medicine physicians. The level of

agreement was interpreted as nil if κ was 0 to 0.20; minimal, 0.21 to 0.39; weak, 0.40 to 0.59;

moderate, 0.60 to 0.79; strong, 0.80 to 0.90; and almost perfect, 0.90 to 1 [40]. Second, we com-

pared the machine learning model against alternating groups of internal medicine physicians

in which one physician was removed in each comparison.

Results

Study population and characteristics

During the study period, 5,967 patients presented to the ED who were referred to an internal

medicine physician in our hospital. Of these patients, we included 1,420 patients with a sus-

pected or proven infection, fulfilling the SIRS and/or qSOFA criteria. A number of 76 patients

were excluded due to missing clinical data (n = 23) and insufficient number of laboratory

results (n = 53), to form a final cohort of 1,344 patients (S1 Fig). Among all patients, 102

(7.6%) suffered from septic shock during presentation at ED and 174 (13.0%) died within 31

days after initial ED presentation. Baseline characteristics of the study patients in development

and validation datasets are shown in Table 1.

Machine learning development and evaluation

To assess the generalizability of our developed XGBoost models, we employed five-fold cross

validation on the development dataset (n = 1,244). XGBoost models trained with laboratory

data achieved an AUC of 0.82 (95% CI: 0.80–0.84) for predicting 31-day mortality (Fig 2). The

performance improved, although not statistically significant, when clinical data was added to

the laboratory data to train XGBoost to an AUC of 0.84 (95% CI: 0.81–0.87) for predicting

mortality (compared to lab only; p = 0.25). Individual cross-validation results of each model

are depicted in S2 Fig. Calibration curves show well calibrated models with brier scores

between 0.08 to 0.10 (S3 Fig).

Model explanation

To identify which laboratory and clinical features contributed most to the performance of our

models, we calculated SHAP values for the (i) laboratory and (ii) laboratory + clinical models

(Fig 3). Among the highest ranked features, we observe features that are also often used in risk

scores including urea, platelet count, glasgow coma score (GCS) and blood pressure. Interest-

ingly, we also observe features such as glucose, lipase, and GCS which are less commonly asso-

ciated with mortality in sepsis patients. An extended analysis of the correlation between

important features in our models and risk scores is provided in S4 Table. Moreover, these

SHAP plots allow us to examine the individual impact of laboratory and clinical features on

the predictions of our models. For example, higher urea and C-reactive protein (CRP) levels

(represented by red points) have a high SHAP value and thus a positive effect on the model

outcome (death).

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0245157


Machine learning versus internal medicine physicians and clinical risk

scores

To explore the potential value of machine learning models in clinical practice, we compared

the model trained with laboratory + clinical data with acute internal medicine physicians and

clinical risk scores, abbMEDS, mREMS and SOFA, to predict 31-day mortality. In an indepen-

dent validation subset (n = 100) -which the model never had been exposed to before- it

achieved a sensitivity of 0.92 (95% CI: 0.87–0.95, Fig 4A) and specificity of 0.78 (95% CI: 0.70–

0.86, Fig 4B). In terms of sensitivity, the machine learning model significantly outperformed

internal medicine physicians (0.72, 95% CI: 0.62–0.81; p<0.001), abbMEDS (0.54, 95% CI:

0.44–0.64; p<0.0001), mREMS (0.62, 95% CI: 0.52–0.72; p<0.001) and SOFA (0.77, 95% CI:

0.69–0.85; p = 0.003). On the other hand, the model retained a specificity that was comparable

to that of internal medicine physicians (0.74, 95% CI: 0.64–0.82; p = 0.509), abbMEDS (0.72,

95% CI: 0.64–0.81; p = 0.327) and SOFA (0.74, 95% CI: 0.65–0.82, p = 0.447), while still out-

performing mREMS (0.64, 95% CI: 0.55–0.74; p = 0.02). Additionally, the model had higher

overall diagnostic accuracy with an AUC of 0.852 (95% CI: 0.783–0.922) compared to abb-

MEDS (0.631, 0.537–0.726, p = 0.021), mREMS (0.630, 0.535–0.724, p = 0.016), SOFA (0.752,

0.667–0.836, p = 0.042) and internal medicine physicians (0.735, 0.648–0.821, p = 0.032–

0.189) (S4 Fig and S5 Table). Similar observations were made in additional evaluation metrics

Table 1. Baseline characteristics of patients in the development and validation datasets.

Characteristics Development N = 1,244 Validation N = 100

Demographics

Age 71.3 (58.8–82.3) 70.8 (58.4–82.8)

Sex, female 567 (45.6) 58 (58.0)

Comorbidity

Cancer 446 (35.9) 28 (28.0)

Cardiopulmonary 381 (30.6) 30 (30.0)

Diabetes 264 (21.2) 19 (19.0)

Renal disease 128 (10.3) 9 (9.0)

Liver disease 42 (3.4) 7 (7.0)

Neuropsychiatric 65 (5.2) 2 (2.0)

Focus of infection at ED

Respiratory tract 421 (33.8) 34 (34.0)

Urinary tract 218 (17.5) 18 (18.0)

Gastrointestinal tract 415 (33.4) 37 (37.0)

Others 75 (6.0) 6 (6.0)

Skin 115 (9.2) 5 (5.0)

Severity scores

abbMEDSa 5.5 (3–8) 6 (3–8)

mREMSb 7 (6–9) 7 (6–9)

SOFAc 7 (5–9) 6 (5–8)

Outcomes

Septic shock 94 (7.6) 8 (8.0)

31-day mortality 161 (12.9) 13 (13.0)

a AbbMEDS, Abbreviated Mortality in ED Sepsis, was calculated as described by Vorwerk et al [8].
b mREMS, modified Rapid Emergency Medicine Score, was calculated as described by Chang et al [36].
c SOFA, Sepsis-related Organ Failure Assessment, was calculated as described by Vincent et al [6].

https://doi.org/10.1371/journal.pone.0245157.t001
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such as positive predictive value (NPV), negative predictive value (NPV) and accuracy (S5

Table). Individually, consultants were found to be more sensitive compared to residents (S5

Fig) with a poor to moderate agreement between the internists (Cohen’s Kappa 0.46 to 0.67)

(S6 Table). A sensitivity analysis with four additional comparisons, where one physician was

excluded at a time, confirmed that the results are robust and that the outperformance of the

machine learning model was not due to an outlier in the physician group (S7 Table).

Discussion

In the present study we demonstrate the application of machine learning models to predict

31-day mortality patients presenting to the ED with sepsis. Our study reports several impor-

tant findings.

First, we show that machine learning based models can accurately predict 31-day mortality

in patients with sepsis. Highest diagnostic accuracy was obtained with the model that was

trained with both laboratory and clinical data. Patient characteristics that are employed in tra-

ditional risk scores, such as blood pressure and heart rate, were also found to be amongst the

most important variables for model predictions. Second, machine learning models outper-

formed the judgment of internal medicine physicians and commonly used clinical risk scores,

abbMEDS, mREMS and SOFA. Specifically, machine learning was more sensitive compared

with risk scores and internal medicine physicians, while retaining identical or slightly higher

Fig 2. XGBoost model performance for predicting all-cause mortality at 31 days in the development dataset.

Models trained with laboratory data achieved a mean AUC of 0.82 (95% CI: 0.80–0.84) for predicting 31-day mortality.

Predictive performance increased when models were trained with laboratory + clinical data to a mean AUC of 0.84

(95% CI: 0.81–0.87), but this was not statistically different (p = 0.25).

https://doi.org/10.1371/journal.pone.0245157.g002
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specificity. These preliminary data provide support in favor of the development and imple-

mentation of machine learning based models as clinical decision support tools, e.g. risk stratifi-

cation of sepsis patients presenting to the ED.

We are aware of several studies which describe the machine-learning based prediction of

mortality in sepsis populations presenting to the ED [15–17]. Taylor et al. described a random

forest model outperforming clinical risk scores in an ED population. Despite their bigger pop-

ulation, our XGBoost model appears to achieve similar performance to their random forest

model, which corroborates and extends the power of this machine learning technique. Two

recent studies by Barnaby et al. and Chiew et al. focused on using heart rate variability (HRV)

for risk prediction in sepsis patients and reported predictive performance similar to our find-

ings [15, 16]. Interestingly, their populations were smaller and this would therefore also advo-

cate the use of HRV in our models. Despite these findings, Chiew et al. demonstrated that

models without laboratory data significantly decreased in performance, emphasizing the

importance of laboratory data in these machine learning models. Nevertheless, to the best of

our knowledge this is the first study to report the direct comparison of machine learning mod-

els with internal medicine physicians. Although we do not present prospective results, we dem-

onstrate that machine learning outperforms clinical judgment of internal medicine physicians

and clinical risk scores, implying that current XGBoost models potentially aid in risk stratifica-

tion of ED patients. As an example, implementation of these models should revolve around

identifying patients with a high risk, e.g.�50% mortality within 31 days, which would then be

re-evaluated once more before being discharged from the ED. This kind of implementation

was shown in a recent randomized clinical trial by Shimabukuro et al. [41], proving that aver-

age length of stay and in-hospital mortality decreased by using a ML-based sepsis detection

model in the ICU. Although this was carried out with a small population in an ICU instead of

the ED, it clearly shows the potential of ML-based risk stratifying models.

Fig 3. Analysis of parameter importance in the XGBoost models. Models with laboratory data (left) and with laboratory

+ clinical data (right) were analyzed using SHAP values. Individual parameters are ranked by importance in descending order

based on the sum of the SHAP values over all the samples. Negative or low SHAP values contribute towards a negative model

outcome (survival), whereas high SHAP values contribute towards a positive model outcome (death).

https://doi.org/10.1371/journal.pone.0245157.g003
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The current study has several strengths and limitations. Strengths include (i) comparison of

laboratory versus laboratory + clinical models, (ii) analysis of features contributing to models’

prediction and (iii) the comparison with internal medicine specialists. We are also aware of

several limitations. First, the present study was a single-center study with a relatively small

sample size at least from a machine learning analysis perspective. Nearly all machine learning

models scale exceptionally well with data, and therefore substantial further improvement of

diagnostic accuracy is likely when increasing the sample size. We also limited ourselves to sep-

sis patients presenting to the ED, and thus it is unknown to what degree these models translate

to a broader, general ED population. Second, results presented in this study are based on retro-

spective data in a single center, limiting the external validity of the model. Unfortunately, this

limitation currently applies to most studies applying ML in medicine. Third, the present study

focused on model development and subsequent performance comparison with clinical judg-

ment and clinical risk scores. It should be noted that the comparison with internal medicine

specialists was performed using retrospectively generated electronic health records, rather

than a prospective evaluation, which might have underestimated their diagnostic performance

as they were not able to directly “see” the patient. Prospective evaluation, in respect to mortal-

ity, but also in relation to clinical endpoints that confirm true clinical benefit would facilitate

implementation of ML-based risk stratification tools in clinical practice.

Fig 4. Comparison of XGBoost model with internal medicine physicians and clinical risk scores. The XGBoost model achieved a sensitivity (A) of 0.92

(95% CI: 0.87–0.95) and specificity (B) of 0.78 (95% CI: 0.70–0.86) for predicting mortality. This was significantly better than the mean prediction of internal

medicine physicians for sensitivity (0.72, 0.62–0.81; p<0.001) as well as abbMEDS (0.54, 0.44–0.64; p<0.0001), mREMS (0.62, 0.52–0.72; p<0.001) and SOFA

(0.77, 95% CI: 0.69–0.85; p = 0.003). In terms of specificity, internal medicine physicians (0.74, 0.64–0.82; p = 0.509), abbMEDS (0.72, 0.64–0.81; p = 0.327)

and SOFA (0.74, 95% CI: 0.65–0.82, p = 0.447) achieved similar performance compared to the XGBoost model, opposed to mREMS (0.64, 0.55–0.74; p = 0.02)

which was significantly worse than machine learning predictions. � = p<0.05; �� = p<0.001; ��� = p<0.0001; NS = not significant.

https://doi.org/10.1371/journal.pone.0245157.g004
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Conclusion

In conclusion, the present proof-of-concept study demonstrates the potential of machine

learning models to predict mortality in patients with sepsis presenting to the ED. Machine

learning outperformed clinical judgment of internal medicine physicians and established clini-

cal risk scores. These data provide support in favor of the implementation of machine learning

based risk stratification tools of sepsis patients presenting to the ED.

Supporting information

S1 File. Extended description of clinical criteria and risk scores.

(DOCX)

S2 File. Background information on machine learning models reviewed in the current

study.

(DOCX)

S1 Table. Overview of variables present in the datasets. The laboratory dataset consisted

exclusively of laboratory variables with age, sex and time of request. The laboratory and clinical

dataset contained all variables from the laboratory dataset and additionally clinical and vital

characteristics.

(DOCX)

S2 Table. Comparison of baseline statistical and machine learning models for predicting

31-day mortality risk. We performed a baseline comparison of statistical and machine learn-

ing models (S1 File) for the 31-day mortality prediction task using the laboratory dataset. We

used five-fold cross validation to assess model performance. Performance was assessed by area

under the receiver operating characteristic curve (AUC) and accuracy. Confidence intervals

were calculated using bootstrapping methods (n = 1,000).

(DOCX)

S3 Table. Hyperparameters of XGBoost models. Hyperparameters were based on theoretical

reasoning rather than hyperparameter tuning. This was done to prevent overfitting on hyper-

parameters due to small sample size. “Base_score”, “Missing”, “Reg_alpha”, “Reg_lambda” and

“Subsample” parameters were standard values provided by the XGBoost interface. “Max_-

depth”, “max_delta_step” and “estimators” were values we internally use for these kind of

machine learning models. During the study, hyperparameters were never adjusted to gain per-

formance in our validation dataset.

(DOCX)

S4 Table. Extended analysis of correlation between important model features and clinical

risk scores. To study the correlation between the most important features contributing to

model predictions and the clinical criteria (qSOFA and SIRS) and risk scores (abbMEDS and

mREMS), we compared their existence in both. The top-20 most important features (Fig 3 in

main article) are compared to all criteria in the clinical scores (S1 File). We observe that most

of the features present in the clinical criteria and scores are also among the most important fea-

tures in the lab and clinical machine learning model.

(DOCX)

S5 Table. Extended comparison of machine learning models with internal medicine physi-

cians and clinical risk scores. In addition to sensitivity and specificity, we evaluated the per-

formance of each group by positive predictive value (PPV), negative predictive value (NPV),

accuracy and area-under-the receiver operating characteristics curve (AUC). Our XGBoost

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 11 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s007
https://doi.org/10.1371/journal.pone.0245157


model shows superior performance in each of these metrics, which is in line with the findings

presented in the manuscript.

(DOCX)

S6 Table. Inter-rater agreement of internal medicine physicians. Cohen’s kappa was used to

measure the inter-rater agreement between the internal medicine physicians. The level of

agreement was interpreted as nil if κ was 0 to 0.20; minimal, 0.21 to 0.39; weak, 0.40 to 0.59;

moderate, 0.60 to 0.79; strong, 0.80 to 0.90; and almost perfect, 0.90 to 1.3.

(DOCX)

S7 Table. Machine learning comparison to alternating physician groups. In each compari-

son between the machine learning model and the physicians group, a single physician was

removed from the physician group. In every comparison the machine learning model outper-

forms the physicians. This analysis shows that the higher performance of the machine learning

model was not due to systemic underperformance of a single physician.

(DOCX)

S1 Fig. Flow diagram of study inclusion. During the study period 5,967 patients that pre-

sented to our emergency department were referred to an internal medicine physician. Of these

patients, 1420 patients fulfilled two or more SIRS and/or qSOFA criteria. After exclusion of 76

patients, a number of 1,344 patients were separated into development and validation datasets.

(DOCX)

S2 Fig. Five-fold cross validation of diagnostic performance of XGBoost models. During

each cycle of cross-validation, we assessed predictive performance by area under the receiver

operating characteristic curves (AUC). Performance was determined for models trained with

laboratory data (A) and models trained with laboratory and clinical data (B) to predict 31-day

mortality.

(DOCX)

S3 Fig. Five-fold cross validation of calibration of XGBoost models. During each cycle of

cross-validation, we assessed calibration by calibration curves and their respective brier scores.

Calibration was determined for models trained with laboratory data (A) and models trained

with laboratory and clinical data (B).

(DOCX)

S4 Fig. Receiver operating characteristic analysis of machine learning model, risk scores

and internal medicine physicians. Receiver operating characteristics analysis of the lab + clini-

cal machine learning model (AUC: 0.852 [0.783–0.922]), abbMEDS (0.631 [0.537–0.726]),

mREMS (0.630 [0.535–0.724]) and internal medicine physicians (mean 0.735 [0.648–0.821]).

Internal medicine physicians were depicted as bullets in the ROC analysis.

(DOCX)

S5 Fig. Individual performance of internal medicine physicians. Predictive performance of

all internal medicine specialists (n = 4; 2 experienced consultants in acute internal medicine

and 2 experienced residents acute internal medicine) was assessed by sensitivity (left) and

specificity (right). Consultants (experienced) specialists are depicted in grey and residents in

orange.

(DOCX)

Author Contributions

Conceptualization: William P. T. M. van Doorn, Steven J. R. Meex.

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245157.s014
https://doi.org/10.1371/journal.pone.0245157


Data curation: William P. T. M. van Doorn, Patricia M. Stassen, Hella F. Borggreve, Maaike J.

Schalkwijk, Judith Stoffers, Otto Bekers, Steven J. R. Meex.

Formal analysis: William P. T. M. van Doorn, Patricia M. Stassen.

Funding acquisition: William P. T. M. van Doorn, Otto Bekers.

Investigation: William P. T. M. van Doorn, Patricia M. Stassen, Hella F. Borggreve, Maaike J.

Schalkwijk, Judith Stoffers, Otto Bekers, Steven J. R. Meex.

Methodology: William P. T. M. van Doorn, Steven J. R. Meex.

Project administration: William P. T. M. van Doorn.

Resources: William P. T. M. van Doorn, Hella F. Borggreve, Otto Bekers, Steven J. R. Meex.

Software: William P. T. M. van Doorn.

Supervision: Otto Bekers, Steven J. R. Meex.

Validation: William P. T. M. van Doorn, Steven J. R. Meex.

Visualization: William P. T. M. van Doorn, Steven J. R. Meex.

Writing – original draft: William P. T. M. van Doorn, Patricia M. Stassen, Hella F. Borggreve,

Maaike J. Schalkwijk, Judith Stoffers, Otto Bekers, Steven J. R. Meex.

Writing – review & editing: William P. T. M. van Doorn, Patricia M. Stassen, Hella F. Borg-

greve, Maaike J. Schalkwijk, Judith Stoffers, Otto Bekers, Steven J. R. Meex.

References
1. LaCalle E, Rabin E. Frequent users of emergency departments: the myths, the data, and the policy

implications. Ann Emerg Med. 2010; 56(1):42–8. Epub 2010/03/30. https://doi.org/10.1016/j.

annemergmed.2010.01.032 PMID: 20346540.

2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third Inter-

national Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):801–10.

Epub 2016/02/24. https://doi.org/10.1001/jama.2016.0287 PMID: 26903338; PubMed Central PMCID:

PMC4968574.

3. Roest AA, Tegtmeier J, Heyligen JJ, Duijst J, Peeters A, Borggreve HF, et al. Risk stratification by abb-

MEDS and CURB-65 in relation to treatment and clinical disposition of the septic patient at the emer-

gency department: a cohort study. BMC Emerg Med. 2015; 15:29. Epub 2015/10/16. https://doi.org/10.

1186/s12873-015-0056-z PMID: 26464225; PubMed Central PMCID: PMC4605126.

4. McLymont N, Glover GW. Scoring systems for the characterization of sepsis and associated outcomes.

Ann Transl Med. 2016; 4(24):527. Epub 2017/02/06. https://doi.org/10.21037/atm.2016.12.53 PMID:

28149888; PubMed Central PMCID: PMC5233540.

5. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of Clinical

Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sep-

sis-3). JAMA. 2016; 315(8):762–74. Epub 2016/02/24. https://doi.org/10.1001/jama.2016.0288 PMID:

26903335; PubMed Central PMCID: PMC5433435.

6. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-

related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medi-

cine. 1996; 22(7):707–10. https://doi.org/10.1007/BF01709751 PMID: 8844239

7. Olsson T, Terent A, Lind L. Rapid Emergency Medicine score: a new prognostic tool for in-hospital mor-

tality in nonsurgical emergency department patients. J Intern Med. 2004; 255(5):579–87. Epub 2004/

04/14. https://doi.org/10.1111/j.1365-2796.2004.01321.x PMID: 15078500.

8. Vorwerk C, Loryman B, Coats TJ, Stephenson JA, Gray LD, Reddy G, et al. Prediction of mortality in

adult emergency department patients with sepsis. Emerg Med J. 2009; 26(4):254–8. Epub 2009/03/25.

https://doi.org/10.1136/emj.2007.053298 PMID: 19307384.

9. Crowe CA, Kulstad EB, Mistry CD, Kulstad CE. Comparison of severity of illness scoring systems in the

prediction of hospital mortality in severe sepsis and septic shock. J Emerg Trauma Shock. 2010; 3

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 13 / 15

https://doi.org/10.1016/j.annemergmed.2010.01.032
https://doi.org/10.1016/j.annemergmed.2010.01.032
http://www.ncbi.nlm.nih.gov/pubmed/20346540
https://doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/pubmed/26903338
https://doi.org/10.1186/s12873-015-0056-z
https://doi.org/10.1186/s12873-015-0056-z
http://www.ncbi.nlm.nih.gov/pubmed/26464225
https://doi.org/10.21037/atm.2016.12.53
http://www.ncbi.nlm.nih.gov/pubmed/28149888
https://doi.org/10.1001/jama.2016.0288
http://www.ncbi.nlm.nih.gov/pubmed/26903335
https://doi.org/10.1007/BF01709751
http://www.ncbi.nlm.nih.gov/pubmed/8844239
https://doi.org/10.1111/j.1365-2796.2004.01321.x
http://www.ncbi.nlm.nih.gov/pubmed/15078500
https://doi.org/10.1136/emj.2007.053298
http://www.ncbi.nlm.nih.gov/pubmed/19307384
https://doi.org/10.1371/journal.pone.0245157


(4):342–7. Epub 2010/11/11. https://doi.org/10.4103/0974-2700.70761 PMID: 21063556; PubMed

Central PMCID: PMC2966566.

10. Olsson T, Terent A, Lind L. Rapid Emergency Medicine Score can predict long-term mortality in nonsur-

gical emergency department patients. Acad Emerg Med. 2004; 11(10):1008–13. Epub 2004/10/07.

https://doi.org/10.1197/j.aem.2004.05.027 PMID: 15466141.

11. Minne L, Abu-Hanna A, de Jonge E. Evaluation of SOFA-based models for predicting mortality in the

ICU: A systematic review. Crit Care. 2008; 12(6):R161. Epub 2008/12/19. https://doi.org/10.1186/

cc7160 PMID: 19091120; PubMed Central PMCID: PMC2646326.

12. Rohacek M, Nickel CH, Dietrich M, Bingisser R. Clinical intuition ratings are associated with morbidity

and hospitalisation. Int J Clin Pract. 2015; 69(6):710–7. Epub 2015/02/18. https://doi.org/10.1111/ijcp.

12606 PMID: 25689155; PubMed Central PMCID: PMC5024066.

13. Zelis N, Mauritz AN, Kuijpers LIJ, Buijs J, de Leeuw PW, Stassen PM. Short-term mortality in older med-

ical emergency patients can be predicted using clinical intuition: A prospective study. PLoS One. 2019;

14(1):e0208741. Epub 2019/01/03. https://doi.org/10.1371/journal.pone.0208741 PMID: 30601815;

PubMed Central PMCID: PMC6314634.

14. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med.

2019; 25(1):44–56. Epub 2019/01/09. https://doi.org/10.1038/s41591-018-0300-7 PMID: 30617339.

15. Barnaby DP, Fernando SM, Herry CL, Scales NB, Gallagher EJ, Seely AJE. Heart Rate Variability, Clin-

ical and Laboratory Measures to Predict Future Deterioration in Patients Presenting With Sepsis.

Shock. 2019; 51(4):416–22. Epub 2018/05/31. https://doi.org/10.1097/SHK.0000000000001192 PMID:

29847498.

16. Chiew CJ, Liu N, Tagami T, Wong TH, Koh ZX, Ong MEH. Heart rate variability based machine learning

models for risk prediction of suspected sepsis patients in the emergency department. Medicine (Balti-

more). 2019; 98(6):e14197. Epub 2019/02/09. https://doi.org/10.1097/MD.0000000000014197 PMID:

30732136; PubMed Central PMCID: PMC6380871.

17. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of In-hospi-

tal Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learn-

ing Approach. Acad Emerg Med. 2016; 23(3):269–78. Epub 2015/12/19. https://doi.org/10.1111/acem.

12876 PMID: 26679719; PubMed Central PMCID: PMC5884101.

18. Perng JW, Kao IH, Kung CT, Hung SC, Lai YH, Su CM. Mortality Prediction of Septic Patients in the

Emergency Department Based on Machine Learning. J Clin Med. 2019; 8(11). Epub 2019/11/11.

https://doi.org/10.3390/jcm8111906 PMID: 31703390; PubMed Central PMCID: PMC6912277.

19. Fagerstrom J, Bang M, Wilhelms D, Chew MS. LiSep LSTM: A Machine Learning Algorithm for Early

Detection of Septic Shock. Sci Rep. 2019; 9(1):15132. Epub 2019/10/24. https://doi.org/10.1038/

s41598-019-51219-4 PMID: 31641162; PubMed Central PMCID: PMC6805937.

20. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, et al. Multicentre validation of a sepsis

prediction algorithm using only vital sign data in the emergency department, general ward and ICU.

BMJ Open. 2018; 8(1):e017833. Epub 2018/01/29. https://doi.org/10.1136/bmjopen-2017-017833

PMID: 29374661; PubMed Central PMCID: PMC5829820.

21. Klug M, Barash Y, Bechler S, Resheff YS, Tron T, Ironi A, et al. A Gradient Boosting Machine Learning

Model for Predicting Early Mortality in the Emergency Department Triage: Devising a Nine-Point Triage

Score. J Gen Intern Med. 2020; 35(1):220–7. Epub 2019/11/05. https://doi.org/10.1007/s11606-019-

05512-7 PMID: 31677104.

22. Sahni N, Simon G, Arora R. Development and Validation of Machine Learning Models for Prediction of

1-Year Mortality Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multi-

condition Patients: a Proof-of-Concept Study. J Gen Intern Med. 2018; 33(6):921–8. Epub 2018/02/01.

https://doi.org/10.1007/s11606-018-4316-y PMID: 29383551; PubMed Central PMCID: PMC5975145.

23. Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. Creating an automated trigger

for sepsis clinical decision support at emergency department triage using machine learning. PLoS One.

2017; 12(4):e0174708. Epub 2017/04/07. https://doi.org/10.1371/journal.pone.0174708 PMID:

28384212; PubMed Central PMCID: PMC5383046.

24. Ford DW, Goodwin AJ, Simpson AN, Johnson E, Nadig N, Simpson KN. A Severe Sepsis Mortality Pre-

diction Model and Score for Use With Administrative Data. Crit Care Med. 2016; 44(2):319–27. Epub

2015/10/27. https://doi.org/10.1097/CCM.0000000000001392 PMID: 26496452; PubMed Central

PMCID: PMC4724863.

25. Shukeri W, Ralib AM, Abdulah NZ, Mat-Nor MB. Sepsis mortality score for the prediction of mortality in

septic patients. J Crit Care. 2018; 43:163–8. Epub 2017/09/14. https://doi.org/10.1016/j.jcrc.2017.09.

009 PMID: 28903084.

26. Bogle B, Balduino, Wolk D, Farag H, Kethireddy, Chatterjee, et al. Predicting Mortality of Sepsis

Patients in a Multi-Site Healthcare System using Supervised Machine Learning2019.

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 14 / 15

https://doi.org/10.4103/0974-2700.70761
http://www.ncbi.nlm.nih.gov/pubmed/21063556
https://doi.org/10.1197/j.aem.2004.05.027
http://www.ncbi.nlm.nih.gov/pubmed/15466141
https://doi.org/10.1186/cc7160
https://doi.org/10.1186/cc7160
http://www.ncbi.nlm.nih.gov/pubmed/19091120
https://doi.org/10.1111/ijcp.12606
https://doi.org/10.1111/ijcp.12606
http://www.ncbi.nlm.nih.gov/pubmed/25689155
https://doi.org/10.1371/journal.pone.0208741
http://www.ncbi.nlm.nih.gov/pubmed/30601815
https://doi.org/10.1038/s41591-018-0300-7
http://www.ncbi.nlm.nih.gov/pubmed/30617339
https://doi.org/10.1097/SHK.0000000000001192
http://www.ncbi.nlm.nih.gov/pubmed/29847498
https://doi.org/10.1097/MD.0000000000014197
http://www.ncbi.nlm.nih.gov/pubmed/30732136
https://doi.org/10.1111/acem.12876
https://doi.org/10.1111/acem.12876
http://www.ncbi.nlm.nih.gov/pubmed/26679719
https://doi.org/10.3390/jcm8111906
http://www.ncbi.nlm.nih.gov/pubmed/31703390
https://doi.org/10.1038/s41598-019-51219-4
https://doi.org/10.1038/s41598-019-51219-4
http://www.ncbi.nlm.nih.gov/pubmed/31641162
https://doi.org/10.1136/bmjopen-2017-017833
http://www.ncbi.nlm.nih.gov/pubmed/29374661
https://doi.org/10.1007/s11606-019-05512-7
https://doi.org/10.1007/s11606-019-05512-7
http://www.ncbi.nlm.nih.gov/pubmed/31677104
https://doi.org/10.1007/s11606-018-4316-y
http://www.ncbi.nlm.nih.gov/pubmed/29383551
https://doi.org/10.1371/journal.pone.0174708
http://www.ncbi.nlm.nih.gov/pubmed/28384212
https://doi.org/10.1097/CCM.0000000000001392
http://www.ncbi.nlm.nih.gov/pubmed/26496452
https://doi.org/10.1016/j.jcrc.2017.09.009
https://doi.org/10.1016/j.jcrc.2017.09.009
http://www.ncbi.nlm.nih.gov/pubmed/28903084
https://doi.org/10.1371/journal.pone.0245157


27. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. arXiv e-prints [Internet]. 2016 March

01, 2016. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv160302754C.

28. Nanayakkara S, Fogarty S, Tremeer M, Ross K, Richards B, Bergmeir C, et al. Characterising risk of in-

hospital mortality following cardiac arrest using machine learning: A retrospective international registry

study. PLoS Med. 2018; 15(11):e1002709. Epub 2018/12/01. https://doi.org/10.1371/journal.pmed.

1002709 PMID: 30500816; PubMed Central PMCID: PMC6267953 following competing interests: KR

is director of IntelliHQ Pty Ltd, non-profit AI innovation centre for healthcare, connected with Gold Coast

University Hospital. KR is owner and Chairman of K. J. Ross & Associates Pty. Ltd. (KJR), professional

services firm specialising in IT risk management and assurance. 20% of KJR’s work is in healthcare.

There is no direct financial stake in the results of the current study.

29. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/

SIS International Sepsis Definitions Conference. Crit Care Med. 2003; 31(4):1250–6. Epub 2003/04/12.

https://doi.org/10.1097/01.CCM.0000050454.01978.3B PMID: 12682500.

30. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical

research involving human subjects. JAMA. 2013; 310(20):2191–4. Epub 2013/10/22. https://doi.org/10.

1001/jama.2013.281053 PMID: 24141714.

31. Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning

predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018; 2(10):749–60.

Epub 2019/04/20. https://doi.org/10.1038/s41551-018-0304-0 PMID: 31001455; PubMed Central

PMCID: PMC6467492.

32. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. Explainable AI for Trees: From

Local Explanations to Global Understanding. arXiv e-prints [Internet]. 2019 May 01, 2019. Available

from: https://ui.adsabs.harvard.edu/abs/2019arXiv190504610L.

33. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global

understanding with explainable AI for trees. Nature Machine Intelligence. 2020. https://doi.org/10.1038/

s42256-019-0138-9 PMID: 32607472

34. Lipovetsky S, Conklin M. Analysis of regression in game theory approach. Applied Stochastic Models in

Business and Industry. 2001; 17(4):319–30. https://doi.org/10.1002/asmb.446

35. Štrumbelj E, Kononenko I. Explaining prediction models and individual predictions with feature contribu-

tions. Knowledge and Information Systems. 2013; 41:647–65.

36. Chang SH, Hsieh CH, Weng YM, Hsieh MS, Goh ZNL, Chen HY, et al. Performance Assessment of the

Mortality in Emergency Department Sepsis Score, Modified Early Warning Score, Rapid Emergency

Medicine Score, and Rapid Acute Physiology Score in Predicting Survival Outcomes of Adult Renal

Abscess Patients in the Emergency Department. Biomed Res Int. 2018; 2018:6983568. Epub 2018/10/

18. https://doi.org/10.1155/2018/6983568 PMID: 30327779; PubMed Central PMCID: PMC6169207.

37. Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. Proceedings of

the 22nd international conference on Machine learning; Bonn, Germany. 1102430: ACM; 2005. p. 625–

32.

38. BRIER GW. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY. Monthly

Weather Review. 1950; 78(1):1–3. https://doi.org/10.1175/1520-0493(1950)078<0001:Vofeit>2.0.Co;2

39. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated

receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–45.

Epub 1988/09/01. PMID: 3203132.

40. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012; 22(3):276–82. Epub

2012/10/25. PMID: 23092060; PubMed Central PMCID: PMC3900052.

41. Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based

severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical

trial. BMJ Open Respir Res. 2017; 4(1):e000234. Epub 2018/02/13. https://doi.org/10.1136/bmjresp-

2017-000234 PMID: 29435343; PubMed Central PMCID: PMC5687546.

PLOS ONE Comparison of mortality prediction in patients with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0245157 January 19, 2021 15 / 15

https://ui.adsabs.harvard.edu/abs/2016arXiv160302754C
https://doi.org/10.1371/journal.pmed.1002709
https://doi.org/10.1371/journal.pmed.1002709
http://www.ncbi.nlm.nih.gov/pubmed/30500816
https://doi.org/10.1097/01.CCM.0000050454.01978.3B
http://www.ncbi.nlm.nih.gov/pubmed/12682500
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1001/jama.2013.281053
http://www.ncbi.nlm.nih.gov/pubmed/24141714
https://doi.org/10.1038/s41551-018-0304-0
http://www.ncbi.nlm.nih.gov/pubmed/31001455
https://ui.adsabs.harvard.edu/abs/2019arXiv190504610L
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
https://doi.org/10.1002/asmb.446
https://doi.org/10.1155/2018/6983568
http://www.ncbi.nlm.nih.gov/pubmed/30327779
https://doi.org/10.1175/1520-0493%281950%29078%26lt%3B0001%3AVofeit%26gt%3B2.0.Co%3B2
http://www.ncbi.nlm.nih.gov/pubmed/3203132
http://www.ncbi.nlm.nih.gov/pubmed/23092060
https://doi.org/10.1136/bmjresp-2017-000234
https://doi.org/10.1136/bmjresp-2017-000234
http://www.ncbi.nlm.nih.gov/pubmed/29435343
https://doi.org/10.1371/journal.pone.0245157

