
ARTICLE

Multi-trait analysis of rare-variant association
summary statistics using MTAR
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Integrating association evidence across multiple traits can improve the power of gene dis-

covery and reveal pleiotropy. Most multi-trait analysis methods focus on individual common

variants in genome-wide association studies. Here, we introduce multi-trait analysis of rare-

variant associations (MTAR), a framework for joint analysis of association summary statistics

between multiple rare variants and different traits. MTAR achieves substantial power gain by

leveraging the genome-wide genetic correlation measure to inform the degree of gene-level

effect heterogeneity across traits. We apply MTAR to rare-variant summary statistics for

three lipid traits in the Global Lipids Genetics Consortium. 99 genome-wide significant genes

were identified in the single-trait-based tests, and MTAR increases this to 139. Among the 11

novel lipid-associated genes discovered by MTAR, 7 are replicated in an independent UK

Biobank GWAS analysis. Our study demonstrates that MTAR is substantially more powerful

than single-trait-based tests and highlights the value of MTAR for novel gene discovery.

https://doi.org/10.1038/s41467-020-16591-0 OPEN

1 Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. 2 Biostatistics and Research Decision Sciences, Merck & Co.,
Inc., Rahway, New Jersey 07065, USA. 3 Genetics and Pharmacogenomics, Merck & Co., Inc., West Point, Pennsylvania 19446, USA. 4 Biostatistics and
Research Decision Sciences, Merck & Co., Inc., North Wales, Pennsylvania 19454, USA. 5Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, Wisconsin 53715, USA. 6Wisconsin Institute for Discovery, Madison, Wisconsin 53715, USA. 7These authors contributed
equally: Lan Luo, Judong Shen. ✉email: tang@biostat.wisc.edu

NATURE COMMUNICATIONS |         (2020) 11:2850 | https://doi.org/10.1038/s41467-020-16591-0 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16591-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16591-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16591-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16591-0&domain=pdf
http://orcid.org/0000-0001-6150-1034
http://orcid.org/0000-0001-6150-1034
http://orcid.org/0000-0001-6150-1034
http://orcid.org/0000-0001-6150-1034
http://orcid.org/0000-0001-6150-1034
http://orcid.org/0000-0002-8869-8671
http://orcid.org/0000-0002-8869-8671
http://orcid.org/0000-0002-8869-8671
http://orcid.org/0000-0002-8869-8671
http://orcid.org/0000-0002-8869-8671
http://orcid.org/0000-0003-3802-8087
http://orcid.org/0000-0003-3802-8087
http://orcid.org/0000-0003-3802-8087
http://orcid.org/0000-0003-3802-8087
http://orcid.org/0000-0003-3802-8087
mailto:tang@biostat.wisc.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


R ich genome-wide association study (GWAS) findings have
suggested the sharing of genetic risk variants among mul-
tiple complex traits1,2. Multi-trait analyses that combine

association evidence across traits can boost statistical power over
single-trait analyses in detecting risk variants, especially for those
traits that have weak associations with the variants. Many multi-
trait methods are designed for testing the single-variant associa-
tion3–8. However, the statistical power of single-variant tests is
low for rare-variant association studies (RVAS)9. In light of this
limitation, gene-based tests have been developed for RVAS to
aggregate mutation information across several variant sites within
a gene to enrich association signals and reduce the penalty
resulting from multiple testing9. Although several methods are
available for multi-trait multi-variant tests, most of them require
individual-level genotype and phenotype data10–15 or are
designed for common variants16–19 (Supplementary Table 1). The
gene-based tests for RVAS have not been fully exploited in the
multi-trait analysis.

The genetic architecture of complex traits is unknown in
advance and is likely to vary from one gene to another across the
genome and from one trait to another. Therefore, the main
challenge of multi-trait multi-variant analyses is to flexibly
accommodate a variety of genetic effect patterns among traits and
variants such that the test is robust and has high power. The effect
structures among rare variants within a gene have been well-
studied when numerous gene-based tests were developed. The
sequence kernel association test (SKAT)20 and burden tests21–24

are the most widely used gene-based tests for RVAS and represent
two main patterns of genetic effects across rare variants. Burden
tests assume effects across variants are largely homogeneous and
SKAT assumes they are heterogeneous. SKAT-O25 is a test that
achieves robustness by combining tests with various degrees of
effect heterogeneity, including the SKAT and burden tests as
special cases. Specifically, SKAT-O assumes rare-variant effects
are random variables with a uniform (exchangeable) correlation
and different levels of heterogeneity can be considered by chan-
ging the correlation coefficient.

The effects on multiple traits may also exhibit homogeneous
and heterogeneous patterns. However, the degree of genetic effect
similarity/heterogeneity are likely to vary from one trait pair to
another. As an example, for the pair of traits that are biologically
related (e.g., triglycerides (TG) and high-density lipoprotein
cholesterol (HDL)), we expect they share more causal variants
and have a higher level of genetic similarity than the pair of traits
less relevant (e.g., TG and bipolar)26. Hence, it is not adequate to
use a uniform correlation coefficient to model the degree of
similarity for all trait pairs. Many recent studies have investigated
the genetic overlap for many pairs of complex traits and diseases
and estimated genetic correlation as a global measure of genetic
similarity for trait pairs26–28. Although a genetic correlation is
calculated using common variants across the genome and RV
association tests are performed on the gene level, the idea of
utilizing genetic correlation to guide the specification of gene-
level effect heterogeneity across traits is intriguing and has not
been considered in existing multi-trait methods.

Here we develop multi-trait analysis of rare-variant association
(MTAR), a framework for the multi-trait analysis of RVAS.
MTAR is built upon a random-effects meta-analysis model that
uses different correlation structures of the genetic effects to
represent a wide spectrum of association patterns across traits
and variants. To model genetic effects across variants, MTAR
employs the same strategy as SKAT-O. To model the rare-variant
effect heterogeneity on multiple traits, MTAR leverages the
genetic correlation. Specifically, we propose two correlation
structures on the among-trait genetic effects. The first structure
allows the between-trait effect similarity to change from the value

of the genetic correlation to completely heterogeneous as an
extreme and we term the resulting multi-trait association test
iMTAR. The second structure allows the between-trait effect
similarity to change from the value of the genetic correlation to
homogeneous as an extreme and we term the resulting test
cMTAR. Besides the aforementioned association patterns across
traits, we also consider the scenario in which only a small number
of traits are associated with the set of rare variants. This asso-
ciation pattern naturally occurs for the genes that have very
specific biological functions and do not affect many traits. To
accommodate this pattern, we construct another test, cctP, which
uses the Cauchy method29,30 to combine single-trait RVAS P-
values. To achieve robustness and improve overall power, we
combine the P-values of iMTAR, cMTAR, and cctP, and refer to
this omnibus test as MTAR-O. To demonstrate the usefulness of
MTAR empirically, we analyze summary statistics from the
Global Lipids Genetics Consortium (GLGC) on low-density
lipoprotein cholesterol (LDL), HDL, and TG. MTAR discovers
more lipid-associated genes than single-trait-based analyses and
many novel association signals are replicated in an independent
UK Biobank data. Moreover, our simulation results show that
MTAR methods have well-preserved type I error rate and greater
power over single-trait-based methods across a wide range of
effect patterns across traits and variants. Finally, we compare
MTAR with two existing multi-trait methods that outperform
other competing methods. We find that MTAR is more powerful
in almost all simulation settings and discovers more genes in the
application to the GLGC data.

Results
MTAR overview. Suppose that we are interested in the effects of
m variants in a gene on K traits. For k= 1, …, K, we let βk= (βk1,
⋯, βkm)T denote the effects of the m genetic variables on trait k.
To perform MTAR tests, we first obtain the vector of variant-level
score statistics for testing βk= 0 denoted by Uk= (Uk1, …, Ukm)T

and the covariance estimate for Uk denoted by Vk. The Uk and Vk

can be easily constructed using the information routinely shared
in public domains (Methods). We let bβk ¼ V�1

k Uk and writebβ ¼ ðbβT1 ; ¼ ;bβTKÞT. Given the true genetic effects

β ¼ ðβT1 ; ¼ ; βTKÞT, the bβ approximately follows normal dis-
tribution with mean β and covariance ∑31,32, where Σ ¼
BlockdiagfV�1

1 ; ¼ ;V�1
K g if traits are measured on studies

without overlapping samples. If all the traits are from one study
or multiple studies with overlapping subjects, the off-diagonal
blocks in ∑ are not zeros. For any given traits k and k′ with
sample overlap, the formula for estimating the covariance
between bβk and bβk0 is provided in Eq. (3).

We are interested in testing the null hypothesis that the m
variants are not associated with any of the K traits: H0 : β1= β2=
⋯= βK= 0. Multivariate test for this hypothesis has a large
degrees of freedom and low statistical power. In MTAR, we
further assume that the genetic effects β are zero-mean random
effects with covariance matrix σB, where σ is an unknown scalar
and B is a pre-specified matrix dictating the covariances of
genetic effects among traits and variants. Under this random-
effects model, the equivalent null hypothesis is H0 : σ= 0 and we
test this hypothesis using a variance-component score test (Eq.
(5)). The test will have the optimal power if the specification of B
reflects the true covariance structure of the effects. The true
structure of B is unknown a priori. To separately model the
genetic structures among trait and among variants, we propose to
formulate B= B2⊗ B1, where ⊗ is the Kronecker product of
among-variant effect covariance B1 and among-trait effect
covariance B2. For B1, we assume the exchangeable correlation
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structure with a uniform correlation coefficient denoted by ρ1
(Methods). By specifying different values of ρ1, this structure
allows various degrees of among-variant effect heterogeneity. As
the two extremes, the effects across variants are homogeneous
when ρ1= 1; the effects are completely heterogeneous and vary
independently when ρ1= 0.

For the between-trait effect covariance, we set B2 ¼ W2Ω2W2,
whereW2 is a diagonal matrix with each diagonal element being a
trait-specific weight and Ω2 is a between-trait effect correlation
matrix. By setting the diagonal elements in W2 to 0 or 1, we can
choose to focus on any subset of the traits and consider any
degree of association sparsity across traits (e.g., set only one
element as 1 for single-trait analysis or all the elements as 1 for
all-trait analysis). It is not sensible to assume the exchangeable
correlation structure for B2, because some pairs of traits are more
similar in the rare-variant effects than other pairs (e.g., two
diseases that were caused by the same set of rare mutations would
have a large correlation in their rare-variant genetic effects). Here
we propose to leverage the genetic correlation27 to inform the
similarity of rare-variant effects among traits. Genetic correlation
is a single number measure that quantifies the overall genetic
similarity between a pair of traits. Recent advancement of
methods enables us to conveniently estimate genetic correlation
based on GWAS summary statistics27,28 and there are web portals
to query genetic correlations among many complex traits26. We
hypothesize that the genetic correlation is also informative to
measure the similarity/heterogeneity of the gene-level rare-variant
effects among traits for most genes in the genome. Specifically, let
Ckk′ denote the genetic correlation between traits k and k′. We
propose two types of correlation structures for Ω2. In both

structures, we specify a parameter ρ2 (0 ≤ ρ2 ≤ 1) to control the
contribution of genetic correlation Ckk′ to the degree of effect
heterogeneity between traits k and k′. The iMTAR structure
assumes the correlation coefficient is ρ2Ckk′. Under this structure,
the rare-variant effects across traits are heterogeneous and the
degree of heterogeneity can change from Ckk′ (when ρ2= 1) to
completely heterogeneous (strongest level of heterogeneity as
effects across traits can vary independently when ρ2= 0). The
cMTAR structure assumes the correlation coefficient is ρ2Ckk′+
(1− ρ2). Under this structure, the degree of heterogeneity can
change from Ckk′ (when ρ2= 1) to homogeneous (no hetero-
geneity when ρ2= 0).

As the optimal values of ρ1 and ρ2 are unknown, we propose to
search a grid of different values of ρ1 and ρ2 and use the Cauchy
method29,30 to combine multiple P-values (Methods). The
resulting tests are named after the two aforementioned iMTAR
and cMTAR structures. The Cauchy method is a fast and powerful
approach to combine multiple correlated P-values without the
need for estimating and accounting for their correlation. To
accommodate the situation where the gene is associated with a
small number of traits, we develop a test called cctP that uses the
Cauchy method to combine single-trait P-values from SKAT and
burden tests. As we demonstrate in the GLGC data analysis and
simulation studies, the cMTAR, iMTAR, and cctP cover different
effect patterns among traits. To achieve further robustness, we use
the Cauchy method to combine P-values of the three comple-
mentary tests and term this omnibus test as MTAR-O. The
summary of the proposed iMTAR, cMTAR, cctP, and MTAR-O
methods are presented in Fig. 1. The calculations of the test
statistics and P-values are described in Methods.
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Fig. 1 Summary of methods under MTAR framework. In this illustration, the number of variants is m= 10 and the number of traits is K= 5. The degree of
heterogeneity of among-variant effects is controlled by ρ1. MTAR methods are robust to various patterns of genetic effects across variants by combining
variance-component test P-values from different specifications of ρ1. The degree of heterogeneity of among-trait effects is controlled by ρ2. By changing the
value of ρ2, the degree of heterogeneity of among-trait effects can be weakly, moderately, or strongly dictated by genetic correlation Ckk′. By setting ρ2= 0,
iMTAR and cMTAR structures assume genetic effects become completely heterogeneous and homogeneous, respectively. MTAR methods are robust to
various patterns of genetic effects across traits by combining variance-component test P-values from different specifications of ρ2. The cctP that combines
the single-trait burden and SKAT tests P-values is particularly powerful when only a small number of traits are associated with the set of rare variants. The
omnibus test MTAR-O that combines iMTAR, cMTAR, and cctP is robust to all the aforementioned patterns of genetic effects across traits and variants.
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Although both ∑ and B are covariance matrices among traits
and variants, it is important to note the difference. Matrix ∑
reflects the correlation due to the residual relatedness among
traits in the presence of sample overlap and linkage disequili-
brium (LD) among variants. An inaccurate estimate of ∑ yields
inflated type I error in the association testing. On the other hand,
the matrix B= B2⊗ B1 reflects the similarity of the true gene-
level rare-variant effects among traits and variants. This
information is unknown a priori; hence, B needs to be pre-
specified. The power of the tests can be greatly improved if the
specification reflects the truth. MTAR utilizes the genetic
correlation, a global measure of cross-trait genetic similarity, to
guide the specification of B2. The effectiveness of this strategy in
gaining power has been demonstrated in the following sections.

Application of MTAR to GLGC. We performed multi-trait
RVAS for three plasma lipid traits: LDL, HDL, and TG. The
GLGC data set includes ~300,000 individuals of primarily Eur-
opean ancestry genotyped with the HumanExome BeadChip
(exome array)33. The participants were from 73 different studies
and single-variant association summary statistics were combined
across studies via fixed-effects meta-analysis32. The acquisition of
the GLGC summary statistics is described in Methods.

Following Liu et al.33, we considered 179,884 rare variants with
minor allele frequency (MAF) < 5% and the highest priority
according to their functionality and deleteriousness. We focused
on 15,378 genes that contain at least two rare variants. In our
analysis, we used the previously reported genetic correlation
estimates among the three lipid traits27 in MTAR. Specifically, the
genetic correlation is −0.61 for the pair (HDL, TG), 0.35 for
(LDL, TG), and 0.09 for (LDL, HDL). For comparison, we
performed the single-trait-based analysis by combining SKAT
and burden test P-values across traits using either the cctP or the
Bonferroni-corrected minimal P-value (minP, take the minimal
P-values and then multiply it by the number of tests combined).

Similar to the previous gene-based RVAS of GLGC data33, the
slightly elevated genomic control lambdas in the
quantile–quantile plots suggest the polygenic inheritance of the
lipid traits (Supplementary Fig. 1). At a significance threshold of
P < 3.3 × 10−6 (corresponding to 0.05/15,378), a total of 140 genes
were identified by at least one test (Supplementary Table 2).
MTAR tests (MTAR-O, cMTAR, iMTAR) identified 139 genes
and the single-trait-based tests (cctP and minP) identified 99
genes (Fig. 2). There are 41 genes exclusively identified by MTAR
tests and the MTAR P-values for many of these genes are 100-fold
smaller than the single-trait-based P-values (Table 1, Manhattan
plots in Fig. 3 and Supplementary Fig. 2). There is only one gene
(HFE, Supplementary Table 2) missed by MTAR but its MTAR-O
P-value (4.8 × 10−6) is close to the single-trait-based P-values
(1.8 × 10−6).

Most discovered genes (>60%) have the smallest P-value when
ρ2 is large (ρ2 ≥ 0.5), highlighting the informativeness of using
genetic correlations to guide the among-trait effect correlation
(Supplementary Fig. 3). For those genes, the association patterns
among traits are generally consistent with their genetic correla-
tions: genetic effects on HDL and TG are negatively correlated
and effects on LDL and TG are positively correlated (Fig. 4a). The
cMTAR and iMTAR tests produce similar P-values in this case.
About 18% of the discovered genes become insignificant if we do
not use genetic correlations and simply assume the exchangeable
correlation structure in B2.

When the effects between-trait are strongly heterogeneous and
vary randomly among traits (Fig. 4b), iMTAR produces much
smaller P-values than other tests. When the effects between-trait
effects are largely homogeneous (Fig. 4c), cMTAR provides the

strongest evidence of association. When the gene is associated
with one trait, the single-trait-based analysis (cctP and minP) is
desirable (Fig. 4d). MTAR-O has the P-value close to the smallest
P-values among all tests in all the identified genes (Supplemen-
tary Table 2).

Many of the 139 MTAR identified genes have an established
role in the three lipid traits, including targets for LDL lowering
drugs (e.g., PCSK9, NPC1L1, and PPARA) and genes with known
association with lipid-related Mendelian disorders (e.g., LDLR,
ABCG5, APOB, ABCA1, LCAT, APOA1, and CETP). Gene set
enrichment analysis of the 139 genes highlighted the gene sets
related to lipid metabolism and transport (Supplementary Fig. 4
and Supplementary Data 1), similar to the reported findings from
gene set enrichment analysis of GWAS loci for LDL, HDL, and
TG34. Tissue enrichment analysis of all 139 significant genes
using either Human Protein Atlas (HPA) or Genotype-Tissue
Expression (GTEx) as reference sets demonstrated enrichment of
liver-specific genes (Supplementary Fig. 5), in accordance with a
published tissue eQTL enrichment analysis across GWAS loci
associated with LDL, HDL, TG, or total cholesterol35.

Among the 41 genes exclusively identified by MTAR tests, 27
(66%) genes have previously reported association evidence with at
least one of the three lipid traits and 20 (74%) of them are
associated with at least two lipid traits (Table 1). To replicate the
associations of the genes without any existing annotation
evidence, we applied the MTAR-O test to an independent UK
Biobank GWAS data (Methods). Despite the fact that UK
Biobank GWAS data usually harbor a smaller number of rare
variants in a gene than GLGC exome chip data, 7 out of 11 (64%)
genes were found significant in the UK Biobank at α= 0.05/11=
4.5 × 10−3 (Table 1 and Supplementary Table 3). These seven
validated MTAR discovered genes may have causal impact on the
lipid traits. One example is PNPLA2, which encodes the enzyme
adipose TG lipase (ATGL); ATGL is involved in the breakdown
of TG. Although variants associated with PNPLA2 have not
previously been directly linked with any of the three lipid traits in
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Fig. 2 Venn diagram of significant genes in the GLGC data analysis.
MTAR-O, cMTAR, iMTAR, cctP, and minP test are performed and the
number of significant genes identified by each method is shown in the
parentheses.
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humans, ATGL-knockout mice display altered very-low-density
lipoprotein, HDL, and TG levels36.

Simulation studies. We used simulation studies to further
investigate the type I error control and power of MTAR. We
considered three continuous traits that have similar residual
covariances as the three lipid traits in the real data37. We simu-
lated data in three cohorts (N1= 3000, N2= 3500, N3= 2000)
that have different patterns of sample overlap for the three traits
(Supplementary Fig. 6). The details of genotype and phenotype
simulations are provided in Methods.

As in the GLGC data analysis, we utilized the combined
summary statistics across three cohorts for each trait (Methods).
We first evaluated the empirical type I error rates based on 108

replicates of simulation. Prior research has shown that the

accuracy of the Cauchy combined P-value is generally satisfactory
for practical use in rare-variant association tests, but a slight
inflation is possible30. Reassured that type I error was well
controlled (Supplementary Table 4), we then proceeded to
simulate traits under the alternative model to evaluate power.
The percentage of causal variants was set to be 50% or 20% for
scenarios of dense and sparse signals. For the causal variant j in
trait k, the genetic effect was set to
βkj ¼ ssnpj ´ straitk ´ djlog10MAFjj, where ssnpj and straitk determined
the heterogeneity of the effect directions among variants and
traits, respectively, and d|log10 MAFj| stated that the effect size
was larger for the variant with smaller MAF. We set different
values of d for different percentage of causal and ssnpj settings such
that the power of the tests in each setting is reasonably high. The
effects among causal variants are either in the same direction

Table 1 Results for the 41 genes exclusively identified by MTAR tests in the GLGC analysis.

Chr. Gene GLGC UKB Neale v2 Annotation

Size MTAR-O cMTAR iMTAR cctP minP Size MTAR-O

1 COL24A1 43 2 × 10−7 1 × 10−7 8 × 10−8 7 × 10−5 1 × 10−4 23 5 × 10−1

1 MCL1 6 2 × 10−8 3 × 10−7 8 × 10−9 1 × 10−5 1 × 10−5 LDL, HDL
2 ASB3|GPR75-

ASB3
14 4 × 10−9 1 × 10−4 1 × 10−9 4 × 10−6 4 × 10−6 5 2 × 10−3

3 ITIH3 24 3 × 10−6 8 × 10−6 9 × 10−7 1 × 10−3 2 × 10−3 HDL
3 STAB1 62 1 × 10−11 1 × 10−11 5 × 10−12 6 × 10−6 7 × 10−6 LDL, HDL, TG
4 MTTP 16 3 × 10−6 1 × 10−6 4 × 10−5 7 × 10−4 7 × 10−4 LDL HDL, TG
4 PLA2G12A 2 9 × 10−9 8 × 10−9 5 × 10−9 4 × 10−6 6 × 10−6 HDL, TG
5 SPARC 6 3 × 10−6 3 × 10−6 2 × 10−6 3 × 10−4 3 × 10−4 5 2 × 10−3

6 C2 17 6 × 10−10 9 × 10−10 3 × 10−10 2 × 10−5 3 × 10−5 7 1 × 10−3

6 C6orf10 9 1 × 10−6 1 × 10−6 7 × 10−7 9 × 10−5 9 × 10−5 TG
6 HLA-DQB1 5 5 × 10−8 5 × 10−8 3 × 10−8 4 × 10−4 5 × 10−4 LDL, TG
6 NOTCH4 37 2 × 10−8 5 × 10−4 5 × 10−9 6 × 10−5 8 × 10−5 LDL, TG
6 ZNF76 22 8 × 10−7 3 × 10−7 2 × 10−5 2 × 10−3 3 × 10−3 LDL, HDL, TG
7 KIAA1324L 12 2 × 10−8 2 × 10−8 1 × 10−8 3 × 10−5 3 × 10−5 LDL
8 ZNF572 15 1 × 10−6 2 × 10−6 5 × 10−7 1 × 10−4 2 × 10−4 LDL, HDL, TG
11 CKAP5 16 5 × 10−6 4 × 10−6 3 × 10−6 7 × 10−4 7 × 10−4 HDL, TG
11 CREB3L1 9 2 × 10−7 2 × 10−7 1 × 10−7 6 × 10−6 6 × 10−6 LDL, HDL, TG
11 DSCAML1 25 1 × 10−6 2 × 10−6 4 × 10−7 3 × 10−5 3 × 10−5 LDL, HDL, TG
11 MEN1 4 4 × 10−6 4 × 10−6 2 × 10−6 5 × 10−5 7 × 10−5 TG
11 NR1H3 7 4 × 10−7 4 × 10−7 2 × 10−7 3 × 10−5 3 × 10−5 LDL, HDL, TG
11 OR8U1|OR8U8 7 3 × 10−6 3 × 10−6 2 × 10−6 6 × 10−4 1 × 10−3 4 2 × 10−11

11 PLCB3 14 3 × 10−9 3 × 10−9 1 × 10−9 5 × 10−5 8 × 10−5 HDL, TG
11 PNPLA2 14 5 × 10−8 5 × 10−8 3 × 10−8 3 × 10−6 3 × 10−6 5 6 × 10−8

11 SIDT2 21 5 × 10−6 7 × 10−6 3 × 10−6 8 × 10−6 8 × 10−6 LDL, HDL, TG
11 TSGA10IP 15 7 × 10−9 8 × 10−9 3 × 10−9 2 × 10−4 3 × 10−4 HDL, TG
12 ACADS 8 4 × 10−6 2 × 10−5 2 × 10−6 4 × 10−6 6 × 10−6 LDL, HDL
12 ACVRL1 8 5 × 10−6 5 × 10−6 3 × 10−6 6 × 10−4 1 × 10−3 5 2 × 10−2

12 C12orf41 4 1 × 10−6 1 × 10−6 6 × 10−7 8 × 10−5 1 × 10−4 2 3 × 10−2

12 CMAS 3 8 × 10−7 7 × 10−7 4 × 10−7 4 × 10−5 4 × 10−5

12 SH2B3 15 2 × 10−6 2 × 10−6 1 × 10−6 5 × 10−5 5 × 10−5 LDL, HDL, TG
14 DDHD1 9 7 × 10−7 6 × 10−7 3 × 10−7 1 × 10−4 2 × 10−4

14 PCK2 34 2 × 10−6 3 × 10−6 1 × 10−6 4 × 10−4 6 × 10−4 LDL
15 ARRDC4 8 5 × 10−6 5 × 10−6 3 × 10−6 7 × 10−4 2 × 10−3 4 1 × 10−4

16 CFDP1 7 2 × 10−6 1 × 10−6 8 × 10−7 9 × 10−4 1 × 10−3 4 2 × 10−2

17 BECN1 4 2 × 10−6 5 × 10−6 1 × 10−6 1 × 10−3 2 × 10−3

17 GEMIN4 35 2 × 10−6 7 × 10−4 5 × 10−7 4 × 10−4 6 × 10−4 HDL
17 SHBG 7 3 × 10−6 3 × 10−6 1 × 10−6 5 × 10−6 6 × 10−6 LDL, TG
19 AXL 11 1 × 10−6 1 × 10−6 7 × 10−7 2 × 10−4 2 × 10−4 3 3 × 10−5

19 LAIR1 13 3 × 10−7 2 × 10−7 1 × 10−7 8 × 10−5 1 × 10−4 LDL, HDL
19 LOC55908 7 8 × 10−10 9 × 10−10 4 × 10−10 9 × 10−6 1 × 10−5 HDL, TG
21 COL18A1 44 6 × 10−8 4 × 10−8 4 × 10−8 7 × 10−5 7 × 10−5 TG

Seven novel genes replicated in the UK Biobank analysis are shown in bold.
The annotation is the summary of association evidence from the Open Targets52,53 and the STOPGAP54 databases, and the previous analysis of the GLGC data33 for the three traits.
The genes (BECN1, CAMS, and DDHD1) with cumulative minor allele counts <10 in the UK Biobank are not analyzed in the replication stage.
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(ssnpj = 1 for all j) or bidirectional (randomly assign 1 or −1 with
equal probability to ssnpj ). To run MTAR, we utilized the genetic
correlations in GLGC data analysis for LDL, HDL, and TG, but
we did not specify straitk according to their genetic correlations. In
particular, we considered five patterns of straitk across traits:
ðstrait1 ; strait2 ; strait3 Þ ¼ ð0; 0; 1Þ; (0, 1, 1); (0, −1, 1); (1, −1, 1) and (1,
1, 1). All the association patterns across traits and variants
considered in our power simulation are visualized in Supple-
mentary Fig. 7.

The empirical power is estimated at the significance level of
α= 2.5 × 10−6 based on 104 replicates (Fig. 5). When the gene is
associated with one trait (pattern 1 of straitk ), the single-trait-based
tests (cctP and minP) are more powerful than iMTAR and
cMTAR but the trend is reversed in other patterns. cMTAR is
more powerful than iMTAR when the effects are homogeneous
(pattern 5). iMTAR is much more powerful than cMTAR when
the effects are heterogeneous and the specified genetic correla-
tions are not informative to the true relationship of the effects
among traits (pattern 2). The power of MTAR-O is close to the
most powerful test in all scenarios. These observations are
consistent with results from the GLGC data analysis.

Comparison with other multi-trait multi-variant methods. In
comparison with existing multi-trait multi-variant methods
(Supplementary Table 1), MTAR has a unique combination of
features that make it desirable for practical use. First, MTAR uses
summary statistics rather than individual-level data. MTAR starts
with simple summary statistics calculated in a study for each trait:
variant-level score statistics and their covariance estimates24.
These statistics can be easily constructed using the information
routinely shared in public domains38. Compared with methods
that require pooling individual-level data, using summary statis-
tics can better protect study participant privacy and reduce
logistical difficulties and computational burden. Second, MTAR

allows the summary statistics for different traits to come from
(possibly unknown) overlapping samples. Failure to account for
the correlation between summary statistics induced by the over-
lapping samples can greatly inflate type I error39. Sample overlap
is prevalent in the multi-trait analysis. Sometimes the overlap
pattern is clear (e.g., all traits are measured in the same study or
in different studies that share controls40,41), but other times is
often elusive—public domains only have combined summary
statistics across many studies for each trait and study-specific
summary statistics are not available7. MTAR can handle these
scenarios and use a simple approach to accurately estimate the
correlation between summary statistics for the traits with sample
overlap. Third, MTAR is computationally fast. The MTAR P-
value calculation is analytical and does not require time-
consuming procedures such as permutation and Monte Carlo
simulation.

We compared the power of MTAR with Multi-SKAT10

(MultiSKAT R package) and MTaSPUsSet17 (aSPU R package)
in numerical studies. These two existing methods have demon-
strated superior performance to other competing multi-trait
multi-variant methods such as metaCCA18, MGAS19, DKAT11,
MAAUSS13, MSKAT15, and GAMuT14. Similar to MTAR, Multi-
SKAT and MTaSPUsSet proposed several tests to accommodate
different patterns of associations across traits and variants, and
omnibus tests to gain robustness. We compared their omnibus
tests with MTAR-O. In the simulation study, we let all cohorts
have complete trait values as it is required by Multi-SKAT.
Empirical power was estimated at the α= 10−4 level due to the
speed of MTaSPUsSet. MTAR-O has greater power than Multi-
SKAT and MTaSPUsSet in almost all scenarios, especially when
the genetic correlation reflects the heterogeneity of effects among
traits (patterns 3–4 of straitk ) (Supplementary Fig. 8). Furthermore,
MTAR-O is computationally more efficient. Multi-SKAT and
MTaSPUsSet, respectively, take 29 and 184 s on average to
complete one replicate of simulation, whereas MTAR-O only
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takes 10 s. In addition, we applied MTaSPUsSet that does not
require individual-level data to the GLGC summary statistics.
MTaSPUsSet missed 52 MTAR identified genes, whereas MTAR
only missed 9 MTaSPUsSet identified genes.

Discussion
We have introduced MTAR, a framework for conducting the
meta-analysis of RVAS summary statistics across multiple traits.
The cMTAR, iMTAR, and cctP tests cover a wide variety of
association patterns among traits and variants. The omnibus test
MTAR-O achieves robust and high power by combining the P-
values of the three complementary tests. The use of summary
statistics and Cauchy P-value combination method empowers
MTAR to conduct whole-genome multi-trait RVAS in a com-
putationally efficient manner. The computation time of running
MTAR methods on the simulated and GLGC datasets are sum-
marized in Methods. Our numerical results have confirmed that
MTAR tests properly control the type I error in the present of
complex patterns of sample overlap among traits and have sub-
stantial power gain relative to the separate analysis of RVAS for
each trait. In the analysis of lipid traits in GLGC, MTAR iden-
tified many more genes than single-trait-based tests, including
genes that have not been previously linked to lipid traits and

represent novel findings. Many of these genes have been suc-
cessfully replicated in an independent UK Biobank data.

Utilizing genetic correlations to guide the specification of gene-
level effects heterogeneity across traits is one main innovation of
MTAR. The genetic correlation is a genome-wide measure of the
shared genetic architecture between a pair of traits and it is cal-
culated using common variants across the genome. The GLGC
data analysis results suggest that the rare-variant effect correlation
among traits is generally in accordance with the genetic correla-
tion for most genes and the use of genetic correlation in MTAR
helps to substantially improve the power of the multi-trait
analysis.

Although we mainly demonstrate MTAR in the analysis of
continuous traits, the method can be applied to binary traits
(Methods) as long as the score statistics from the models are
unbiased and their covariance estimates are accurate. For binary
traits, the normal approximation to the score statistics could be
inaccurate in the unbalanced case-control setting42, which could
affect the performance of the multi-trait analysis. For studies with
related subjects, one may use methods based on mixed models to
generate appropriate score statistics43,44. Future research is
required on how to properly handle various patterns of sample
overlap across traits in the presence of familial and cryptic
relatedness.
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With the increasing number of complex traits available in
large-scale whole exome/genome sequencing studies and elec-
tronic health record linked biobank data, multi-trait analysis
based on summary statistics of multiple rare variants will become
an important tool to boost the power of discovering genetic
components of complex traits and unravel their shared genetic
architectures. We envision that MTAR will facilitate the accu-
mulation of adequately large sample sizes to accelerate discoveries
in complex trait genetics and provide new biological insights by
revealing pleiotropic genes.

Methods
Covariance of genetic effects among variants. B1 is a m ×m covariance matrix
for the effects among variants. We set B1 ¼ W1Ω1W1, where W1 is a diagonal
matrix with each element being a variant-specific weight and Ω1 is a between-
variant effect correlation matrix of exchangeable structure with correlation coef-
ficient ρ1 (0 ≤ ρ1 ≤ 1). Specifically, the single-trait analysis becomes SKAT20 if ρ1=
0 and burden tests22,24,45,46 if ρ1= 1. Burden tests are more powerful when the
association effects are similar across the aggregated variants, whereas SKAT is more
powerful when the effects are in opposite directions or the number of causal
variants is small relative to neutral variants. As for the variant-specific weights
(in W1), by default, we set them based on the MAF through a beta distribution
density function Beta(MAF; 1, 25) as in SKAT. Other weighting schemes can be
employed as well.

Summary statistics. For each trait k (k= 1, …, K) and subject i (i= 1, …, n),
when the individual-level phenotype (Yik), genotypes (Gik), and covariates (Xik) are
available, the score statistics Uk and their covariance estimate Vk can be obtained
from the generalized linear model with the likelihood function

exp
Yik βTkGikþγTk Xikð Þ�bðβTkGikþγTkXikÞ

aðϕkÞ þ cðYik; ϕkÞ
� �

; where βk and γk are regression

parameters, ϕk is a dispersion parameter, and a, b, and c are specific functions.
Specifically, we have Uk ¼ aðϕ̂kÞ�1Pn

i¼1 fYik � b0ðbγTkXikÞgGik and Vk ¼ aðϕ̂kÞ�1

½Pn
i¼1 b

00ðbγTkXikÞGikG
T
ik � fPn

i¼1 b
00ðbγTkXikÞGikX

T
ikgf

Pn
i¼1 b

00ðbγTkXikÞXikX
T
ikg�1

fPn
i¼1 b

00ðbγTkXikÞXikG
T
ikg�, where bγk and ϕ̂k are the restricted maximum likelihood

estimators of γk and ϕk under H0 : βk= 0, and b′ and b″ are the first and second
derivatives of function b. For the linear regression model, we have

aðϕ̂kÞ ¼ n�1
Pn

i¼1 ðYik � bγTkXikÞ2, b′(z)= z, and b″(z)= 1. For the logistic regres-
sion model, we have a(ϕ̂k)= 1, b′(z)= ez/(1+ ez), and b″(z)= ez/(1+ ez)2.

The Uk and Vk can also be derived from different forms of summary statistics
shared in public domains38. When the score statistics Uk and their variances (i.e.,
diag(Vk)) are available, the covariance matrix of Uk can be approximated as Vk ≈
{diag(Vk)}1/2R{diag(Vk)}1/2, where R ¼ fRj‘gmj;‘¼1 is the SNP LD matrix calculated
from the Pearson correlation coefficient among the genotypes of the m variants
based on the working genotypes or external reference. In another case, when the

effect estimates bβk ¼ fβ̂kjgmj¼1 and their standard errors sek ¼ fsekjgmj¼1 are

available, we can approximate Uk ¼ fUkjgmj¼1 and Vk ¼ fVkj‘gmj;‘¼1 as Ukj �
β̂kj=se

2
kj and Vkj‘ � Rj‘=ðsekjsek‘Þ.

Covariance of summary statistics between traits. If all the traits are from the
same study or multiple studies with overlapping samples, the summary statistics Uk

among traits k= 1, …, K are correlated. Assume trait k is from cohort A with
sample size nA and trait k′ is from cohort B with sample size nB, and there are nC
overlapping subjects in these two cohorts. For any SNP j not associated with the
traits, the correlation matrix of Z-score Ukj=

ffiffiffiffiffiffi
Vkj

p
among traits is invariant to SNP

j39,47. In particular, if both traits k and k′ are quantitative, we have

ζkk0 � cov
Ukjffiffiffiffiffiffi
Vkj

p ;
Uk0 jffiffiffiffiffiffiffi
Vk0 j

p !
� nCffiffiffiffiffiffi

nA
p ffiffiffiffiffi

nB
p corðYk;Yk0 Þ: ð1Þ

If both traits k and k′ are binary, let nC0 (nC1) represent the number of overlapping
samples with trait value of 0 (or 1), nA0 (nA1) denotes the number of subjects with
trait k and takes the value of 0 (or 1) and nB0 (nB1) denotes the number of subjects
with trait k′ and takes the value of 0 (or 1), then we have39

ζkk0 � cov
Ukjffiffiffiffiffiffi
Vkj

p ;
Uk0 jffiffiffiffiffiffiffi
Vk0 j

p !
� nC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA1nB1
nA0nB0

r
þ nC1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA0nB0
nA1nB1

r� �
=
ffiffiffiffiffiffiffiffiffiffi
nAnB

p
: ð2Þ

Hence, we can accurately estimate ζkk′ using the independent null variants across
the whole genome. Specifically, we first perform LD pruning using LD threshold
r2 < 0.01 in 500 kb region to obtain a set of independent common variants. We then
remove variants with association test P-values < 0.05 and only keep variants that
are not associated with any traits. For any traits k and k′, we calculate the between-
trait sample correlation of the Z-scores on the remaining variants and denote it as

ζ̂kk0 . In our simulation study, we benchmarked ζ̂kk0 against empirical sample cov-

ariance of Z-scores and confirmed the accuracy of the estimate ζ̂kk0 (Supplementary
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Fig. 9). Finally, provided the gene is not associated with any trait, the covariance ofbβk and bβk0 can be estimated using ζ̂kk0

covðbβk;bβk0 Þ ¼ covðV�1
k Uk;V

�1
k0 Uk0 Þ � ζ̂kk0V

�1
k fdiagðVkÞg1=2RfdiagðVk0 Þg1=2V�1

k0 ;

ð3Þ
where the matrix R is the SNP LD matrix defined in the previous subsection.

MTAR test statistics and P-values. We let β ¼ ðβT1 ; ¼ ; βTK ÞT denote the m

genetic effects across K traits and bβ ¼ ðV�1
1 U1; ¼ ;V�1

K UK Þ denote their effect
estimates constructed from Uk and Vk. The MTAR framework assumes the hier-
archical model bβjβ � Nðβ;ΣÞ; β � Nð0; σBÞ: ð4Þ
As described in the main text, ∑ reflects the correlation due to the residual relat-
edness among traits in the presence of sample overlap and LD among variants, and
B reflects the correlation among the rare-variant effects across traits and variants.
The B matrix contains two coefficients ρ1 and ρ2, where ρ1 controls the effect
correlation among variants and ρ2 controls the contribution of the genetic corre-
lation to the among-trait rare-variant effect correlation.

For a fixed set of ρ= (ρ1, ρ2), we test H0 : σ= 0 against H1 : σ ≠ 0 by a variance-
component score test48:

Qρ ¼ bβTΣ�1BΣ�1bβ: ð5Þ
The test statistic follows a mixture of χ2 distribution under the null hypothesis.
Davies method can be used to accurately estimate the P-value49. In addition, rare
variants often show polymorphisms in some but not all traits, the adjustment of the
formula for this case is described in the Supplementary Methods.

In the cMTAR and iMTAR tests (respectively correspond to two specifications
of effect correlation among traits in B), the Cauchy P-value combination method is
utilized to combine results from various ρ1 and ρ2. Similar to the minimum P-value
method, the Cauchy method mainly focuses on a few smallest P-values30. The
advantage of the Cauchy method over the minimum P-value method is that the
Cauchy method is computationally fast because it does not rely on the Monte Carlo
simulation to account for the correlation of the individual tests29. Specifically, the
iMTAR or cMTAR test statistic is defined as

QiMTAR=cMTAR ¼
P

ρ2S tan 0:5� pðQρÞ
n o

π
h i

jSj ; ð6Þ

where p(Qρ) is the P-value of Qρ, S is a set that includes a grid of possible values of
ρ = (ρ1, ρ2), and jSj is the size of the set. In our implementation, we consider the
grid {0, 0.5, 1} for both ρ1 and ρ2 such that there are nine combinations. We have
shown in the Supplementary Fig. 10 that the GLGC analysis results are not
sensitive to the choice of the grid. The P-value of QiMTAR/cMTAR can be accurately
approximated by 0.5− arctan (QiMTAR/cMTAR)/π29.

In addition, the MTAR framework reduces to single-trait analysis when we set a
single diagonal element of matrix W2 to 1 (Fig. 1). We use the Cauchy method to
combine these single-trait P-values from SKAT and burden tests and construct the
cctP test as

QcctP ¼
PK

k¼1 tan 0:5� pskat;k
n o

π
h i

þPK
k¼1 tan 0:5� pburden;k

n o
π

h i
2K

; ð7Þ

where pskat,k and pburden,k are the P-values from the SKAT and burden tests for trait
k. The P-value of the cctP test can be approximated by 0.5− arctan(QcctP)/π.

Finally, the Cauchy method is used to construct MTAR-O test by combining
P-values from cMTAR, iMTAR, and cctP as

QMTAR�O ¼ tan 0:5� pcMTARf gπ½ � þ tan 0:5� piMTARf gπ½ � þ tan 0:5� pcctPf gπ½ �
3

;

ð8Þ
where pcMTAR, piMTAR, and pcctP are the P-values of the cMTAR, iMTAR, and cctP
tests. The P-value of the MTAR-O test can be approximated by 0.5 − arctan
(QMTAR−O)/π.

Summary statistics from the GLGC. The summary statistics for the lipid traits
were downloaded from http://csg.sph.umich.edu/abecasis/public/lipids2017/. For

each trait k, the web portal contains variant-level genetic effect estimates bβk for a

given gene and their standard errors sek. We obtained Uk and Vk by using bβk and
sek as described in Summary statistics subsection of Methods. As the original
genotypes from the study are not publicly available, we estimated the LD matrix R
based on the genotypes of the European population from the NHLBI Exome
Sequencing Project (ESP)37. To account for possible sample overlap among traits,
we used Eq. (3) to estimate covariance among summary statistics across traits.

Gene set and tissue enrichment analysis. Gene set enrichment analysis was
conducted using the one-sided hypergeometric test against Reactome Pathways and
Gene Ontology Biological Processes, as implemented in the GENE2FUNC from

FUMA50, with the genes tested in MTAR used as the background gene set.
Enrichment P-values are adjusted for multiplicity using the Benjamini–Hochberg
procedure within each set type tested; sets with adjusted P-value less than 0.05 are
reported. Tissue enrichment analysis was conducted using TissueEnrich51, which
implements the one-sided hypergeometric test for enrichment of user-defined
genes relative to lists of tissue-enriched, tissue-enhanced, and group-enhanced
genes. Default settings for the definition of tissue-enriched and enhanced genes
from both GTEx and HPA RNA-seq datasets were applied. Enrichment P-values
are adjusted for multiplicity using the Benjamini–Hochberg procedure within each
reference set (GTEx and HPA).

Gene association annotation. We annotated the 41 genes exclusively discovered
by MTAR in the GLGC data analysis using two recently developed databases: Open
Targets52,53 (Supplementary Data 2) and STOPGAP54 (Supplementary Data 3).
Open Targets and STOPGAP both link genes to a trait or disease via annotation of
genomic loci detected in GWAS. For each of the 41 genes, the linked diseases are
searched and filtered to the three traits: LDL, HDL, and TG, and the variant-disease
association P-value < 5 × 10−8 from the two databases. In addition, the lipid
association results from the Supplementary Tables 9 and 12 in the paper of pre-
vious GLGC data analysis33 were also used to annotate the 41 genes (Supple-
mentary Table 5).

Replication of significant genes in the UK Biobank data. To replicate the
associations of 14 genes (11 after removing genes with cumulative minor allele
counts less than 10 in the UK Biobank GWAS data) exclusively identified by
MTAR tests but without any annotation evidence, we applied the MTAR methods
to an independent study with association summary statistics from the UK Biobank
GWAS data set. The GWAS summary statistics were released by the Neale Lab
with the re-release of UK Biobank genotype imputation (termed imputed-v3). The
three related traits LDL direct (mmol/L), HDL direct (mmol/L), and TG (mmol/L)
were jointly analyzed in a similar manner as the analysis of GLGC data.

Data simulation. For all simulations, we generated 100 haplotypes of length 1 MB
under a calibrated coalescent model to mimic the LD structure and local combi-
nation rate of the European population55. These haplotypes were used to form the
genotypes of 8500 subjects across three cohorts. To simulate the genotypes for a
data set, we randomly selected one thousand 3 KB regions in each haplotype and
focused on rare variants with MAF < 0.05.

For each subject i, three traits were generated based on a multi-response
regression model

Yi1

Yi2

Yi3

264
375 ¼

β11 ¼ β1m
β21 ¼ β2m
β31 ¼ β3m

264
375

Gi1

..

.

Gim

2664
3775þ 0:1Xi1 þ 0:2Xi2 þ

ϵi1
ϵi2
ϵi3

264
375; ϵi1

ϵi2
ϵi3

264
375

� N 0;

1 0:1 0

0:1 1 �0:1

0 �0:1 1

264
375

0B@
1CA;

ð9Þ

where βkj is the genetic effect for trait k at variant j, Gij is the genotype at variant j,
Xi1 is a binary covariate simulated from Bernoulli(0.5), Xi2 is a continuous covariate
simulated from a standard normal distribution. The covariance matrix of the error
term used here is based on the estimated residual correlations among the lipid traits
LDL, HDL, and TG in the ESP data37. The reduced model was used when we
needed to generate only one or two traits for subject i.

Computation time. We estimated the computation time of MTAR tests by con-
sidering different numbers of variants m= 5, 10, 20, 50, 100 and traits K= 3, 6, or
9 (Supplementary Fig. 11). For each scenario, we generated 50 datasets and
reported the average computation time. On average, MTAR-O, cMTAR, and
iMTAR took less than 0.11, 0.06, and 0.05 s (2.4 GHz Intel Core i5, Produced by
Intel Co., Santa Clara, CA) when applied to a data set with 20 variants and 3 traits.
The computation time did not change much in the presence of sample overlap; but
it increased to 1, 0.51, and 0.49 s when the number of traits was increased to 9.
MTAR is scalable for genome-wide analysis. Analyzing the GLGC data (15,378
genes) using MTAR-O, cMTAR, and iMTAR took about 25, 10, and 8 h on a
laptop with a single core. After the computation jobs were distributed to multiple
cores by chromosome, the analysis was finished within 2 h.

Web resources. SKAT R package v1.3.2.1: https://cran.r-project.org/web/
packages/SKAT MultiSKAT R package v1.0: https://github.com/diptavo/
MultiSKAT aSPU R package v1.48: https://cran.r-project.org/web/packages/aSPU
FUMA v1.3.5: http://fuma.ctglab.nl TissueEnrich v1.8.0: https://tissueenrich.gdcb.
iastate.edu Open Targets: https://genetics.opentargets.org STOPGAP: https://
github.com/StatGenPRD/STOPGAP.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
No data were generated in the present study. The GLGC summary statistics are publicly
available at http://csg.sph.umich.edu/abecasis/public/lipids2017/. The UK Biobank
GWAS summary statistics data (Neale v2) are described at http://www.nealelab.is/uk-
biobank and are publicly available at https://www.dropbox.com/s/2msvdv4axfz362b/
30780_raw.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0 for LDL direct (mmol/L); https://
www.dropbox.com/s/sn30890f64p0htu/30760_raw.gwas.imputed_v3.both_sexes.tsv.bgz?
dl=0 for HDL cholesterol (mmol/L); https://www.dropbox.com/s/0tdxu9g7itbct6m/
30870_raw.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0 for triglycerides (mmol/L).

Code availability
Our method is implemented in the MTAR R package, freely available at the Comprehensive
R Archive Network (CRAN): https://cran.r-project.org/web/packages/MTAR.
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