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Abstract
The course of chronic obstructive pulmonary disease (COPD) is frequently aggravated by

exacerbations, and changes in the composition and activity of the microbiome may be impli-

cated in their appearance. The aim of this study was to analyse the composition and the

gene content of the microbial community in bronchial secretions of COPD patients in both

stability and exacerbation. Taxonomic data were obtained by 16S rRNA gene amplification

and pyrosequencing, and metabolic information through shotgun metagenomics, using the

Metagenomics RAST server (MG-RAST), and the PICRUSt (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States) programme, which predict meta-

genomes from 16S data. Eight severe COPD patients provided good quality sputum sam-

ples, and no significant differences in the relative abundance of any phyla and genera were

found between stability and exacerbation. Bacterial biodiversity (Chao1 and Shannon

indexes) did not show statistical differences and beta-diversity analysis (Bray-Curtis dissim-

ilarity index) showed a similar microbial composition in the two clinical situations. Four func-

tional categories showed statistically significant differences with MG-RAST at KEGG level

2: in exacerbation, Cell growth and Death and Transport and Catabolism decreased in

abundance [1.6 (0.2–2.3) vs 3.6 (3.3–6.9), p = 0.012; and 1.8 (0–3.3) vs 3.6 (1.8–5.1), p =

0.025 respectively], while Cancer and Carbohydrate Metabolism increased [0.8 (0–1.5) vs 0
(0–0.5), p = 0.043; and 7 (6.4–9) vs 5.9 (6.3–6.1), p = 0.012 respectively]. In conclusion, the

bronchial microbiome as a whole is not significantly modified when exacerbation symptoms

appear in severe COPD patients, but its functional metabolic capabilities show significant

changes in several pathways.
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Introduction
The course of severe chronic obstructive pulmonary disease (COPD) is often impaired by exac-
erbations which are characterized by a sustained worsening of respiratory symptoms over the
daily variability of the disease [1]. Culture-based procedures diagnose bacterial infection in
~50% of these episodes [2], Haemophilus influenzae, Streptococcus pneumoniae,Moraxella cat-
arrhalis and Pseudomonas aeruginosa being the most commonly identified pathogens [3].
Molecular culture-independent techniques have recently broadened our knowledge of the bac-
terial communities in the bronchial tree of COPD patients, both when the disease is stable and
during exacerbations [4–6], but the role of most bacteria identified by these methods remains
unknown, as do their interactions with the bronchial tree [4]. Recent studies have suggested
that exacerbation patterns in COPD may be related to the bacterial microbiota as a whole and
not just to a narrow range of well-known pathogenic bacteria, which are currently considered
to be the cause of most of these acute episodes [4,7].

Changes in the composition of the bacterial community can be identified through 16S ribo-
somal RNA gene sequencing, and an overgrowth of specific pathogenic bacteria has been
described in exacerbations of severe COPD patients [6]. However, this analysis provides no
information on the metabolic activity and function of the bronchial microbiota [8], whose
characterization may be approached by other techniques such as shotgun metagenomics. Mil-
lions of fragments of short DNA reads are created when this approach is used, and after de-rep-
lication and quality control, the fragments obtained may be mapped to databases of
orthologous gene groups such as KEGG (Kyoto Encyclopedia of Genes and Genomes) [9] to
identify matches to genes or proteins with previously described functions [10,11]. However,
this approach depends on the isolation of sufficient quantities of bacterial DNA, and other
method has recently been developed to investigate the functional profiles of the microbiota.
PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States) uses evolutionary modelling to predict metagenomes from 16S data and a reference
genome database [12]. Though this approach has limitations, such as the fact that the software
does not distinguish differences at strain level and cannot detect genes not included in the
genomic database used [12,13], it is useful for detecting microbial function and its variability,
when the quantity of bacterial DNA present is low [8].

The aim of this study is to analyse the gene content of the microbial community in COPD
in both stability and exacerbation, in order to identify the functional changes in the bronchial
microbiota which are associated with the appearance of an acute impairment. To do so, 16S
rRNA was first amplified and pyrosequenced to determine the taxonomy of the bronchial
microbiota in severe COPD patients, and subsequently, the metabolic information of the
microbial community was assessed through PICRUSt. Finally, microbial function was assessed
by shotgun metagenomics using the Metagenomics RAST server (MG-RAST) [14].

Methods

Ethics Statement
Ethical permission for the study was obtained from the Sabadell Hospital Ethics Committee
and a written informed consent was obtained from each subject at enrolment.

Design and population
Outpatients from a severe COPD cohort regularly attending a Day Care Unit for scheduled
and exacerbation visits [6,15] were selected for this study. The cohort included COPD patients
with a FEV1 below 50% from the reference [16], who reported three or more exacerbations in
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the previous year and who had attended the Day Care Unit of Sabadell University Hospital
since 2005. Patients in the cohort had scheduled visits every three months from their inclusion
and unscheduled visits when exacerbations symptoms appeared, as described elsewhere [15].
Previous diagnosis of asthma, cystic fibrosis, bronchiectasis, cancer and chronic treatment with
immunosuppressive drugs were exclusion criteria [6,17]. For the purposes of the study, patients
were followed for one year after their baseline assessment, with follow-up visits which included
sputum sampling and culture scheduled every three months, until the first unscheduled exacer-
bation visit. As previously described [6] acute episodes of increased dyspnoea, sputum produc-
tion and/or purulence appearing during follow-up and treated with antibiotics and/or oral
corticosteroids were considered as exacerbations [18,19]. Patients in the cohort were included
in the study when they provided good quality sputum samples for culture from an exacerbation
and from a previous stability visit 1–6 months before the acute episode. Participants should
have not taken antibiotics between both samplings, and the amount of DNA extracted had to
be sufficient for the proposed analyses [6].

Clinical variables and sputum collection
Spontaneous sputum was collected from each patient in clinical stability, and during the subse-
quent exacerbation before the administration of antibiotic therapy. Functional characteristics
were assessed at baseline and included forced spirometry, reversibility testing [20] and BODE
index [21] as previously described [6]. Microbiological processing for potential pathogenic
microorganisms (PPM) detection by culture followed local clinical culture guidelines, and is
reported elsewhere in detail [6].

DNA extraction
DNA extraction was performed according to previously detailed procedures [6,22]. Briefly,
sputum samples diluted with dithiothreitol were incubated at 37°C for 15 minutes and centri-
fuged for 10 minutes at 4°C. The pellet was resuspended in 1 ml of an in-house lysis buffer con-
sisting of 100 U/mL mutanolysin, 47,700 U mL lysozyme and 2 U/mL lysostaphin dissolved in
autoclave-sterilized MiliQ water. DNA was extracted with QIAamp DNA Blood Midi kit (Qia-
gen, Helden, Germany) in a Class II Biological Safety Cabinet to avoid external contamination.
DNA was quantified in the nanodrop ND-1000 Spectrophotometer (NanoDrop Tecnologies,
Inc., Wilmington, USA) and stored at -80°C for further determinations.

PCR amplification of the V1-V3 region of the 16S rRNA gene
The hypervariable regions V1, V2 and V3 of the 16S rRNA gene were amplified following a
previously described methodology [6]. PCR conditions were 5 min of initial denaturation at
94°C followed by 25 cycles of denaturation (30 s at 94°C), annealing (30 s at 52°C) and elonga-
tion (1 min at 72°C). After amplification, the products were visualized in 2% agarose gels. In
order to assess the absence of contaminant DNA in the extraction buffer, controls were PCR
amplified in parallel with the samples, and no bands were detected in the gel electrophoresis.
Amplified products were purified with NucleoFast 96 PCR Clean-Up kit (Macherey-Nagel,
GmbH & Co. KG, Germany), eluted in 28 μl of PCR-grade water and quantified using QuantiT
PicoGreen dsDNA Assay Kit (Invitrogen, Life technologies, Carlsbad, USA). Sixteen samples
with different barcode sequences were pooled in equimolar amounts into a single tube and pyr-
osequencing was carried out using the Roche 454 GS-FLX System Titanium Chemistry (Roche,
Switzerland).
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Sequence analysis and microbiome accession numbers
16S rRNA raw sequences were analysed with the MOTHUR software package 1.27 [23]. The
sequences with low quality scores (<20) and read lengths<200 and>520bp were removed [6].
Thereafter, the remaining sequences were aligned and checked for potential chimeras applying
the align.seqs and chimera.slayer tools incorporated inMOTHUR. The Quantitative insights
into microbial ecology (QIIME) pipeline [24] (MacQIIME 1.8.0) was used for sequence process-
ing to obtain taxonomic information using Greengenes13_8 sequence database [25] as reference
and RDP classifier 2.2 [26].De novo operational taxonomic units (OTUs) picking method was
used with UCLUST [27] and PyNAST version 1.2.2 as alignment method [28]. Bacterial 16S
rRNA data sets from this study are accessible in the European Nucleotide Archive under the
study accession number PRJEB4144, available at the URL http://www.ebi.ac.uk/ena/data/view/
PRJEB4144, with the sample accession numbers ERS255717, 20,21,23–26,29–33,36–39.

Shotgun pyrosequencing
The DNA concentration from all samples was measured by PicoGreen fluorescence in a Modu-
lus 9200 fluorimeter from Turner Biosystems (Sunnyvale, USA).The pyrosequencing library
was performed following standard procedures with GS-FLX Titanium Rapid Library kit
(Roche, Switzerland). Briefly, DNA was fragmented by nebulization and after fragment end
repair and purification, adaptors were added by ligation and small fragments were removed
with Agencourt AMPure XP kit (Beckman Coulter, USA). Finally, the library was quantitated
and prepared for emulsion PCR. The 16 samples with different tags were mixed in equimolar
amounts and directly sequenced at the Foundation for the Promotion of Sanitary and Biomedi-
cal Research (FISABIO, Valencia, Spain), with the Roche 454 GS-FLX System Titanium Chem-
istry, using a full sequencing plate.

Functional analysis
The PICRUSt software package was used for the predictive functional analysis. This software
estimates the community metagenome using 16S rRNA sequencing data. KEEG (Kyoto Ency-
clopedia of Genes and Genomes) pathway was used to identify metagenomic contents. For
shotgun pyrosequenced data, sequences were first analysed with the MOTHUR software pack-
age 1.27 to remove sequences shorter than 100 bp. Then, reads were aligned with the Cluster
Database at High Identity (cdhit-454) with a sequence identity cutoff of 1 [29]. The sequences
were compared against the Small Subunit rRNA Reference Database (SSUrdb) with an e-value
cutoff of 1e-10 and all sequences that remained unassigned as SSU rRNA were analysed with
the Large Subunit rRNA Reference Database (LSUrdb) with an e-value cutoff of 1e-4 as
described by Urich et al [30]. The remaining sequences were analysed with the MG-RAST
pipeline version 3.3 [14]. MG-RAST is a data repository, an analysis pipeline and a compara-
tive genomics environment which provides quality control, feature prediction and functional
annotation [11]. Quality control of the sequences was done by using the default parameters of
MG-RAST in length, ambiguous base and dereplication filtering.The metabolic potential of the
microbiota was examined using KEGG with default parameters, maximum e-value of 10−5,
minimum identity of 60%, and minimum alignment length of 15. Abundance profiles of func-
tional annotations were obtained by both methods, and differences in the functional genomic
content were evaluated after normalizing the abundances of each category to the total number
of proteins predicted for each sample. Shotgun sequences are accessible in the MG-RAST
server (http://metagenomics.anl.gov/linkin.cgi?project=3296), with the following accession
numbers: 4512860.3, 4512862.3, 4512863.3, 4512865.3–67.3, 4512869.3, 4512871.3–75.3,
4512877.3, 4512878.3, 4512880.3, 4512881.3.
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Statistical analyses
Statistical analyses were performed using the SPSS statistical software package version 18
(SPSS Inc., Chicago, IL, USA). Results for categorical variables are expressed as absolute and
relative frequencies, and results for continuous variables as means and standard deviations
(SD) or as medians and interquartile ranges (IQR) when the distribution was not normal [6].
Bacterial diversity was assessed through the Chao1 estimator [31] and the Shannon index [32],
calculating both indexes after subsampling with QIIME to avoid sequencing effort bias [6].
Principal Coordinates Analysis (PCoA) and Bray-Curtis dissimilarity index [33] were used to
study community composition, assessing the statistical significance of the differences in sample
groupings through Bray-Curtis distance matrices and Adonis testing. Functional categories
and their relative abundance in exacerbation samples were compared with the stability refer-
ence using Wilcoxon test for paired data, and correlations between PICRUSt and MG-RAST
data were assessed using the Spearman's rank correlation coefficient. Statistical tests used in the
study were two-sided, and a p value of 0.05 or less was reported as statistically significant [6].

Results

Patient characteristics and 16S rRNA analyses in stable COPD
The cohort consisted of 118 patients who provided good quality sputum samples for microbio-
logic analysis in the year after enrolment. Eight severe COPD patients met the criteria for inclu-
sion in the study and provided good quality sputum samples from a stability period between
one and six months before an exacerbation with sufficient quantities of bacterial DNA to per-
form the analyses scheduled.

PPMs were isolated from seven baseline stability samples (87.5%), withHaemophilus influ-
enzae and Pseudomonas aeruginosa as the most frequently recovered colonizing microorgan-
isms (Table 1).

Regarding culture-independent analysis, the most prevalent phyla in stability were Proteo-
bacteria (52%), Firmicutes (26%) and Actinobacteria (19%) (Table 2). At genus level, 68 differ-
ent OTUs were found: Streptococcus andHaemophilus were the most prevalent genera,
accounting for over 50% of the observed relative abundance (S1 Table).

Table 1. Baseline clinical characteristics.

N 8

Age (years), mean (SD) 72 (7)

Male, n (%) 8 (100)

Smoking (pack-year), median (IQR) 67 (32–110)

FEV1 post-BD (% predicted), mean (SD) 37 (8)

Inhaled corticosteroid treatment, n (%) 8 (100)

Positive cultures in stability 7 (87.5)

Microorganisms isolated

Haemophilus influenzae 3 (37.5)

Pseudomonas aeruginosa 3 (37.5)

Moraxella catarrhalis 2 (25)

Streptococcus pneumoniae 1 (12.5)

Alcaligenes spp. 1 (12.5)

SD, standard deviation; FEV1 post-BD, forced expiratory volume in one second post bronchodilatation.

doi:10.1371/journal.pone.0144448.t001
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16S rRNA analyses in exacerbated COPD
Samples recovered from exacerbation gave positive cultures for PPMs in five of the eight patients
studied (62.5%).Haemophilus influenzae, Pseudomonas aeruginosa, Streptococcus pneumoniae
and Staphylococcus aureus were the microorganisms isolated. Regarding culture-independent
analysis, no statistically significant differences were found in the relative abundances of the pres-
ent bacterial microbiota between stability and exacerbation at either phylum or genus level
(Table 2 and S1 Table). Bacterial diversity showed similar figures in the two clinical situations
when measured through the Chao1 richness estimator [median (IQR); stability 134 (76–166) vs
exacerbation 126 (101–165.5); p = 0.779, Wilcoxon test], and the Shannon index [3 (2–4) vs 3
(2–3.5); p = 0.575, Wilcoxon test] (Fig 1). Similarly, the assessment of the microbial composition
using sample grouping at PCoA and the Bray-Curtis dissimilarity index did not show differences
between stability and exacerbation, and Adonis testing confirmed that the microbial composition
as a whole did not differ in the two clinical situations (R2 = 0.02, p = 0.955) (S1 Fig).

Prediction with PICRUSt
The PICRUSt programme was used to predict the functional capacities of the bacterial commu-
nity through 16S sequences. The differences observed between stability and exacerbation did
not reach statistical significance for any of the six functional categories defined at KEGG level 1
(Cellular Processes, Environmental Information Processing, Genetic Information Processing,

Table 2. Relative abundance of the phyla detected in stability and exacerbation samples.

Phylum Relative abundance

Stability Exacerbation p-value

Proteobacteria 58 (24–83) 71 (13–89) 0.575

Firmicutes 15 (11–31) 21 (5–50) 0.779

Actinobacteria 7 (2–23) 7 (1–18) 0.779

Bacteroidetes 1 (0.3–2.5) 2 (0.1–3) 0.674

Fusobacteria 0.4 (0.3–1) 0.8 (0.1–1.5) 0.866

TM7 0 (0–0.04) 0 (0–0.5) 0.116

Tenericutes 0 (0–0.03) 0 (0–0.1) 0.237

doi:10.1371/journal.pone.0144448.t002

Fig 1. Diversity indexes in stability and exacerbation in severe COPD. A) Chao1 index and B) Shannon
index. (Wilcoxon test).

doi:10.1371/journal.pone.0144448.g001
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Human Diseases,Metabolism and Organism Systems). Similar results were obtained at level 2
for the 35 functional categories observed in the studied group out of the 44 categories that form
this level (Fig 2).

Analysis with MG-RAST
Amean of 13,700 (SD 6,521) sequences per sample were uploaded to the MG-RAST server,
with no differences between the number of available sequences from stability and exacerbation
samples [mean (SD); 11,088 (3,488) vs 16,312 (7,960); p = 0.382; Mann-Whitney U test]. Func-
tional information was obtained from the sequences that met the quality criteria (78%).
Sequences belonging to prokaryotic organisms represented medians of 18% (12–30) in stability
and 12.5% (9.5–22) in exacerbation samples (p = 0.279, Mann-Whitney U test). In exacerba-
tion samples, higher abundance at level 1 was found for theMetabolism category [median
(IQR); 40 (37–42) vs 35 (32–40); p = 0.012, Wilcoxon test]. At level 2, four out of the 36 catego-
ries observed showed statistically significant differences in exacerbation when compared with
stability (Fig 3). Carbohydrate Metabolism and Cancer were significantly more abundant in

Fig 2. Functional categories obtained with PICRUSt for stability and exacerbation (KEGG database at
level 2).

doi:10.1371/journal.pone.0144448.g002

Fig 3. Functional categories obtained with MG-RAST for stability and exacerbation (KEGG database
at level 2).

doi:10.1371/journal.pone.0144448.g003
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exacerbations [7 (6.4–9) vs 5.9 (6.3–6.1); p = 0.012; and 0.8 (0–1.5) vs 0 (0–0.5); p = 0.043
respectively; Wilcoxon test]. In contrast, Cell growth and death and Transport and Catabolism
categories showed lower abundance in exacerbation samples [1.6 (0.2–2.3) vs 3.6 (3.3–6.9);
p = 0.012; and 1.8 (0–3.3) vs 3.6 (1.8–5.1); p = 0.02; Wilcoxon test] (Fig 4).

Comparison of functional inferential techniques
As a secondary aim, we evaluated whether there was a correlation between the functional
capacities of the microbiome predicted by PICRUSt and the results obtained by shotgun pyro-
sequencing. A significant positive correlation between relative abundances obtained with
PICRUSt and MG-RAST at level 1 in KEGG database was found in both stability and exacerba-
tion samples (rho = 0.886, p = 0.019 and rho = 1, p< 0.01; respectively). With PICRUSt, 35
functional categories were found at level 2, compared with 36 with MG-RAST, with only two
categories differing between them. A significant positive correlation was also found between
PICRUSt and MG-RAST relative abundances for these categories, in both clinical situations
(rho = 0.734, p<0.01; and rho = 0.807, p<0.01; for stability and exacerbation respectively).

Discussion
In this study we assessed the bacterial community structure in severe COPD patients by assess-
ing 16S rRNA pyrosequencing and its metabolic functionality, using prediction through
PICRUSt and shotgun metagenomics with MG-RAST. Sputum samples in stability and during
a subsequent exacerbation were analysed in order to identify the changes both in the commu-
nity composition and in its functional capacities, which may be associated with the appearance
of acute impairments. Considering the group as a whole, no differences in the bronchial micro-
biota were found between stability and exacerbation samples, but clear functional differences
were identified during exacerbations in the Carbohydrate Metabolism, Cancer, Cell Growth and
Death and Transport and Catabolism categories in MG-RAST. PICRUSt prediction showed a
good correlation with MG-RAST, but differences between the categories did not reach statisti-
cal significance when assessed using this predictor. These results suggest that the bronchial

Fig 4. Functional categories with statistically significant differences between stability and
exacerbation at level 2. A) Cell growth and dead pathway; B) Transport and catabolism pathway; C)
Carbohydrate metabolism pathway and D) Cancer pathway.(Wilcoxon test).

doi:10.1371/journal.pone.0144448.g004
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microbiota as a whole do not change significantly during COPD exacerbations, but the resident
community modifies its metabolic functional patterns during exacerbations.

The microbiome composition did not show differences between the samples obtained in sta-
bility and exacerbation in our study, suggesting that most of the bacterial community do not
suffer significant changes in their relative abundance during acute episodes in COPD patients.
These results agree with previous observations that have identified that increases in relative
abundance during exacerbations are restricted to some genera, which may account for the
appearance of acute symptoms [6]. Similarly, analysing the changes in the bacteria composition
in serial samples obtained before, during and after an exacerbation in COPD patients, Huang
et al. [7] found that the microbial composition as a whole did not show large changes in exacer-
bations. Likewise, in other respiratory diseases such as cystic fibrosis and bronchiectasis, no dif-
ferences in diversity and community composition were observed between samples obtained
during stability and at the time of an exacerbation [34,35]. In our study, 16S rRNA analysis
showed a high prevalence of two genera, Streptococcus and Haemophilus, in the bronchial
microbiome of COPD patients, without statistical differences between stability and exacerba-
tion. In other chronic respiratory diseases as cystic fibrosis and bronchiectasis, it has also been
reported that a restricted number of taxa form the main part of the bronchial microbiota, while
a wide range of taxa, which have low abundance in bronchial secretions, account for most of
the bacterial community richness observed [34,36,37]. Overall, these observations suggest that
the context of the microbial community as a whole may be important in order to understand
the pathogenesis of COPD exacerbations.

Our results demonstrate that, in spite of the lack of differences in community composition
between stability and exacerbation in severe COPD patients, significant differences in bacterial
metabolic functionalities may appear, especially in the Cancer, Cell Growth and Death, Carbo-
hydrate Metabolism and Transport and Catabolism pathways. Although metagenomic analysis
is not able to provide information on the end product expression profile of bacterial communi-
ties [38], it accurately describes the genomic potential of the community, which is reflected in
the genes encoded into their genomes [8]. The PICRUSt programme may be used to predict
the genomic content of the bacterial community through 16S phylogenetic information, which
has been shown to be well correlated with the genomic content [12]. Although the use of this
16S-based phylogeny to infer function is cost-effective, it offers only an estimation [13]. Deep
metagenomic sequencing, as well as metatranscriptomics, metabolomics and metaproteomics
are required to characterize more accurately the microbiome function [12,13]. In our study, in
agreement with previous results [12], the two techniques were correlated, but statistically sig-
nificant results were only attained through MG-RAST, confirming the importance of this
approach. The relationship between phylogeny and gene content is not perfect [39], and may
be the cause of the lower strength in the PICRUSt analyses.

Our results support the hypothesis that the functional capabilities of the microbiome change
when an exacerbation appears, in a context of stability of the microbiota composition. In exac-
erbated COPD patients, Huang et al [7] also reported increases in various metabolic pathways
involving viral and bacterial infection and apoptosis, and decreases in pathways associated
with flavonoid and steroid biosynthesis and betalain and indole alkaloid production. Bacteria,
then, have the ability to modify their functional pathways when the clinical situation of their
host changes, without major modifications in the microbiota as a whole. From the results of
our study it is not possible to determine whether the changes observed in the microbial func-
tion contribute to the appearance of symptoms or are only a consequence of the acute episodes.
Similar changes in the functional capabilities of the regional microbiome have been found in
patients with type 2 diabetes, who showed minimal alterations in their gut community compo-
sition but significant changes in functional annotations compared with healthy subjects,
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suggesting that functional alterations rather than changes in the abundance of specific micro-
organisms could be associated with the disease [40]. Likewise, in a study of patients suffering
from hepatitis B liver cirrhosis, functional diversity was found to be significantly reduced in the
fecal microbiota compared with healthy subjects [41].

The Carbohydrate Metabolism and Cancer pathways were enriched when an exacerbation
appeared, while Cell Growth and Death and Transport and Catabolism decreased signifi-
cantly in our study. The modification in the carbohydrate metabolism pathway in exacerba-
tion is probably due to the fact that the main energy sources for bacteria were carbohydrates,
and may be related to the decrease found in the Transport and Catabolism pathway. Carbo-
hydrates have the ability to minimize catabolism through carbohydrate-mediated catabolite
repression [42], which has been shown to modulate virulence gene expression in many
microorganisms [43–46] such as the genus Streptococcus. It does so through three major
mechanisms: acquisition of crucial nutrients, adherence to eukaryotic cells and interference
with the function of host immunity proteins [45]. Overall, these changes in the functions of
the bronchial microbiome may indicate higher virulence and pathogenic capacity of bacteria
in exacerbations.

In the epidemiologic context of an increase in the incidence of lung cancer in COPD
patients demonstrated in different population-based studies [47–49], the finding that the Can-
cer and Cell Growth and Death pathways change during exacerbations in severe COPD
patients, who frequently present these episodes during their disease, may have clinical implica-
tions. Longitudinal studies would be needed to increase the insights into the relationships
between the functionality of the bronchial microbiome and carcinogenesis in COPD.

The present study has some limitations that should be taken into account. First of all, the
sample size was limited to eight COPD patients due to the use of strict selection criteria. Sec-
ondly, enrolled patients showed severely impaired lung function, and the results may not be
extrapolable to patients with moderate COPD, in view of the differences in the bronchial
microbiome previously described in these two groups of patients [22]. Thirdly, metagenomic
shotgun sequencing is expensive and computationally intensive, which limits the number of
samples analysed and the possibility of extrapolating the results obtained in these samples.
Finally, quality control of the analyses performed is needed, because shotgun pyrosequencing
is more difficult in samples which have low bacterial DNA content or contain mainly host
DNA [12], as happens in sputum. In addition, low proportions of bacterial DNA may induce
an underestimation of the metabolic contents.

In conclusion, the bronchial microbiome as a whole is not significantly modified by the
appearance of exacerbation symptoms in severe COPD patients. However, the functional meta-
bolic capabilities of the microbiome change significantly in several pathways, including Cancer,
Cell Growth and Death, Carbohydrate Metabolism and Transport and Catabolism. This pattern
of changes may have clinical implications for the natural history of COPD patients suffering
from recurrent exacerbations.
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