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Microscopic mammalian retinal pigment epithelium lesions induce
widespread proliferation with differences in magnitude between
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Purpose: The vertebrate retina develops from the center to the periphery. In amphibians and fish the retinal margin
continues to proliferate throughout life, resulting in retinal expansion. This does not happen in mammals. However, some
mammalian peripheral retinal pigment epithelial (RPE) cells continue to divide, perhaps as a vestige of this mechanism.
The RPE cells are adjacent to the ciliary margin, a known stem cell source. Here we test the hypothesis that peripheral
RPE is fundamentally different from central RPE by challenging different regions with microscopic laser burns and
charting differential responses in terms of levels of proliferation and the regions over which this proliferation occurs.
Methods: Microscopic RPE lesions were undertaken in rats at different eccentricities and the tissue stained for proliferative
markers Ki67 and bromodeoxyuridine (BrdU) and the remodeling metalloproteinase marker 2 (MMP2).

Results: All lesions produced local RPE proliferation and tissue remodeling. Significantly more mitosis resulted from
peripheral than central lesions. Unexpectedly, single lesions also resulted in RPE cells proliferating across the entire retina.
Their number did not increase linearly with lesion number, indicating that they may be a specific population. All lesions
repaired and formed apparently normal relations with the neural retina. Repaired RPE was albino.

Conclusions: These results highlight regional RPE differences, revealing an enhanced peripheral repair capacity. Further,
all lesions have a marked impact on both local and distant RPE cells, demonstrating a pan retinal signaling mechanism
triggering proliferation across the tissue plane. The RPE cells may represent a distinct population as their number did not
increase with multiple lesions. The fact that repairing cells were hypopigmented is of interest because reduced pigment
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is associated with enhanced proliferative capacities in the developing neural retina.

The vertebrate retina develops with a center to periphery
gradient, such that the first cells to be generated are at the
caudal pole and the last are at the far periphery next to the
ciliary margin. In fish and amphibians cell production is
maintained at the retinal rim throughout life, resulting in
retinal expansion [1]. In mammals retinal proliferation ends
during development, although the ciliary margin remains a
source of stem cells, perhaps reflecting mechanisms found in
lower vertebrates [2]. Additionally, it has been demonstrated
in rat and man that the retinal pigment epithelium (RPE) can
be subdivided into at least two regions [3]: a peripheral region
adjacent to the ciliary margin where there is persistent cell
production throughout life and a senescent central area. Some
peripheral RPE appears to divide repeatedly, and there is
evidence that some cells migrate centrally [3,4]. Taken
together, these data are consistent with the notion that the
peripheral RPE—ciliary margin region is an area that retains a
developmental capacity into adulthood in mammals.
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The RPE is capable of repair. Lesions of the RPE cells
can result in local proliferation [5-7]. In light of the
demonstration that the RPE can be divided into proliferating
and senescent regions [3], we ask whether the cellular
response to injury is fundamentally different between central
and peripheral retina following microscopic local laser burns
and how far this response extends through the tissue plane.
We reveal enhanced responses to injury in peripheral RPE.
We also demonstrate that a single microscopic lesion can
induce RPE proliferation across the entire RPE surface.

METHODS

We made small low-energy laser lesions of the RPE at defined
locations in rats. The tissue was then examined with a range
of techniques both in vivo and in vitro. Three time periods
were used. A preliminary assessment was made to define the
nature of the damage induced (6 h to 7 days). However, the
majority of the analysis was undertaken 3 days post lesion, as
preliminary experiments indicated that this period coincided
with peaks in RPE cell production and provided the clearest
window on repair mechanisms. Exceptions to this were
bromodeoxyuridine  (BrdU) pulse-chase experiments
undertaken 1-9 days post lesion to trace proliferating RPE
cells. Finally, the RPE was examined at 12 weeks post lesion
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TABLE 1. EXPERIMENTAL ANIMAL GROUPS.

Experiment Lesions
Wound development 1to 4 per eye
Cell proliferation 1 to 4 per eye
Wound repair 2 per eye

Animals Processing
18 In vivo imaging, MMP-2, Caspese-3
34 Ki-67, BrdU, MMP-2, Otx2
8 Z0-1, Otx2

Wherever possible individual animals were used in multiple experiments and eyes harvested bilaterally. Abbreviations: BrdU
represents bromodeoxyuridine, MMP2 represents metalloproteinase marker 2, Otx2 represents orthodenticle homeobox 2, ZO-1

represents zona occludens 1.

to assess the extent of tissue repair. The number of animals
used in different experimental groups is given in Table 1.

Animals: Two-month-old (n=50) Dark Agouti (DA) rats
(175-200 g bodyweight [BW]) were used. These are an inbred
stain supplied by Harlan (Bicester, UK). Animals were
anesthetized by intraperitoneal (IP) injection of Ketaset
(37.5%; Fort Dodge Animal Health Ltd, Southampton, UK),
Dormitor (25%; Pfizer Animal Health, Kent, UK), and sterile
water (Norbrook Laboratories Ltd, Carlisle, UK) at 0.2 ml/
100 g. Before laser lesioning or imaging, pupils were dilated
with phenylephrine hydrochloride 2.5% and tropicamide
1.0% (Chauvin Pharmaceuticals Ltd, Kingston-Upon-
Thames, UK). If animals recovered, anesthesia was reversed
by IP injection of Antisedan (20%), (Orion Pharma, Espoo,
Finland) and sterile water at 0.01 m1/150 g. All animals under
anesthesia were kept warm on a 37 °C heating pad. The
number of animals used in each procedure is given in Table
1. All animal procedures were approved by the British Home
Office (Animals Scientific Procedures Act 1986) and were in
compliance with University College London local ethical
committee regulations.

Laser generated lesions: Retinas of all rats were exposed
to laser photocoagulation (PC) to cause focal RPE lesions. The
burns were applied either bilaterally or unilaterally using a
diode-pumped laser (Novus Omni, Coherent Inc., Santa Clara,
CA) attached to a slit-lamp funduscope and a hand-held
planoconcave contact lens applied to the cornea together with
Viscotears Liquid Gel (BR Lewis Pharmaceutical Ltd,
London, UK) to neutralize ocular power.

Between one and four lesions (633 nm, 80 mW, 0.2 s, and
100 pm diameter) were distributed in central and peripheral
retina. Central lesions were produced at <0.5 mm radius from
the optic disk, while peripheral lesions were placed at a
minimum radius of >2.0 mm from the optic disk. These low-
level lesions immediately produced an opaque retinal spot
(Figure 1A) that disappeared within 1 h. The pathological end
point of the laser injury was to damage RPE cells in a defined
region while causing minimal disruption to the underlying
Bruch’s membrane and the overlaying neural retina. The
region of damage was examined after lesioning, using a
confocal laser ophthalmoscope (cSLO). If a lesion
accidentally produced a gaseous bubble, indicating a rupture
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of Bruch’s membrane, or hemorrhage, the retinas were
discarded from the experiment.

In vivo imaging: A modified cSLO (HRA2 Heidelberg-
Engineering, Heidelberg, Germany) was used to image
lesioned retinas in vivo. The cSLO was modified to work with
the shorter optical distances found in rodents compared with
man by the application of front-end lenses. The axial and
lateral resolution of cSLO images were 15.7 um and 2.2 um,
respectively. The power of the Argon-ion laser excitation was
250 mW (measured at the rat pupil). A second near-infrared
laser line was also used to map lesions (power 70 mW at the
pupil). The cSLO frame rate was 8.9 Hz, and the field-of-view
was 55°. To avoid cataract formation and other ocular
artifacts, the rodent corneas were kept moist during imaging
by using 2% hydroxypropylmethylcellulose (Torbay P.M.U.,
Devon, UK).

Histology and imunohistochemistry: At termination of
experimental procedures and where histological post
processing was required, rats were terminally anesthetized by
IP injection using a mixture of Ketaset (50.0%), Domitor
(33%), and sterile water (0.4 ml/100 g) and perfused
intracardially with 0.1 M PBS, (catalog number E404-100T-
R, Amresco, Solon, OH), followed by 4% paraformaldehyde
in0.1MPBSat6h,1,3,5,7,9, and 90 days post lesioning.
Eyes were enucleated and placed in fixative for 2 h at 4 °C.
The anterior chamber, lens, and neural retina were removed
to produce eyecups where the RPE was exposed. To obtain
wholemounts, four equidistant cuts were made in the eyecups.
Autofluorescence micrographs were produced using an
excitation wavelength of >498 nm of the RPE sheet before
immunohistochemistry. A list of the primary antibodies used
and their dilutions is given in Table 2.

The eyecups were placed in a multichamber slide well
and processed for immunofluorescence, using multiple
antibodies (Table 2). The tissues were first blocked with 5%
normal donkey serum (NDS; Jackson ImmunoResearch, West
Grove, PA) in PBS (as above) for 2 h at room temperature,
followed by overnight application of primary antibodies
diluted in PBS with 1% NDS at room temperature. The
following  primary  antibodies were used for
immunohistochemical characterization of cell death,
differentiation, and proliferation: MMP2 [8], Ki67, caspase-3,
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Figure 1. In vivo and histological
fluorescence images exhibiting the
impact of photocoagulation on retinal
pigment epithelium. A: In vivo near-
infrared reflectance image made
immediately after photocoagulation
(PC) showing placement of central
(arrowhead) and peripheral (arrow)
lesions in the retina. Scale bar represents
1 mm. B: In vivo autofluorescence
image of a lesion made 7 days after PC
shows absence of fluorescence at the
center of the lesion. The lesion is
surrounded by hyperfluorescent point
sources. Scale bar represents 200 um.
C: Autofluorescence image of a lesion
in retinal pigment epithelium (RPE),
which was excised and flatmounted 6 h
after PC. The RPE tissue is continuous
across the lesion site, consistent with the
notion that PC did not result in
immediate tissue destruction. D:
Autofluorescence image 72 h after PC,
showing a clear lesion site and the
absence of tissue. Scale bars in C and
D represent 50 pum.

TABLE 2. ANTIBODIES USED FOR IMMUNOHISTOCHEMISTRY AND THEIR WORKING DILUTIONS.

Antibody Manufacturer
Rabbit PaB to K;-67 Vectorlabs
Rabbit PaB to Otx2 Chemicon/Millipore

Rabbit PaB to ZO-1

Mouse MaB to MMP-2 Abcam
Rabbit PaB Caspese-3 Abcam
Mouse MaB to BrdU [11]

ZYMED Laboratories, Invitrogen

Catalog number Dilution
VP-K451 1:2,000
ab9566 1:1,000
40-2200 1:100
ab7032 1:200
Ab2302 1:100
- 1:5

Anti-BrdU was produced using a hybridoma cell line [11]. Abbreviations: BrdU represents bromodeoxyuridine, MMP2
represents metalloproteinase marker 2, Otx2 represents orthodenticle homeobox 2, ZO-1 represents zona occludens 1.

BrdU [3], orthodenticle homeobox 2 (Otx2) [3], and zona
occludens 1 (ZO-1) for junctional marking [9]. After washing,
secondary antibodies were applied in PBS plus 2% NDS. The
secondary antibodies used (1:2,000, preadsorbed to various
species, including rat, mouse, and human) were Alexafluor
488 and 593 donkey antigoat, antimouse, and anitrabbit
Immunoglobulin G (IgG; SantaCruz Biotechnology, Inc.,
Santa Cruz, CA). After washing, cell nuclei were
counterstained with 4’6-diamindino-2-phenylindole
dihydrochloride (Sigma-Aldrich, Pool Dorset, UK), washed
in PBS and Tris buffer (0.05 M, pH 7.4), and coverslipped
with Vectashield (Vector Labs, Peterborough, UK). In some
cases flatmounted tissue was removed from slides after
imaging. Lesions were identified and excised from
wholemounts using an operating stereomicroscope. These
segments were cryoprotected in 30% sucrose, then snap
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frozen, cryostat sectioned at 10-um thickness, and imaged
again in transverse section.

Quantification of  cell proliferation using
bromodeoxyuridine: BrdU (5-bromo-2-deoxyuridine; Sigma
Aldrich) was used to detect proliferating RPE cells and to
confirm that complete cell division was taking place, not just
cell-cycle entry or cell-cycle retention [10]. Two experiments
were performed investigating potential increases in RPE
proliferation after lesioning. First, proliferating cells were
quantified as a function of radial distance from the optic disk,
using a combination of central and peripheral lesions. DA rats
(n=8) were given IP injection of BrdU (50 pg/g BW) in PBS.
Second, to ensure that all dividing cells were labeled with
BrdU, animals were given six successive IP injections at 7-h
intervals over a 48-h period 3 days following the lesion.
Animals were killed via CO; exposure and perfused 1 h after
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the last BrdU injection, and retinas stained
immunohistochemically with a monoclonal antibody to BrdU
[11]. Third, pulse-chase BrdU experiments to examine cell
proliferation as a function of time after RPE injuries were
performed. The RPE of DA rats (n=10) was lesioned and
immediately followed with a single dose of BrdU (200 pg/g
BW). The first group of rats was killed 1 day after the BrdU
injection. Groups were then sacrificed at 2-day intervals up to
9 days post lesion to provide an index of RPE cell
proliferation.

Statistical analysis: Differences in the populations of
proliferating RPE cells within and at radial intervals from
lesions in the center and periphery of the pigment epithelium
were statistically quantified using one-way ANOVA
(ANOVA,; F, P) followed by post hoc comparison using the
Student ¢ test for unpaired data (¢, P). One-way ANOVA (F,
P) was used to identify significant time points of proliferation
in the pulse-chase experiments, which were thereafter verified
post hoc using the Student ¢ test for unpaired data (¢, P).
Correlation  between different immunohistochemistry
antibody expression patterns was quantified using Pearson’s
correlation coefficient (). An a-level equal to 0.05 was used
as significance criterion in all tests. All data analyses were
performed using Excel 2008 and PASW v.18 (SPSS Inc.,
Chicago, IL).

RESULTS

Lesions: Laser burns could be identified in vivo using cSLO
imaging immediately after they were made. Laser burns were
approximately 100 um in diameter independent of location
and resulted in a region of increased RPE autoflorescence that
was apparent within a 6 h after the lesion in vitro. At this stage
RPE cells could be identified in vitro within the lesioned
region and were continuous across this area, with no obvious
sign of cell loss. Hence, the energy applied did not result in
immediate tissue destruction. However, when the tissue was
examined 72 h later in vitro, there was a clear hole in the RPE
centered on the lesion site. This pattern was consistent
between lesions placed at different retinal locations (Figure
1).

Examination 72 h post lesion was combined with staining
for caspase-3 activity, a marker of cell death. This
demonstrated the presence of caspase-3-positive cells within
the lesion but not beyond. There were no differences in such
patterns of labeling between lesions in central or peripheral
areas (Figure 2A). At this time point, the tissue was also
stained with MMP2, which marks the breakdown/remodeling
of the extracellular matrix. Positive staining for this was also
found in and around the lesion sites (Figure 2B). The positive
staining for MMP?2 is also consistent with the process of tissue
remodeling within the damaged region and is the probable
reason why positive staining for this extended beyond the
limits of the immediate lesion site. MMP2 staining could
commonly be found extending into areas three times the
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diameter of the actual lesion. When central and peripheral
lesions were compared, the area of MMP2 staining appeared
larger in peripheral regions compared to central regions.
However, the nature of the staining pattern with its relatively
soft edges mitigated against quantifying such differences.

Retinal pigment epithelium proliferation: Lesions were
targeted at peripheral and central locations and assessed 72 h
later for the upregulation of the cell-cycle marker Ki67, and
subsequently with BrdU, to reveal patterns of cell production.
This period had been identified in preliminary experiments as
the most suitable for assessing patterns of RPE proliferation
because they peaked around this time window.

Irrespective of location, all lesions were associated with
an upregulation of Ki67-positive cells in the RPE sheet.
Significantly more Ki67-positive cells were found around
peripheral lesions than those located centrally (+=7.43,
p<0.001). Figure 3 shows the number of Ki67-positive cells
in progressive intervals around central and peripheral lesions
of the same size. Further, Ki67 labeling was mainly confined
to the edge of the lesion in those located centrally, peaking at
approximately 50 pm from the lesion center. In peripheral
lesions the spread of Ki67-labeled cells extended over a wider
region, peaking approximately 100 pm from the lesion center.
An additional feature of such labeling was that Ki67-positive
RPE cells were also present beyond the immediate lesion area,
being present across the entire retina. Hence, unexpectedly,
lesions increased Ki67 labeling pan retinally.

To reveal the relative influence of central and peripheral
lesions on Ki67 upregulation in local and distant labeling
patterns, single and multiple lesions were placed in these
different locations in four groups of animals (Figure 4). Each
group contained four eyes, and labeled RPE cells were
counted across the entire center and the entire periphery but
not in the immediate vicinity of the lesion, determined as a
radial distance of 300 um from the lesion center. There was a
significant increase in RPE cell proliferation in both
peripheral and central retinas with increasing number of
lesions (ANOVA; periphery F=8.56, p<0.001; center F=7.63,
p<0.001; Figure 4). In the first group, a single central lesion
was made. This resulted in Ki67 upregulation in both central
and peripheral areas, more than doubling the number normally
found in the periphery and lifting levels in the center to
approximately the number found in the normal nonlesioned
peripheral retina. However, the differences between center
and periphery were not statistically significant (=2.99,
p<0.06). The same size lesion placed in the periphery resulted
in a very substantial increase in the number of Ki67-positive
cells in peripheral regions but also upregulated numbers in the
center, although to a level less than that found following a
single central lesion. Differences between center and
periphery following this pattern of lesioning were statistically
significant (+=19.46 p<0.0003).
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Figure 2. Immunostaining of retinal
pigment epithelium lesion site 72 h after
injury. A: Immunoreactivity  for
activated caspase-3 in lesioned retinal
pigment epithelium cells demonstrated
that at this stage cell death was still a
feature of the tissue. B: Expression of
metalloproteinase  marker 2 was
consistent with the process of
extracellular degradation and tissue
remodeling. Scale bar represents 50 pm.


http://www.molvis.org/molvis/v16/a65

Molecular Vision 20105 16:570-581 <http://www.molvis.org/molvis/v16/a65>

© 2010 Molecular Vision

Figure 3. Levels of proliferation
determined by Ki67 positive label in
central and peripheral regions. But there
were significantly higher levels of
proliferation in retinal periphery (A and
C) compared to central retinas (B and
D). The graphs show the mean levels of
Ki67 positive cells in progressive
annular  regions around lesions.
Differences were statistically
significant. Scale bars represent 100
pm.

Combining a central lesion with one in the periphery
again increased the total number of cells in these regions,
although levels in the periphery were always significantly
enhanced compared with the center (=4.67, p<0.02). When
two lesions were made in the center and two in the periphery,
the number of Ki67 cells found did not increase significantly
beyond that with one lesion in each area (center =1.31,
p<0.28; periphery =1.00, p<0.39). However, in both cases
when the center was compared with the periphery, more cells
were always present in the periphery; in the cases of 2+2
lesions, the difference was not significant (1+1 lesion =4.67,
p<0.02; 2+2 lesion =2.24, p<0.11). Hence, the number of
Ki67-positive cells found beyond lesion sites appears to have
an upper limit. This is supported by experiments where more
than four lesions were made (data not shown). Given this
result, it is possible that these proliferating cells form a distinct
RPE cell population.

Ki67 is a cell-cycle marker [12]. To confirm that RPE
cells were actually proliferating rather than simply entering
the cell cycle, retinas with one central (n=4) or one peripheral
(n=4) lesion were double labeled with BrdU and Ki67 or BrdU
and Otx2. In and around the lesion, numerous Ki67-positive
cells could be found, but few were positive for BrdU within
the lesion at 72 h post lesion. However, in the region beyond
the lesion, cells were positive for both markers, with a high
correlation of double-labeled cells (correlation coefficient
=0.96) (Figure 5). Hence, cells were entering the cell cycle
and completing cell division. These cells were also positive
for Otx2, confirming that they were RPE cells (data not
shown).
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Pulse-chase experiments were undertaken to chart the
progress of cell production after a single lesion in the center
and one in the periphery. A single injection of BrdU was
administered immediately after lesioning. Here, animals were
killed at progressive 2-day stages from day 1 to day 9 (n=4 at
each time point). This configuration of lesions was chosen to
maximize the number of cells that could be chased with
minimal damage. Lesions were always placed as in Figure 4A.
These data provide a progressive temporal picture of patterns
of cell production rather than simply which cells enter the cell
cycle (Figure 6). These data include all central and peripheral
cells. Cells continued to divide, increasing their number
significantly from day 1 through to the end of day 9 in both
subregions (ANOVA; center F=8.93, p<0.001; periphery
F=11.42, p<0.0002). At each stage there were significantly
more labeled cells in the periphery compared with the center
(day 1 =6.90, p<0.01; day 3 =7.57, p<0.005; day 5 =9.77,
p<0.002; day 7 t=5.44, p<0.01). Beyond day 9, label intensity
within cells declined markedly, presumably due to dilution
following multiple divisions. This was not the reason for the
leveling off in label at day 7, as cells here were as bright as
previously. These data also show that cell numbers double
around 1 week post injection, implying a cell-cycle rate
similar to that found in uninjured RPE [3,10]. BrdU-labeled
cells were common in the center of the lesion at 1-2 days post
injection but did not increase after this. This was why they
were not identified here when BrdU was injected at 3 days
post lesion (above and Figure 5).

Retinal pigment epithelium repair: Lesioned sites were
examined at 3 months to characterize the nature of the repair.
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Figure 4. The number of retinal pigment
epithelium (RPE) cells that had entered
the cell cycle 72 h after lesioning were
not directly associated with the lesion
site. A: Schematic representation of
lesion configurations and demarcation
of center from periphery on an RPE
tissue sheet. B: Total cell numbers were
counted in central and peripheral areas,
both in terms of those directly associated
with a lesion and those distant from
lesions. Different combinations of
lesions were applied. First, no lesion
(control), which represents Ki67
numbers in normal RPE. Second, cell
numbers found after one central lesion.
Third, cell number after one peripheral
lesion. Finally numbers following after
one central (c) and one peripheral (p)
lesion, and finally numbers following
two central and two peripheral lesions.
Irrespective of the lesion configuration,
elevation in Ki67 positive cell number
was always greater was always greater
in the periphery, even when only one
central lesion was made. While Ki67
numbers increased with lesion number,
the number of Ki67 expressing cells
found following two lesions in each area
was not greater than when one lesion
was made in each area. The progressive
elevation in cell numbers was
statistically significant between no
lesions and 1c+1p lesion (see the text for
statistical significance).

In both central and peripheral retina the small lesions had fully
repaired. Cells positive for the RPE cell marker Otx2 were
present across the lesions site when tissue was viewed in
section or en face (Figure 7A,B). These Otx2-positive cells
were continuous with those around the lesion, although they
appeared less regular in mosaic order and were larger. Cells
within the lesion were also consistently brighter when labeled
with Otx2 than those in the surrounding tissue (Figure 7A,C).

A distinct feature of the repaired region was that many of
its constituent cells were either hypopigmented or albino.
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There was considerable variability in the extent of this, with
some cells still containing some pigment while others were
pigment free (Figure 7E). The reason why cells labeled with
Otx2 were brighter in lesions than in surrounding tissue was
probably because melanin granules, which have a light-
filtering influence, were absent. It is probable that the RPE
cells that proliferated divided their melanin content between
progeny, and this resulted in the albino-like, hypopigmented
cells identified within the lesion site.
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Figure 5. Double labeling combining
Bromodeoxyuridine (BrdU) and Ki67
protocols 72 h following
photocoagulation (PC) lesioning of the
RPE with one central and one peripheral
lesion. A shows labeling for Ki67 and
B for BrdU in the same tissue. Arrows
indicate cell labeled with both markers.
The data revealed extensive co-
localization of both labels, confirming
that many of the cells that were positive
for Ki67, and as such in the cell cycle,
were also positive for BrdU, confirming
that full cell division had taken place.
More cells positive for Ki67 and BrdU
were always found in the periphery than
in the center, reflecting patterns found in
Figure 3 and Figure 4 (data not shown).
The scale bars represent 100 um.

RPE cells within the lesion site established relatively
normal patterns of connectivity, as revealed by ZO-1 labeling
at 3 months. It was also clear that with the low-powered
lesions used here that the neural retina over the lesions was
relatively normal histologically, having its full complement
of cellular layers and outer segments (data not shown). The
only distinguishing feature of the lesioned region was that
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when the retina was dissected from the RPE following
fixation, the repaired region consistently retained
photoreceptor outer segments, which in these preparations had
a green autofluorescent appearance. This was apparent in both
wholemounted preparations and in sectioned tissue (Figures
7E,F). This implies that although the tissue had repaired, it
lacked the normal relationship with the outer neural retina,
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Figure 6. Bromodeoxyuridine (BrdU)
pulse chase experiment in animals
having one central and one peripheral
photocoagulation (PC) lesion followed
by a single pulse of BrdU. The number
of labeled cells increased over days 1—
7, then leveled off between days 7-9.
Levels of BrdU labeling in each case
were greater in the periphery than in the
center. The increasing number of cells
found over time was statistically
significant (see test for). These data
reveal that cell numbers double
approximately between day 1 and day 7,
hence the cell-cycle rate is likely to be
roughly this long.

which is probably because the apical processes of RPE cells
that extend from the RPE and are responsible for removing
photoreceptor outer segments are more extensive in lesioned
area than in repaired regions, although the reason for this is
unclear.

DISCUSSION

Many investigators have examined lesions of the RPE and the
repair of this tissue [5,13]. However, we have recently
identified key differences in the proliferative capacity of
peripheral compared to central RPE and exploited this
information to divide an analysis of RPE repair into these
subregions [3]. The key finding demonstrated here is that
peripheral RPE displays an enhanced response to local injury
compared with the response in central regions. We also show
unexpectedly that small lesions induce RPE cell division
globally. RPE cell division continues for approximately 9
days, with a cell-cycle rate in many cells of around 5-7 days,
and the repaired tissue has markedly reduced pigmentation.

The lesions generated in our study were small both in
terms of their area and the energy delivered. They did not
result in immediate tissue destruction; rather damage became
apparent a few days after the laser burn. Additional evidence
that the laser damage was minimal comes from the finding
that there was at no point any indication of choroidal
neovascularization, which is the common outcome of laser
lesions disrupting Bruch’s membrane [14]. Also, outer
segments were present over repaired regions, indicating that
damage to the neural retina was minimal. Outer segments
would not have regenerated had the laser burn included
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photoreceptor nuclei in the outer nuclear layer; this would
have led to photoreceptor destruction. These features provide
strong evidence that the lesions applied here disrupted RPE
cells specifically and selectively, leaving adjacent tissue
intact.

We used Ki67 as a key marker of cell-cycle entry in the
RPE [3]. However, cells can express this marker during
apoptosis [15,16], hence we also used BrdU, a marker of
proliferation. In spite of the association between cell death and
Ki67, it is unlikely that the positive Ki67 label was due to cell
death. No caspase-3 label was found outside the center of a
lesion. The majority of Ki67 label was around the edge of the
lesions and in distant regions. Hence, the distribution of the
two labels was separate, and consequently cells labeled with
Ki67 were unlikely to be dying. Further, although BrdU labels
different populations of cells compared with Ki67, the two
markers showed a significant degree of co-localization.

Why is there a differential capacity to repair between the
center and the periphery? It has been demonstrated in the same
rat strain used here [3] that the mature peripheral RPE contains
a population of cells retained in the cell cycle. These number
approximately 20 at any time point and have a cell-cycle rate
ofabout 5—7 days. These cells are not found centrally. Further,
it is known that different genes are expressed between central
and peripheral RPE and that some of those expressed only in
the periphery relate to cell-cycle regulation [17]. This
provides supportive genetic evidence for our results.
However, we do not know how these patterns of gene
expression change following RPE site-specific lesions.
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Figure 7. Three months after lesioning
both central and peripheral injuries
caused by photocoagulation (PC) were
repaired with new retinal pigmented
epithelium (RPE) cells that expressed
RPE specific markers. A: Otx2
expression marking RPE cells was
continuous across the lesion in whole
mounted preparations. The scale bar
here represents 100 um. B: Reveals that
repaired regions were hypopigmented
with many RPE cells either lacking
pigment completely or containing
reduced pigment levels. C: Otx2
expression in RPE cells was also
continuous across lesions when they
were viewed in section. This image
shows the location of these cells in
relation to the choroidal capillaries
(CHO). The scale bar is 25 pm and the
image also contains a low power figure
of the region. D: The RPE tight junction
protein ZO-1 (red) was also present
across the lesion site. The nuclei here are
shown in  blue.  Unexpectedly,
photoreceptor outer segments (green)
remained adhered to the repaired tissue.
Their location here demarcates the
lesion site. The scale bar here represents
50 um. E: Shows a high power image of
a lesion site revealing Otx2 expression
and the brighter cells inside due to the
absence of melanin. The scale bar here
is 20 pm. F: A transverse section
through the repaired region of the RPE.
The green outer segments (OS) are
indicated by the upper arrow. The lower
arrow head reveals the ZO-1 (red). The
location of the CHO is also indicated
under the other tissues. Nuclei are blue.
The scale bar is 20 pm.

Del Priore and coworkers proposed that central RPE cells
are lost with age, but this may be compensated for by
peripheral cell production, with new cells migrating centrally
[4]. This is consistent with results showing that some BrdU-
positive cells are located centrally when cell cycle activity is
only found in the periphery [3]. This proposition would also
be compatible with the results presented here where we show
that peripheral RPE cells express an enhanced capacity to
divide after injury.

In light of the above, it is reasonable to ask why cell
addition in the mature RPE occurs in the periphery rather than
at the center where cell death in normal aging has been
identified [4]; it would make more biologic sense for cell
production to be focused where replenishment is needed. The
significance of the periphery in this respect becomes more
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prominent when developmental and evolutionary aspects of
the retina are considered. In vertebrates, all retinal
development is initiated centrally and terminates at the
periphery [18-21]. Hence, at any developmental stage the
central retina is the most mature region and the periphery is
the last to adopt senescent qualities. In the case of the teleost
eye, the periphery never adopts a senescent state but continues
to support a low level of cell production at the retinal margin
in both the neural retina and the RPE, giving rise to retinal
expansion [1]. This may be the reason why mammals have
retained a capacity to produce new RPE and support more
efficiently peripheral repair mechanisms. It is also the reason
why the interface region between the iris and the retina has
been the location from which stem cells have been
successfully harvested in mammals [2].
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An unexpected finding of this study was the observation
that when more than one lesion was made, Ki67 upregulation
was found across the entire retina. This was not due to
systemic factors as when only one eye was lesioned no
upregulation was found in the fellow eye (data not presented).
Examining the large number of animal used here with
different numbers and patterns of lesioning reveals that there
is not a simple relationship between the number of lesions and
the extent of this pan retinal upregulation. Irrespective of
lesion numbers and patterns only a limited pool of cells entre
the cell cycle and divide. This raises the question of whether
these cells represent a specific population within the RPE
sheet that is ready to proliferate in response to damage,
providing the RPE with a trigger mechanism in response to
injury independent of location. It also raises the interesting
questions: what triggers these cells and by what route of
communication do they detect the distant damage?

One potential criticism of our study is that we have only
viewed a limited time window following RPE lesions and
have not varied lesion size or other parameters. These are valid
points; however, the experiments that we undertook addressed
the questions that we posed, namely whether there are
differences between central and peripheral regions in response
to injury. Our time widows were restricted on the basis that
we knew from previous pilot studies that they contained the
main response to our intervention. Additional data that have
been generated regarding widespread RPE proliferation in
response to local injury are a bonus, but their exploration
raises questions that are separate from those originally
addressed here.

While it is clear that lesions repair, they do not do so
perfectly. There are two unusual features of the repaired
tissue. First, the cells are hypopigmented. Within the repaired
region there was variability in levels of pigmentation, but in
every case pigmentation was reduced compared to normal
cells, and in some cases cells were almost devoid of pigment.
This may arise simply because when the cell divides it shares
its melanin content between the progeny. If the cell divides
several times, the levels of melanin are likely to become very
low. However, there is an interesting facet to this argument as
during development hypopigmented cells are associated with
elevated levels of proliferation compared to those with normal
melanin content [22,23]. Hence, while the normal peripheral
RPE in DA rats contains approximately 20 cells in the cell
cycle, the number in albinos is closer to 200, although the
majority of these are polyploid and do not progress to full cell
division [3,10] Such differences are likely to be due to the
absence of 3,4-dihydroxyphenylalanine (DOPA), which is in
the synthetic pathway of melanin and known to slow the pace
of the cell cycle and to signal cell-cycle exit [22,23]. The
reduction in the level of pigmentation following the first
division may increase the probability of subsequent divisions
and hence increase the pace of repair. In light of this, it would
be interesting to know whether albino RPE repairs at a faster
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rate than RPE in normally pigmented animals. Unfortunately,
such experiments have not been possible because the
absorption of the laser that takes place when it hits the
pigmented RPE is very different from that in the albino where
no melanin is present to absorb the laser energy. Hence,
equivalent energy levels have very different impacts on the
two tissue types, making direct comparisons impossible. An
alternative explanation for the reduced level of pigmentation
may come from the finding that transforming growth factor-
B, a multifunctional cytokine involved in wound healing, is
upregulated following laser lesioning of the RPE [24,25]. Its
expression is associated with expression of MMPs, which
were shown to be present in lesions induced in this study
[26]. Further, transforming growth factor-f is known to
decrease melanin synthesis [27].

The second unusual feature of the repaired tissue is that
when the neural retina was removed from the RPE, in every
case where there had been repair, it was associated with a
marked increase of local autofluorescence. Closer
examination revealed that this was due to the attachment of
sheets of photoreceptor outer segments specific to the repaired
region. However, it is known that RPE cells extend long apical
processes between outer segments [28] and that these play a
role in removing outer segment tips and absorbing them into
the cell. The relationship between the RPE and the outer
segments can also vary as a function of its adaptive state with
light, resulting in a much stronger association between the
RPE and the outer segments [28]. Although this does not
normally cause problems in attempts to separate these tissues
in mammals, such tissue separation can be problematic in
some teleosts, amphibians, and birds where dark adaptation is
needed. The reason for the tight attachment between the neural
retina and the RPE is unclear, but it does indicate an unusual
relationship between these repaired tissues.

The RPE is commonly viewed as a relatively
homogeneous tissue. A recent report is among the first to
suggest that this is not the case [3], and at least on the grounds
of proliferative capacity, the RPE can be divided regionally.
The data presented in this study confirm our hypothesis that
the RPE cell population can be segmented according to its
capacity to repair after injury. Current studies in our
laboratory are adding significant weight to the notion that this
tissue is heterogeneous, with different regions having
markedly different levels of expression of markers commonly
thought to be in all RPE cells. How RPE cells with different
molecular markers respond to challenge or pathological insult
will clearly be of importance in understanding this tissue.
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