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The generation of cellular diversity during development involves differen-
tiating cells transitioning between discrete cell states. In the 1940s, the
developmental biologist Conrad Waddington introduced a landscape meta-
phor to describe this process. The developmental path of a cell was pictured
as a ball rolling through a terrain of branching valleys with cell fate decisions
represented by the branch points at which the ball decides between one of
two available valleys. Here we discuss progress in constructing quantitative
dynamical models inspired by this view of cellular differentiation. We
describe a framework based on catastrophe theory and dynamical systems
methods that provides the foundations for quantitative geometric models
of cellular differentiation. These models can be fit to experimental data
and used to make quantitative predictions about cellular differentiation.
The theory indicates that cell fate decisions can be described by a small
number of decision structures, such that there are only two distinct ways
in which cells make a binary choice between one of two fates. We discuss
the biological relevance of these mechanisms and suggest the approach is
broadly applicable for the quantitative analysis of differentiation dynamics
and for determining principles of developmental decisions.

1. Introduction

How the diversity of molecularly and functionally distinct cell types that com-
prise a living organism arise during embryogenesis is a central concern of
developmental biology. The process is progressive. As cells proliferate and
assemble into tissues, their molecular identity changes in discrete step-like tran-
sitions to produce diverging sequences of distinct cell states that culminate in
the differentiation of specific functional cell types. Hence, cellular development
can be viewed as sets of branching cell lineages generating increasing diversity
and comprising increasingly specialized cell types. This is directed by
intercellular signalling between differentiating cells making the process non-
autonomous and self-organizing. Each branch-point in a cell lineage represents
a choice between alternative distinct cell types. The choice a cell makes at each
transition is referred to as a cell fate decision.

This process was pictured by Conrad Waddington in the 1940s and led to
his famous 1957 drawing of the epigenetic landscape [1]. In his iconic image,
the differentiation trajectory of a cell is conceived as a ball rolling down a
landscape of branching valleys. At watersheds, the valleys branch and the
ball must decide between one of two available paths, representing alternative
cell fates. This view has had an enormous influence on the field, but efforts
to convert the metaphor to models that make quantitative, experimentally tes-
table predictions have proved challenging. It is now clear that extrinsic signals
organize cell fate decisions in developing tissues by regulating the gene
expression programme and therefore the functional properties of cells.
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The signals and the downstream transcriptional responses
form dynamic and complex circuits, termed gene regulatory
networks (GRNSs). In this way the activity of the GRN con-
trols the location and timing of cell fate allocation in a
tissue. Reconciling this view of development with that of
Waddington has led to the idea that GRNs and their control-
ling signals create the landscape and the route a cell takes
through it.

Mathematical models have been used extensively to
investigate how the dynamics of GRNs regulate cell fate
decisions. These have offered insight into how features such
as switch-like responses and feedback control regulate cell
fate decisions, and support the idea that cell fates can be rep-
resented as the steady states of a multistable GRN. However,
these models require bespoke case-by-case construction and
expand rapidly in size and complexity as more genes and
interactions are included. Moreover, information about their
structure and parameters is often difficult to obtain and the
resulting complexity can obscure underlying mechanisms.
Nevertheless, the fundamental framework of cellular
decisions described by a GRN model remains relatively
simple: cells transition between a limited set of discrete cell
fates. Hence, methods to represent cell dynamics and account
for transitions between states in a way that classifies cell
decision behaviours would complement existing approaches
and provide insight into the underlying principles. Here we
discuss recent ideas that recast Waddington’s landscape
metaphor in the context of a dynamical theory of cellular
decision-making [2]. The aim is not just to describe the
theory but to use this to provide a practicable approach to
the analysis of gene expression data in differentiating cells
that will allow the elucidation of decision-making structures.

Tools to construct models that describe dynamics quanti-
tatively as well as qualitatively depend on mathematical
developments initiated by Smale [3] in the 1960s, together
with the insights arising from Thom'’s catastrophe theory
[4-7]. This has two important consequences for comparisons
with Waddington’s landscape metaphor. First, the intuition
that cell states flow downhill following a trajectory defined
solely by the landscape’s topography given by a height
function, is an oversimplification. As we explain below,
such a topography does not uniquely define the dynamics.
For decision-making, it is necessary to understand the top-
ology of the connections between cell states determined
by certain invariant manifolds. The height function that
describes the landscape does not determine these without
extra information (see box 2).

We refer to this approach, which includes the connection
topology, as Waddington dynamics (figure 1). An important
aspect of the approach we describe is the idea that the con-
nections between cell states along which transitions take
place correspond to the unstable manifolds of certain
saddle points sitting between the system’s attractors. Thus,
our discussion includes a precise idea of a transition state
(see §5.1).

Second, the focus on Waddington dynamics points to
another important issue. Until recently, discussions about
decision-making in Waddington landscapes emphasized the
so-called local bifurcations in which a decision results from a
change confined to a small region of the landscape (disap-
pearance or appearance of a state). This neglected global
bifurcations that alter the dynamics in ways that are not con-
strained to a small region (by changing the routes that cells

take). Recent work has indicated that global bifurcations [ 2 |

can play an important role in cell fate decisions [8-11].

Despite these complications, adopting this dynamical sys-
tems perspective has several advantages. The models that
represent cellular decisions are highly constrained. This pro-
vides a classification scheme for cell fate decisions that is
independent of the molecular details of the underlying
GRNSs. This reveals a small number of decision archetypes
and suggests underlying design principles. In turn, this
leads to a practicable approach for using experimental data
to construct quantitative models that make testable
predictions [8-11].

In the following sections, we introduce the mathematical
concepts necessary to construct and interpret these types of
geometric models. We argue that these can be used to
develop new tools to interpret the type of single-cell
expression data that is becoming available. Moreover, these
tools provide insight into the underlying principles and
point the way to discovering mechanism. An outline of an
experimental and analytical strategy for applying this
approach is provided (box 2). We address two obvious pro-
blems about GRN-centred approaches derived from the
genome-wide nature of data produced by technologies such
as scRNAseq. The first is the much discussed curse of dimen-
sionality. The second is the complexity of the interactions
between the different molecular components that makes
both textual and mathematical description difficult. Our
approach tackles these problems as the structure of
the landscape is described independently of the precise
molecular details and is agnostic to dimension.

2. Motivating a dynamical systems approach:
modelling and experiments

To illustrate relevant dynamical systems concepts, we start by
discussing two decision-making scenarios where cells in a
precursor state P choose to differentiate to one of two down-
stream (more differentiated) states A or B. This type of
decision is common in developmental systems. We present
in this section the rationale we used in [11] to build a math-
ematical model for such a decision-making system which
allowed the informed design of experiments.

In these examples (and more generally), the dynamical
flow can be pictured on a two-dimensional (2D) surface
where every point has a specific height, given as a function
of its position by a so-called landscape potential function
(figure 2). The landscape contains well-like depressions
which we call basins by analogy with the basin of a river.
These basins are separated by intervening ridges (figure
2a). We can think of the dynamics of a differentiating cell
as being described by a ball rolling downhill. If it starts in a
basin, it will roll to the bottom of the basin, where the poten-
tial function is minimal. In the language of dynamical
systems, this point is an attractor and in the developmental
context it corresponds to a cell state. As in real landscapes,
to move from one basin to another the intervening ridge
has to be crossed. The point on the ridge that requires the
minimal amount of climbing to traverse is called a saddle
because of its shape (figure 2b). In a 2D landscape there
may also be peaks. Trajectories flow away from these, so
they are called repellors.
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Box 1. A pseudo-algorithm for data fitting.

These steps are described in more detail in the text.

1. From the experimental data identify the cell states (attractors) and transitions (unstable manifolds). Cluster and analyse cells, based on gene
expression at suitable time points to determine attractors and transition states (85). Do attractors have a well-defined correlation structure? Can
transitioning cells be identified? What attractors are the cells transitioning between?

2. Hypothesize the decision landscape(s). Use the classification of landscapes (§4) and observations about cells states, attractors, transitions, and the way
cells are allocated to attractors to identify the most probable landscape. Do the observed cell states and the transitions between them match any of the
one- or two-parameter landscapes? Is decision-making binary and is it compatible with an all or nothing behaviour or a mixed production of downstream
fates? Is the distribution of fates altered by modifying signalling/morphogens?

w
.

Construct a mathematical model to describe each of the hypothetical systems. Use the approach described in box 3 to build a dynamical model
using a generalized gradient system and canonical examples from the elementary catastrophes.

4. Fit parameters to the most likely model(s). Choose an informative set of summary statistics to enable statistical model selection between the
hypothesized models. Use an appropriate optimization algorithm to quantitatively fit parameters with the chosen summary statistics.

5. Validate/refute by prediction. Use the models resulting from the fit to design and to simulate uninvestigated experimental conditions. Confirm or

contradict these predictions with new data.

Box 2. Gradient systems.

dynamics are given by the differential equation

always use the more general meaning.

correspond to the same potential

Changing the metric flipped the unstable manifolds.

The general idea of a gradient system involves both a potential F and a Riemannian metric G. Such a Riemannian metric
provides at each point x = (xy, ...x,) of the phase space an n x n symmetric positive definite matrix G(x) = (g;;(x)). Then the

i = -G VF, (3.1)
where VF is the vector of partial derivatives of F. Note that F is a potential function for this.
In some discussions, it is assumed that G is the identity matrix so that the Riemannian metric is the standard one but we

It is important to note that changing G does not change the rest points and does not change the topological type of the

rest points in that the dimension of their stable and unstable manifolds is unchanged.
However, as we show in figure 6 such a change can alter where the unstable manifolds go. The examples in figure 6
F(x,y) = x> — 2x* — 0.4x* — 3x —y +

and different constant matrices G for each panel as follows:

1 -06 1 06
G_<70.6 1 ) and G—(o.e 1)'
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In our examples, cells start in a precursor state, attractor P,
and they decide between one of two successor fates A and B.
Theoretical considerations indicate that there are essentially
two ways for the decision to proceed: either an all-or-nothing
case where all cells starting in the P attractor adopt the same
fate, or a distributed allocation in which P cells adopt fates A
and B with varying proportions (figure 3).

In the first case (figure 3a), three attractors are linearly
arranged such that the precursor state attractor P sits between
the two more committed states A and B. Connecting the three
basins are two saddles that act as passes in the landscape.
A cell fate decision corresponds to the disappearance of the
P attractor in response to an inductive signal (shaded panel
in figure 3a). This occurs when the inductive signal modifies
the landscape so that the P basin gradually shrinks until the P

attractor collides with one of the saddles (local bifurcation).
This forces progenitor cells in P to flow down to one of the
committed states, A or B. The connections between attractors
(red curves in figure 3) remain unchanged. Which attractor is
chosen is determined by which of the two saddles collided
with P. This results in all cells exiting the P attractor adopting
the same fate. Consequently, we call this the binary choice
landscape. Figure 3b shows a schematic of this family of
landscapes.

The second case has a different arrangement of basins and
differs from the first in that it contains a global bifurcation
(change in connections). As before there are two saddles in
the landscape, but in this case, one saddle connects the two
differentiated states A and B and, for almost all parameters,
the other saddle connects the progenitor state P to either A

70002207 7L Smo4 dpuaiu)  sisi/jeuinol/biobuiysijgndfianosjesol H



Waddington
landscape

N | g
~ progenitor state
' l l . escape

i route

potential
landscape

differentia/ted state

f

-

N

Waddington
dynamics

Figure 1. From Waddington’s landscapes to Waddington dynamics. The classic picture of a Waddington landscape (left) can be formalized using a potential function
(middle). Nevertheless, to capture the full behaviour of the system complete Waddington dynamics are needed (right). The dynamics describe the trajectories cells

take between different states.
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Figure 2. Two-dimensional landscapes. (a) System with three attractors and
two saddles. The purple curves are the separatrices or stable manifolds of the
saddles, the red curves are the unstable manifolds (if time is run backwards
points on these converge to the saddle). Points on each unstable manifold
converge to two attractors and the stable manifolds divide the phase
space into three basins, one for each attractor. Level curves for the saddles
are indicated in black. (b) Saddle point. The dynamics near a saddle
point. The stable (purple) and unstable (red) manifolds are shown.

A

P

or B (figure 3¢ red curves). As with the binary choice, cell
transitions are a consequence of the destabilization of the P
attractor. However, there is only one pass with which to col-
lide and when the collision happens there is a well-defined
escape route (connection between attractors) which determines
the chosen differentiated state A or B.

A change in signals can alter this choice by causing the
escape route to flip so that instead of leading to A it leads
to B. This happens when the parameters cross the ‘flip line’
(dashed purple line figure 3d) and results in a change in
the decision made by cells leaving P as a consequence of a
change in the connections. On the flip line the trajectory leav-
ing the upper saddle goes directly to the lower saddle
(shaded panel in figure 3c).

When the escape route is close to the flip line, some noise
in the system can result in wayward cells adopting the
alternative committed fate. The closer the system is to flip-
ping from one attractor to the other then the more equal
will be the allocation of cells between the A and B states.
Thus varying the relevant signals regulates the proportions
of P cells adopting A or B identities. For this reason, we call
this landscape structure the binary flip landscape (figure 3d).

These two landscapes (figure 3) highlight key features of
the dynamics associated with decision-making. The basins
and the saddles that connect them play a crucial role in

geometric models. We will describe how these behave and
point out that their structure is highly constrained. This in
turn leads to a classification scheme of underlying landscape
structures that form archetypal decision mechanisms. We
will highlight the landscapes that we think are most likely to
occur. The above two examples are the simplest of these. We
suggest that these will be the most common wherever a
progenitor state differentiates into two more-committed states.

We proposed that the binary choice landscape explains
how mouse embryonic stem cells (ESCs) that have differen-
tiated to an epiblast-like state decide whether to adopt
either neural or caudal epiblast identity in response to
WNT and FGF signalling [11]. A decision structure similar
to the binary choice landscape has also been proposed to
explain the differentiation of mouse blastocyst inner cell
mass cells to either epiblast or primitive endoderm [12,13].
By contrast, we proposed that the flip landscape is respon-
sible for the fate decision involved in allocated cells to
either spinal cord or mesoderm identity during formation
of vertebrate trunk tissue [11].

Below we will outline a series of theoretical insights that
can be used to fit gene expression data to decision structures
(box 1). We will use the term landscape to refer to a dynamical
system produced by parameters fixed at particular values and
landscape family to refer to a parametrized set of dynamical sys-
tems in which changes to the parameters, which represent
changes in extrinsic signals, change the systems dynamics.

3. Decisions and bifurcations

To link experimental data to mechanism, it is imperative to
proceed via a model that describes the relevant underlying
process, even if this does not contain a detailed molecular
mechanism. In this section, we describe a mathematical pic-
ture of what happens in cellular decision-making. Later we
will use this to provide a link to the data (box 1, §5).

In applied dynamical systems, the state of the system is
usually given by an n-dimensional vector x=(xq,..., x,).
The set of all x where we study the dynamics is called the
phase space. Mathematical models of a GRN usually contain
equations that describe the synthesis and interaction of the
biological components (genes, RNAs, proteins, etc.) so that
each x; corresponds to the level of one of the relevant mol-
ecules. The resulting dynamical system describes how the
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Figure 3. Binary decisions. (a) Binary choice landscape. In the starting condition, Signal 1, cells are in a progenitor state corresponding to the middle basin of the
landscape. Exposure to Signal 2 results in the disappearance of the central basin and the bottom ridge and cells transition into State B following the slopes of the
new landscape. (b) Two parameters p; and p, govern the landscape in (a). Bifurcations occur when these parameters are on the black curves in p;, p,-space. Crossing
one curve results in cells transitioning to A; crossing the other, cells transition to B. (c) Binary flip landscape. Cells start in the progenitor state P which corresponds to
a shallow basin. Noise is sufficient for cells to transition into the more committed states and they follow the escape route (red) towards state A when exposed to
Signal 1. In response to Signal 2 the escape route flips towards B and cells transition towards B. (d) The landscape in Cis also governed by two parameters.
The progenitor attractor is destroyed when the parameters are on the black curve and the flip occurs when the parameters are on the purple curve.

levels of these species change over time. Although in typical
GRN models, the x; relate directly to physical entities, such as
mRNA or protein molecules, this need not be the case. GRN
models become infeasible and impractical when the number
of physical entities considered is very large. We will discuss
landscape models that have a minimal number of variables
and parameters. These provide so-called normal forms and
reproduce the important qualitative and quantitative dyna-
mical features of the data. In such normal form models, the
meaning of the x; becomes more abstract but can usually be
interpreted as a function of gene expression levels.

Gene expression in developing systems are generally sub-
ject to noisy fluctuations, but provided the noise is not too
large we can view the system as a stochastic perturbation of
a deterministic dynamical system (see §3.8). It is the determi-
nistic part of the system that gives it the structural features
that facilitate decision-making. Given an initial state x, the
deterministic dynamical system completely determines the
future states x(t, xo) of the system as time t evolves. The cor-
responding path in phase space traversed as time advances is
called the trajectory of xo.

It follows from the Waddington landscape picture, our
understanding of molecular interactions, and models of

GRNs that the relevant dynamical systems are dissipative
in the sense that the stable states are either attracting
rest points or attracting periodic orbits. We will focus here
on those systems that do not have periodic orbits or more
complex recurrent behaviour, such as chaos. Hence the key
dynamical features of such a landscape are organized by
rest points, i.e. states that do not move under the dynamics
(such as attractors, saddles and repellors). Of course, there
are interesting developmental systems that involve oscil-
lations such as that regulating somitogenesis but here we
restrict ourselves to systems where the decisions only involve
rest points. We expect that much of our approach can be
extended to the case where non-chaotic oscillations are
present.

A dynamical system is called structurally stable if small
changes to its parameters do not modify its qualitative struc-
ture. By contrast a bifurcating dynamical systems is one to
which a small change alters the qualitative structure of the
dynamics. There are a relatively simple set of conditions
that are necessary and sufficient to determine if a system is
structurally stable or bifurcating and also determine which
bifurcating systems are likely to turn up in models. These
were described by Smale [3,14], who radically developed
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Figure 4. Fold bifurcation. Representation of a landscape before (left) a fold bifurcation, at the bifurcation point (middle) and beyond it (right). The attractor and
saddle collide and disappear (middle) so cells in that basin of attraction follow the escape route (red) to another attractor.

earlier ideas of Morse [15]. The systems satisfying these con-
ditions have become known as Morse-Smale (MS) systems.
For systems, such as the ones we consider, in which the
phase space is in n-dimensional Euclidean space the
MS conditions also require a condition on the dynamics
near infinity (see [2] electronic supplementary material,
§L.1) that is satisfied for biological systems because trajec-
tories must stay bounded and cannot escape to infinity
because molecular numbers are limited.

The MS conditions are important because many useful
results follow from them. Moreover, for any generic landscape
family that only involves rest points and a finite number
of periodic orbits, for all parameters that are not on the
bifurcation set, the corresponding dynamical system is MS.

In order to introduce the key ideas, we discuss them in the
context of systems that live in a 2D space. However, all these
ideas carry over to an arbitrary number of dimensions as
summarized in §3.7. More mathematical details can be
found in [2]. In a 2D MS system the saddles will always be
positioned at the intersection between a one-dimensional
(1ID) stable manifold (a ridge that separates basins) and a
1D unstable manifold (figure 2b). These 1D unstable mani-
folds play a particularly important role in decision-making
because, as we explain below, they define the escape routes
along which cell state transitions take place.

3.1. Decisions

Developmental decisions involve cells transitioning between
fates by leaving the vicinity of attractor A, escaping from its
basin, moving into the basin of another attractor B and transi-
tioning to its vicinity. This generally happens when a change
in signalling modifies the dynamical system resulting in
either A disappearing in a bifurcation or the attractor A
being so close to the basin of B that the cells can escape by a
stochastic fluctuation, in which case the system is close to a
bifurcation. Mathematically, we model the change in signals
by regarding the parameters of any model as being functions
of the signals, so that changing signals changes the parameters
and this will alter the model and can cause bifurcations.

Thus, bifurcations play a key role in cell state transitions
and cell fate decisions happen when parameters cross the
so-called bifurcation set. As explained below, the bifurcation
set divides parameter space into regions of qualitatively
equivalent structurally stable landscapes (in figure 3b there
are two regions, in figure 3d there are three regions).

The notion that bifurcations are involved in cellular
decisions is relatively well accepted [16-23]. They have been
postulated in a range of decision-making systems including
the triggering of human promyelocytic HL60 cells to

neutrophil differentiation [17], differentiation of progenitor
FDCP-mix cells into either the erythroid/megakaryocyte or
the myelomonocyte lineage [18], early mouse embryonic
development [12,20,24], differentiation of a primitive streak-
like cell population into mesodermal and endodermal lineages
[21], somitogenesis [22] and the transition of haematopoietic
stem cells to neutrophils [23]. However, current discussions
are largely restricted to local bifurcations where saddles and
attractors collide. Less consideration has been given to global
bifurcations that alter the decision topology. However, these
more complex bifurcations can result in landscape families
that allow for more complex decisions (figures 7-12). Below
we introduce different types of bifurcations that play a role
in cellular decision-making.

3.2. The saddle-node or fold bifurcation

The typical bifurcation that destabilizes an attractor, as in the
above examples, and allows escape from the attractor is
known as a saddle-node or fold bifurcation. A change in par-
ameters results in either an attractor colliding with a saddle
and both disappearing or the inverse process occurring. It
is particularly relevant because in a generic two-parameter
family all other local bifurcations only happen at isolated
points in the parameter space, whereas fold bifurcations
occur on curves (called fold curves) that correspond to critical
parameter values. An analogous result holds when there are
more parameters. Thus, a fold bifurcation is the only type of
local bifurcation that is expected to be observed. The bifur-
cations that occur at isolated points act as organizing
centres for the fold bifurcations, as we explain below (§4).

3.3. Escape routes are determined by the unstable
manifolds of index 1 saddles

At a fold bifurcation (figure 4), cells are forced to transition out
of the now vanished attractor and into the adjacent attractor.
As the parameters approach the fold curve (the bifurcation),
the branch of the unstable manifold connecting the saddle to
the adjacent attractor approaches what we term the escape
route. As the parameters cross the fold curve the flow of the
cells leaving the disappeared attractor are directed along the
escape route into the newly available adjacent attractor. Of
course, in saying this we are ignoring stochastic effects
which could cause some cells to escape elsewhere.

Cell state transitions can also be caused by random fluctu-
ations in the position of the cell state in the landscape. These
can result in a cell spontaneously jumping over a stable mani-
fold and moving from one basin to another (figure 3c). This is
most likely if the starting attractor has a shallow basin of
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attraction and is near a saddle—hence the system is close to
undergoing a fold bifurcation. In this situation, a relatively
small fluctuation in a cell’s position in the landscape,
caused by stochastic fluctuations in gene expression, might
be sufficient to push it over the stable manifold and into
the basin of the adjacent attractor. Such a transition is most
likely to occur close to the saddle point as this represents
the lowest point on the stable manifold. For a discussion
about this and the relationship between the height of a
saddle above an attractor and the expected time to escape
the basin see, for example, [25,26]. Having escaped over the
saddle, the cell state will follow the unstable manifold
downbhill to the new cell fate.

Thus whatever the cause, bifurcation or stochastic escape,
the transition route to the new attractor will be determined by
the unstable manifold of the relevant saddle.

3.4. Global bifurcations

Apart from a fold bifurcation, which changes the decision top-
ology because a saddle and attractor disappear or appear,
there is only one other generic way that altering a single par-
ameter changes the decision structure. This is via a flip in an
unstable manifold (as in the binary flip landscape §2, figure
3). In this case, as the critical parameter value is approached,
the unstable manifold of a saddle S, which connects to attrac-
tor A, approaches the stable manifold of another saddle &'
(shaded panel in figure 3c). At the critical value it loses connec-
tion to A and forms a heteroclinic connection to S'. In a
heteroclinic connection, the flow of the system goes from the
saddle S towards the second saddle S'. Thus, we call S the
source saddle and S’ the sink saddle. This arrangement is not
structurally stable: any small perturbation breaks the connec-
tion. Beyond the critical value, the unstable manifold makes
a new connection to attractor B. We call this a flip bifurcation.

Whereas a fold bifurcation is local in that it only affects the
dynamics in a small region around the bifurcating rest point,
the flip bifurcation is global in that the resulting reconfiguration
of the landscape changes the global structure of the dynamics
because the unstable manifold now goes to a completely differ-
ent attractor. The flip is therefore known as a global bifurcation.
For such a flip bifurcation to occur the phase space needs to
be at least 2D. Importantly, for decision-making, the effect of
a flip bifurcation is only observed when, after the flip has hap-
pened, either the state stochastically escapes the attractor over
the saddle associated with the flipped unstable manifold or
when this saddle is destroyed in a fold bifurcation with the
attractor representing the progenitor state (or close to bifurcat-
ing). This will happen, for example, when a changing signal
weakens the attraction and causes the bifurcation.

3.5. Decision topology

A graph G can be constructed that describes all the possible
transitions in a generic landscape family and for systems with
not too many attractors we can list all possible decision topolo-
gies. This uses the fact that the escape route of a cell
transitioning from one state to another is determined by the
unstable manifold of the saddle associated with the initial
attractor and the destination attractor. It applies both to tran-
sitions resulting from a bifurcation and those caused by a
stochastic fluctuation. It does not depend upon the state space
being 2D and applies equally in higher dimensions (see §3.7).
In these graphs, the nodes correspond to the attractors and

an edge connects two nodes if there is a saddle that has a

one-dimensional (1D) unstable manifold that connects the
corresponding attractors.

In all of the cases discussed above, the escape route of a cell
transitioning from one state to another is determined by the
unstable manifold of the saddle associated with the initial
attractor and the destination attractor. Hence, even when a
decision is initiated by a stochastic fluctuation, the deterministic
structure of the dynamical system determines the decision out-
come. This means that, given an MS system, a graph can be
constructed that describes all possible transitions in a system.
In this graph, the nodes correspond to the attractors and an
edge connects two nodes if there is a saddle that has a 1D
unstable manifold that connects the corresponding attractors.
In higher dimensions, we have a similar situation (see §3.7).

To list all possible decision topologies, we first simplify
things by noting that if A and B are attractors, there can be
multiple connections between them but that all these connec-
tions correspond to the same decision, i.e. a transition from A
to B or vice-versa. We delete these repeats in the graph, keep-
ing just one. We also delete all connections where A = B. The
resulting graph is called the decision graph and its topology
the decision topology because it lists all possible transitions in
the system. In figure 5, we show all decision topologies for
MS systems with two, three and four attractors.

3.6. The landscape potential, alone, does not determine

cell state transitions
For MS systems with only rest points and no periodic orbits
or other complex recurrent behaviour such as chaos there is
always a Liapunov or potential function [14]. This is a function
that is stationary at rest points and decreases along trajec-
tories that are not periodic [27]. Thus, the trajectories flow
downhill with respect to this function.

The existence of a potential function provides the link
between dynamical systems theory and the Waddington
landscape view of differentiation and it offers an intuitive
way of picturing the dynamics. There is however an impor-
tant qualification to make, because, in all but the simplest
MS systems, a potential is not sufficient to determine the
dynamics. Indeed, as demonstrated in figure 6 the potential
function does not necessarily even determine the qualitative
form of the dynamics or the possible developmental tran-
sitions. Additional information is required to describe
accurately the dynamics and determine the decision struc-
tures (figure 6 and box 2).

A consequence of this is that it is important to consider
the dynamical system and not just the potential function.
The dynamical system contains extra information that is
needed to describe the dynamical behaviour. This means
that to construct a model from data it is necessary to fit the
dynamical model and not simply the potential. Defining a
potential is insufficient to determine the dynamics. For
model building, a practical approach is to use a Riemannian
metric in combination with the potential function as
explained in box 3.

3.7. Higher dimensional systems

For simplicity, we have focused on systems with a 2D phase
space. However, all the results we discuss are valid in the
n-dimensional case, with appropriate modifications [2].
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Figure 5. Decision structures with up to four attractors. Nodes correspond to attractors and edges to saddles with unstable manifolds that connect the corresponding
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Figure 6. The potential alone does not determine the dynamics. Two qualitatively different dynamical systems that have exactly the same landscape potential. The
potential, alone, does not determine the position of the unstable manifolds of the saddles and therefore does not determine to which attractor transitioning cells go.
In a gradient system using the standard Riemannian metric (see box 2) the trajectories are always perpendicular to the contours but this does not have to be the
case. Dynamical systems that flow downhill, from higher altitude to lower, can cross the contours at angles other than 90° (see box 2). In this example, we show a
modification that produces a flip in the unstable manifold of the saddle. This example shows that the potential does not determine the decision structure.

Beyond 2D, saddles can have higher dimensional stable and
unstable manifolds. However, in order to study decisions,
the saddles with multidimensional unstable manifolds are
generically irrelevant in that they are not involved in tran-
sitions from bifurcations or stochastic escape from attractor
basins. We only have to consider the saddles with 1D ones
(so-called index 1 saddles) and the connections they form
between attractors.

There is an important caveat to these statements.
Although in a generic MS system the 1D unstable manifolds
of index 1 saddles will always miss higher index saddles (i.e.
they do not converge to a higher index saddle but miss it and
go to an attractor), this is not the case for some systems if
multiple identical cells are involved. Such systems have a
symmetry (interchanging cells) and are therefore not generic
and in this case a 1D unstable manifold can be captured by a
higher index saddle. Of course, in reality cells will not be

identical and then the 1D unstable manifold will miss the
higher index saddle. However, it may still pass close to it
and in this case the higher index saddle may play an impor-
tant role in the dynamics of the system. For example, because
of the symmetry there is likely to be many attractors and the
higher index saddle may determine which of these the 1D
unstable manifold captures. This is the case for a recent
model for sensory bristle patterns in a fly system [29] and
for a model describing the allocation of cell fates between epi-
blast and primitive endoderm lineages in mouse embryonic
stem cell cultures in [24].

Nevertheless, the theory of generic local bifurcations of
codimension one and two (i.e. those we are concerned
with) is agnostic to the dimension of the phase space as is
the flip bifurcation. Moreover, in the situations considered
here the decision structures for systems with three and four
attractors in n dimensions agree with those in 2D [2].
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Box 3. Using gradient dynamics to model decision-making.

Smale’s result indicates that every MS system has a potential [3]. Building on this idea, it can be deduced that all rest-point-
only MS systems can be well represented by a gradient system [2]. In turn, it follows that gradient systems are an effective
tool to model decision-making systems. However, the result is somewhat sophisticated and requires careful discussion. By a
gradient model we mean one as in box 2 involving both a potential and a Riemannian metric. The local dynamics around a
rest point in a gradient system has a special structure because the Jacobian at these points is a symmetric matrix. For
example, in a general MS system, trajectories can spiral into an attractor or saddle, whereas this is forbidden in a gradient
system. Fortunately, it is possible to correct for this without changing the global dynamics substantially. Suppose that we
have a general MS system with only fixed points. Let F be any smooth potential for this system. Choose a small disc U;
around each of the rest points ;. These can be as small as you like. One can show (see [2] electronic supplementary material,
appendix A, [28]) that you can modify the system inside the U; so that the resulting system is a gradient system defined by
the potential F and some Riemannian metric. Moreover, it can be chosen so that outside the U; all the stable and unstable
manifolds of the rest points are changed from those of the original MS system by no more than an arbitrary small amount
that can be prescribed in advance. Importantly, the corresponding connections between attractors are preserved. The pertur-
bation inside the U; might be large but the type of rest point (e.g. attractor or saddle) is preserved. In particular, the decision
topology is maintained and the escape routes of the original and gradient systems are as close as you want.

This result indicates that if you want to postulate a model to represent a GRN with no periodic behaviour you might as
well use a gradient model. On the other hand, you must be prepared to allow for a Riemannian metric that is different from
the standard one (where the matrix G in box 2 is the identity matrix).

This approach to constructing quantitative parametrized models is further facilitated by using the canonical potentials
given by catastrophe theory [4,5,7]. Components of a model can be combined by a process of gluing canonical potentials
together to obtain a full model as carried out in [10,11]. These can be parametrized in a universal way by using the unfolding

parameters given by catastrophe theory [5]. For example, the family in figure 12b corresponds to

E(x, y;a,b) = x> — 2xy> — 0.4x> + ax + by +

This is essentially the elliptic umbilic from Thom's list of elementary catastrophes [4] with a term x*+ y* added to make it
compact, i.e. to make it have the right behaviour at infinity in the phase space.

xt
4

3.8. The link to stochastic systems

Stochasticity resulting either from intrinsic fluctuations,
which arise because of the limited number of molecules in
a cell, or extrinsic fluctuations, produced by the highly
dynamic and inhomogeneous cellular environment of the
cell, affect cell decision-making (e.g. [18,30-37]). How does
this link to our discussion? Perhaps the most sophisticated
models of cellular differentiation that take stochasticity into
account are those that use stochastic perturbations of dynami-
cal systems (e.g. [25]) or Markovian jump processes (e.g.
[38-40]). These usually contain a parameter (2 which rep-
resents the system size. This is related to the number of
particles in the system.

Under reasonable conditions such models give rise
to a specific potential, often called the quasi-potential.
Moreover as (2 grows these systems converge to a deter-
ministic dynamical system of the sort we have been
discussing for which the quasi-potential is a Liapunov func-
tion. The key properties of this quasi-potential concern its
relation to the stationary distribution u of the system and
the asymptotics of average times for a stochastic trajectory
to escape an attractor basin. The distribution u? gives the
probability of finding a trajectory in any part of the phase
space for large times and tells us where these are concen-
trated as time advances. Both of these features are related
to the depth of the basin in the quasi-potential [25]. As {2
increases, trajectories will be increasingly concentrated
around the attractors and they will take exponentially

longer to escape from any basin. These changes are described
by the quasi-potential.

When (2 is sufficiently large, which should be the case for
most biologically relevant systems, most noise-driven escapes
from a basin of attraction happen near an index 1 saddle [25].
The uphill part of the route to the escape, near the saddle
point, may be non-trivial (e.g. [36,41]) and can be found by
minimizing a certain action [25,32,37,41,42]. However, when
it gets over the saddle the dominant route is then down
the unstable manifold of the saddle. This links nicely to
the approach we have described as the noise structure of
the Markov jump process will naturally determine an order-
ing of the heights of the saddles of the deterministic system
[25] and this determines the qualitative structure of the
quasi-potential.

In addition to the relationship of the quasi-potential to
single transitions from one basin of attraction to another,
there is a process on a longer timescale describing the long-
term statistics of transitions between the different attractors
that is described by a global landscape obtained by gluing
local quasi-potentials together [25,26].

4. Characterizing two-parameter landscape
families

In the previous section, we presented the mathematical pic-
ture corresponding to a landscape and the most relevant
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Figure 7. Bistability: the standard cusp. (a) Catastrophe manifold and bifurcation set. In 2D parameter space, the blue and green lines represent the bifurcation set
with the colour of the line corresponding to the attractor involved in the fold bifurcation that occurs on that fold line. The dashed arrows indicate example paths in
parameter space, corresponding to a continuous change in an extrinsic signal. The 2D catastrophe manifold on top of the parameter space shows the fold lines and
the preimages of the different paths that are sketched with more detail in panels (b,¢,d). In the region R, (inside the cusp, with three sheets above), there are two
attractors A and B separated by a saddle S. When the parameters move out of R, to R; (outside the cusp, with one sheet above) by crossing 13, (respectively, 35)
the attractor A (respectively, B) and the saddle undergo a fold bifurcation which destroys A (respectively, B). Paths y; across the cusp, y; vertically through the cusp,
and y; around the cusp correspond to the hysteresis, pitchfork and cusp smooth swap diagrams (respectively). (b) Bifurcation diagram of a genetic switch. Change in
the rest points of a bistable system, as a parameter 0; changes. A single attractor (green) is present when 6= 0. When 6; crosses the bifurcation point (), a
saddle (dashed curve) and a new attractor (blue) appear. When the parameter crosses a second bifurcation point (5) the initial attractor (green) collides with the
saddle and disappear causing the cells in it to transition to the available attractor (blue). The coexistence of both attractors between o and 3 results in bistability
and hysteresis. (c) Pitchfork. As a parameter changes along 5, an initial attractor becomes a saddle point and two attractors appear at each side. The system is
symmetric with respect to the saddle point. (d) Smooth state swap. The path y5 around the cusp shows how cells transition from A into B without a step-like switch.
When the path crosses the bifurcation set, the bifurcating attractor is empty and hence no cells are forced to transition, instead, going around the cusp in R; changes

the gene expression in a smooth continuous way.

bifurcations that can happen. In this section, we discuss how
these elements define landscape families that depend on a set
of parameters. We will focus on the situations with one or
two parameters. Each parameter corresponds to a signal (or
a combination of signals). In order to model how these sig-
nals affect decision-making it is key to organize and classify
the possible families so one can resort to this dictionary
while building the model.

As mentioned above, when the parameter space is 2D, fold
and flip bifurcations occur on smooth curves in parameter
space. These fold and flip curves, respectively, constitute the
bifurcation set. They divide the parameter space into regions
of qualitatively equivalent landscapes and describe the
changes in dynamics that happen as the bifurcation set is
crossed. In addition, there are points where pairs of curves
meet. At these points (often called codimension two points)
more complex bifurcations occur. These points provide a
natural way to characterize landscape families because
they define the ‘corners’ of regions corresponding to qualitat-
ively equivalent landscapes and the families around them

represent interesting topologies. In the following sections, we
describe specific examples of two-parameter landscape
families and show how they can be understood by considering
codimension two bifurcation points.

4.1. Bistability: the standard cusp

Bistable systems are common in biology and have been used,
for example, to describe genetic toggle switches [43]. These
are often studied by varying a signal (parameter) and
noting the characteristic S- or Z-shaped bifurcation curve
(figure 7b). A typical genetic toggle switch exhibits hysteresis
and has two fold bifurcations (a and g figure 7b) where the
system switches between mono- and bi-stable regimes.

If there are two parameters, then fold bifurcations, like
those at o and g in figure 7b, occur on fold curves and
these can meet at a cusp point. This defines the standard
cusp family (figure 7a) [5,7]. Cusps are relatively common
and there are simple criteria that indicate their presence in
a system [2]. In this family, the bifurcation set consists of
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Figure 8. The choice landscape: the dual cusp. (a) Bifurcation set. The solid lines show the bifurcation set. The dashed arrow shows a path in parameter space. In
the region R, (inside the cusp, above), there are three attractors separated by two saddles. When the parameters move out of R, to R; (outside the cusp, below) by
crossing B3; (respectively, 13,) the central attractor (blue) and the right (respectively, left) saddle undergo a fold bifurcation which destroys the attractor. (b) The
path (y4) indicated gives a 1D representation of the choice family and the available transitions from the central attractor. The duality between the hysteresis diagram
and the middle part of this diagram is apparent. (c) The path (y,) indicated shows a pitchfork bifurcation where the central saddle becomes two saddles and a new

attractor. The duality between this diagram and figure 7c is apparent.

two fold curves (B4 and Bg) corresponding to the two differ-
ent attractors that meet at a point C where there is a cusp
(figure 7a). The curve defined by the bifurcation set separates
the parameter space into two regions R; and Rj. In R; there is
bistability, that is, a pair of attractors A and B connected by a
saddle S. Varying the parameters so as to cross Ba (respect-
ively, Bp) results in a fold bifurcation that destroys A
(respectively, B).

A bistable bifurcation produced by varying a signal can
be viewed as a path in the 2D parameter space of the stan-
dard cusp family. Examples are shown as y;, 7, and y; in
figure 7a and the cusp is the non-trivial generic way these
are organized. In figure 7, we identify paths that give the S
(or Z) shaped bifurcation diagram that produces hysteresis
(y1, figure 7b), the pitchfork where one state splits into two
new states (y,, figure 7c) and a smooth swap path that
allows cells to change state without a step-like transition
(y3, figure 7d). From these we see that the pitchfork is non-
generic because it requires the parameter to pass through
the cusp point exactly. Any small perturbation would cause
the path to miss it. The smooth swap path (figure 7d), on
the other hand, raises the interesting possibility that topologi-
cally equivalent genetic toggle switches can produce either
abrupt or smooth transitions in cell states depending on the
details of the parameters and the effect of signals.

4.2. The choice landscape: the dual cusp

The choice landscape (figures 3b and 8) is produced by
a family of landscapes with bifurcation sets that also com-
prise two fold curves meeting at a cusp point. However, in
this family of landscapes each curve corresponds to the fold
bifurcation of the central attractor with one of the two
saddle points. The point where the two curves meet is a
dual cusp. Thus, while the standard cusp describes the
addition (removal) of an attractor and a saddle to an
existing attractor, the dual cusp involves the addition
(removal) of an attractor and a saddle to an existing saddle.
In a system with no trajectories going to infinity, which is
the case for the systems we consider, peripheral attractors
are also present. The consequence of this is that the inside

of the dual cusp is a tristable region and the outside is
bistable (figure 8a).

4.3. Fold crossing points: a French flag
Instead of meeting at cusps, fold curves can also cross one
another. These represent points in parameter space where
there are two independent fold bifurcations (figures 94 and
10a). Fold crossings have several implications for the struc-
ture and behaviour of a landscape family. First, only certain
crossings can occur when they affect connected attractors
and some crossings introduce topological constraints that
imply the presence of cusps or dual cusps [2]. For example,
the dual cusp in figure 102 must be present because the
fold curve of the central attractor (blue) crosses the curves
of the adjacent two attractors (green and brown curves).
Moreover, the presence of the three crossings of the three
outer curves in figure 11b implies that there must be a
complex bifurcation set within them (blue deltoid) (see [2]
fig. 4 and electronic supplementary material, §§4-6). Hence
the identification of a specific fold crossing in a system can
be used to deduce additional features of a landscape family.
Second, if the two fold curves that cross correspond to
adjacent attractors in a (at least) three attractor family, a
model for a ‘French flag’ pattern results (figure 9b). In such
an arrangement, a system transitions between three states in
response to a smooth change in a parameter (signal). More-
over, such a landscape results in a system that is
multistable. Hence cell identity, once established, is predicted
to be maintained after withdrawal of the patterning signal-
ling. This contrasts with monostable systems which would
be dependent on continued signal provision to maintain
identities. Experimentally testing the effect of signal removal
would therefore distinguish between these possibilities.

4.4, The flip landscape: termination of flip curves

The flip landscape (figure 3d) is produced by a family of
landscapes in which the bifurcation set comprises a flip
curve that terminates on a fold curve. The fold curve rep-
resents the bifurcation involving the top saddle and the
progenitor state attractor. A flip curve ends when it meets a

70002207 7L Smo4 dpuaiu)  sisi/jeuinol/biobuiysijgndfianosjesol E



(@)

parameter space (b)

state
) /

fold
crossing

d
() @) S

=

Sy

Figure 9. Fold crossing points of bifurcation curves. (a) Bifurcation set. Landscapes around a fold crossing, corresponding to two adjacent attractors, one central
(blue), the others peripheral (green, red). The solid lines represent the bifurcation set with the colour of the line corresponding to the bifurcating attractor. (b) French
flag model. The path y in the 2D parameter space in (a) produces the bifurcation diagram shown in (b). Suppose that the cells are spatially organized in 1D with
coordinate x and all cells start in the green attractor. Cells are exposed to a signal S(x) which increases monotonically with x. If x is small so that the signal is small,
cells will stay in the green attractor. For larger values of x which will have higher values of the signal, the cells will transition to the blue or red attractor. Moreover,
cells will stay in the attractor when the signal decreases. Since the signal is a monotonic function of x this results in a French flag pattern. (c,d) Meinhardt boundary
model. When there are two signals, a landscape with a flip curve endpoint as in (d) can produce patterning in a similar fashion. In such an arrangement, a system
transitions between three states in response to a combination of two signals. In this model the physical space of the tissue is 2D: one dimension, x, has a gradient of
signal $; and the other, y, has a graded signal S,. All cells are assumed to start in the blue attractor. If signal S is small enough that the point (x, y) is below the
blue fold curve of the bifurcation set, then the cell stays in this attractor. If (x, y) is above the fold curve this attractor is destroyed in a fold bifurcation and the cells
transition to one of the other attractors. Because of the flip, when (x, y) is in the red region (respectively, green region) the state transition to the red (respectively,
green) attractor. Moreover, all cells stay in the respective attractor when the signal S, decreases. Consequently, after a pulse of the signals the spatial patterning is as
shown in (c) with three distinct regions of tissue.

fold curve and one of the two saddles involved in the hetero- a parametrized landscape family [2]. Using these rules, we
clinic connection is destroyed by a fold bifurcation. If the can build a list for the simplest landscape families with
bifurcating saddle is associated with the source attractor, three attractors and no trajectories going to infinity.

then the two curves meet transversally. Otherwise they
meet tangentially (figure 124). We call such points source

and sink flip ends. 1. With a dual cusp and no other cusps: figure 10a. The open-
The family of landscapes around the source end of a flip ended curves can extend to the boundary of parameter
curve can allow the proportional allocation of cells to two space or end in standard cusps (as is the case in the butter-
fates (figure 3). It can also be used to produce a pattern simi- fly catastrophe [4,7]). This landscape family contains the
lar to that of the Meinhardt boundary model [44,45] (figure binary choice landscape, paths that give the bifurcations
9c,d). Meinhardt suggested this model as a mechanism by observed in French flag patterning and a path correspond-
which cells in an imaginal disc could measure circumferential ing to the pitchfork bifurcation.
location and polarity by comparing two signals (figure 9c). 2. With a dual cusp and a standard cusp: figure 10c. Similar

to the previous landscape family, it contains the binary
choice landscape and paths through this also give the

4.5. Characterizing three attractor landscape families French flag patterning. In addition, it contains paths
Landscape families containing three attractors are of particu- that allow the cusp smooth state swap (see §4.1).
lar significance because of the prevalence of decisions 3. With a standard cusp and no other cusps: figure 11a. In this
involving three states: a progenitor choosing between one case, the possible transitions are highly restricted. State
of two committed states. We described two such landscapes A, which is not involved in the cusp, can only bifurcate
in §2. Here we consider what else can occur and how these towards the adjacent state B. States B and C, which are
are related to bifurcations. An understanding of how bifur- involved in the cusp, can exchange cells in both directions
cation sets for three attractor families relate landscapes to depending on parameter values. A cusp smooth state
one another provides the basis for a classification scheme of swap between C and B is also possible.
decision-making. 4. With a standard cusp and a flip curve: figure 12a. In this case,
A series of rules dictate how the different components of a a flip curve terminates at a source and a sink end. It con-
bifurcation set (fold and flip curves, cusps, dual cusps, flip tains the binary flip landscape. This is the landscape used

curve terminations and fold crossing points) fit together in in [10] to model the early development of the vulva in the
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Figure 10. Families with a dual cusp. (a,) Bifurcation sets. Two landscape
families with a dual cusp. The solid lines show the bifurcation set with the
colour of the line corresponding to the attractor involved in the fold bifur-
cation. The dashed arrows illustrate paths in parameter space. (a) The
region where there are three attractors is bounded by a dual cusp and
fold curves with crossings. The crossings that can occur are highly constrained
[2]. Path y; corresponds to a French flag landscape. (b) Symmetry breaking.
This bifurcation diagram corresponds to the path ¥, in (a). It is the dual cusp
version of the pitchfork bifurcation that occurs in the standard cusp. Like the
pitchfork, it is not generic but in the exceptional case where there is a
Z,-symmetry such as when the system describes the behaviour of two iden-
tical cells it becomes generic and describes an interesting symmetry breaking
bifurcation (see [24] for an example). (c) A three attractor region bounded by
a dual and standard cusp. Path -y, corresponds to the French flag landscape.
Path 3 corresponds to the cusp smooth state swap of the green and blue
attractors.

worm C. elegans. It also contains a subfamily that gives the
Meinhardt boundary model.

5. With flip curves and an outer boundary of three fold curves
with no cusps: figure 12b. In this family of landscapes, a
set of bifurcation curves that make a deltoid inside the
three attractor region implies two additional critical
points: a saddle and either a repellor or an attractor
(figure 12b). This also contains the binary flip landscape
and is equivalent to the landscape family used by
Corson & Siggia [8,9].

Importantly, families 1, 2 and 3 correspond to essentially 1D
dynamical systems because the three attractors are ordered in a
specific way that does not change on a smooth 1D invariant
manifold. This places a constraint on the allowable transitions
between cell states and the order in which these can take place.

4.6. Beyond three attractor families
The more attractors a system contains, the more distinct poss-
ible arrangements between attractors and unstable manifolds.

from B to C

from A to B

“caas®

from C to B

7

Figure 11. Families with one standard cusp and no other cusps. The land-
scape family with the solid lines representing the bifurcation set. The colour
of the line corresponds to the attractor involved in the fold bifurcation. Path ¢
corresponds to a French flag landscape. A cusp smooth state swap path is
also sketched.

For four attractors, there are six possible arrangements (figure
5). The case of four attractors organized around one repellor
corresponds to the family defined by the double cusp cata-
strophe. This landscape naturally appears as the coupling of
two bistable systems. A compactification of all elementary
catastrophes lives inside the family defined by the double
cusp catastrophe (a 7D family).

5. Beyond the metaphor: incorporating
experimental data with dynamics

5.1. Critical transitions and correlation

To connect the theory to experimental observations requires
ways to identify key landscape features from experimental
data. How can data be used to recognize attractors, bifur-
cations and unstable manifolds? Signature gene expression
patterns and clustering algorithms have been used to identify
attractors and end-states corresponding to specific cell types
[11,12,20,21,35,46-51]. In addition, much interest has focused
on identifying cells at decision points and understanding the
detailed structure of transitions at or near a bifurcation
[23,35,52]. The aim of these methods is to determine the criti-
cal points where cells change state and provide criteria that
identify these from experimental data.

Comparing correlations in gene expression between cells
has been used to define signatures of bifurcations and
attractors. Specifically, if g;; is the expression level of gene j in
cell i, the gene-gene correlations y;; are defined as the Pearson
correlations between g; and gy averaged over the relevant
cells. By contrast, for a given set of genes, the cell—cell correlation
is defined as the Pearson correlations between the vectors
ci=(g;) averaged over all cell pairs. During a transition, the
cell-cell correlation is predicted to be low but the absolute
value of the gene-gene correlation relatively high [35]. The
idea is that if the vectors ¢; are in a line, then the cell-cell cor-
relations are zero and the gene-gene correlations are all +1.

70002207 7L Smo4 dpuaiu)  sisi/jeuinol/biobuiysijgndfianosjesol E



(b)

==

Figure 12. Families with flip curves. (a,b) Bifurcation sets. The bifurcation sets for two landscape families: the solid lines indicate fold curves and the dashed lines
are flip curves. The colour of the fold line corresponds to the attractor involved in the fold bifurcation. Examples of landscapes in the family are sketched. Both
families contain the flip landscape in the areas marked in green. (a) One flip with a cusp. The two attractors connected to the sink saddle can undergo a cusp
bifurcation. (b) With no cusps. This family contain three instances of the flip landscape. The region enclosed by the blue deltoid corresponds to landscapes with an
extra pair of critical points: a saddle and either a repellor or an attractor (as shown in the blue box). Generically, the flip curves enter the deltoid avoiding the cusps
and terminate in one of the three smooth edges of the deltoid. This family is part of the compactified elliptic umbillic catastrophe.

The low cell-cell correlation can be clearly pictured as cells
spreading out along the low-dimensional unstable manifold
of the bifurcating saddle to reach the newly available attractor.
Conversely, the high gene-gene correlation is a result of cells
being squeezed onto the unstable manifold by the transversal
contraction of the flow. As cells then approach a new attractor
the gene-gene correlations of the cells should adopt values
characteristic of that attractor, reflecting the activating and
repressing characteristics of the part of the GRN that is
active at that attractor. Mojtahedi et al. [35] suggest that at
attractors the absolute value of the gene-gene correlation is
lower than at bifurcations while the cell-cell correlation is
relative high. Nevertheless, in [11] (Methods electronic sup-
plementary material, §2.3) the convergence to an attractor
correlation structure given by y;; is clearly observed and
each attractor has a distinct correlation structure. Hence,
whether low gene-gene correlations will be a reliable metric
for identifying attractors is less clear and is likely to depend
on the details of the attractors and the genes assayed.

Others have examined the effect on gene—gene corre-
lations resulting from the critical slowing down that occurs
as fold or pitchfork bifurcations are approached [23]. Further
work will be necessary to define clearly transition states and
decision points. This will help to devise and test the most
appropriate methods for identifying cells at attractors and
bifurcation points.

5.2. Dimension reduction and temporal ordering

Using data from a population of differentiating cells to deter-
mine the unstable manifold of a system could also provide a
link between data and theory. For this, techniques that use
single-cell transcriptome data to generate the so-called
pseudo-temporal orderings or trajectories are promising. A
key challenge in these methods is dimension reduction. Cur-
rent approaches use manifold learning techniques and
methods from graph theory to represent data as a neighbour-
hood graph embedded in two or three dimensions [53-56].
Trajectories are then inferred from these graphs (see [57] for
a review). The nodes of the graphs correspond to cells and
are connected if they are close in the higher-dimensional
gene expression space. Because these edges cannot be clearly
associated with dynamics and may be spurious and
noise-related, it is hard to decide whether cells are in fact
meaningfully connected or disconnected. Moreover, these
methods often rely on ad hoc techniques that produce
non-smooth mappings from high to low dimensions.
They therefore appear less appropriate for deducing the
dynamics. Nevertheless, RNA-velocity techniques [46,58]
might reduce the spurious connections problem. Methods
using partition-based graph abstraction, which localize such
graphs, are another promising approach [59] to tackle these
problems and might be combined with the approach
described below (§5.3). Mass transport approaches are
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currently popular (e.g. [60]) and in the developmental context
have been proposed as a way to introduce dynamics into
expression data [50]. However, the link between such
approaches and the dynamics of an underlying GRN is
currently unclear.

5.3. Gene-free normal form models fit to data

To begin tackling the challenge of connecting theory with data,
we and others [8-11] have used the idea of a normal form to
investigate experimental data. A normal form represents a
model with the minimum number of parameters necessary
to reproduce all the quantitative and qualitative dynamical
features of the data. In catastrophe theory and bifurcation
theory, this notion can be defined rigorously (e.g. [7]). The
strategy is to take advantage of the classification of simple sys-
tems described above (§4), to determine which has the most
plausible qualitative correspondence to the experimental
data and then use the normal form of the model (box 3) to
fit the data. Currently, fitting relies on using summary statistics
of the data that represent the proportions of cells associated
with specific attractors of the system. An optimization
approach, using stochastic simulation algorithms such as
approximate Bayesian computation using Markov chain
Monte Carlo (ABC MCMC, which uses comparison with
simulated data instead of a likelihood to assess the goodness
of fit of a certain parameter set) and particle-tracking algor-
ithms [61,62] in which data are split into test and validation
sets, is used to fit the parameters of the chosen normal form
and ensure models are not overfit. The resulting state variables
are not necessarily directly related to gene expression levels
and are somewhat abstract but they may be seen as nonlinear
functions of these expression levels. Nevertheless, the models
make quantitative predictions about proportions of specific
cell fates that are testable with new experiments.

This strategy has been taken to investigate the vulva
development of the worm C. elegans [8-10]. In this system,
six precursor cells with equal developmental potential
develop into three different fates depending on the signals
(a combination of EGF and Notch). The statistics of final
fate decision were used to analyse this system. Corson &
Siggia [8] constructed a model using the insight that a specific
configuration of three attractors that bifurcate appropriately is
needed. By using an essentially linear model with a nonlinear
wrapper, they were able to minimize the number of par-
ameters and focus on the essential ones. This enabled the
fitting of a large number of experimental observations and
the finding of a number of interesting new experimental
predictions. The full geometry of this model is equivalent
to the compactified elliptic umbilic family (figure 12b).
Using a geometric model based on catastrophe theory, a sim-
pler landscape family (figure 124) was demonstrated to be
sufficient to represent key characteristics of the wvulval
system [10]. A framework using an ABC method based on
sequential Monte Carlo sampling [61] was developed to fit
the parameters of the landscape and the effect of the different
signals on them.

The framework developed in these papers was extended
to build a landscape model describing the in vitro differen-
tiation of mouse embryonic stem cells into neural or
mesodermal lineages in response to WNT and FGF signalling
[11]. Single-cell (FACs) data for the expression of a set of rel-
evant genes was available at several time points during the

differentiation. From these measurements, summary statistics m

corresponding to the proportions of cells in each cell type at
each time point were used to fit the parameters. Here, a com-
bination of the choice and flip landscape was found to
describe the system (§2). The predictive power of the land-
scape model was demonstrated because simulations from
the model accurately predicted the outcome of previously
untested experimental conditions.

Adapting this approach to scRNA-seq data remains a
challenge because of the high dimensionality and complexity
of the data. However, the theoretical underpinnings provide a
universal dimension-independent topological structure for
attractors, index 1 saddles, and their unstable manifolds
(i.e. the decision structure) ([2] electronic supplementary
material, appendix A). This suggests a new approach to
dimension reduction in which the decision structure and
behaviour of a system is given by the topology and motion
of a model embedded in a few dimensions that captures
the important correlations in the data.

6. Biological implications

6.1. Waddington dynamics and classifying decision-
making

Developmental systems are characterized for being reproduci-
ble and robust to noise and insults. These characteristics align
with the concept of genericity in mathematical terms, where a
property remains when the system is subject to perturbations.
Hence, it is natural to assume that the mathematical systems
relevant for developmental modelling are generic in these
terms. This limits the possibilities to a small list and this list
can function as a classification scheme. For dynamical systems
with a finite number of rest points (e.g. attractors and saddles)
and no other recurrent behaviour (such as chaos), one obtains
a clear and detailed picture. Parametrized landscape families
have bifurcation sets made up of the components described
in §4. The non-bifurcating systems are MS and automatically
have a downhill landscape description close to that envisaged
by Waddington [1]. This classification scheme describes the
bifurcation structure of the relevant GRNs. Taken together
therefore, this suggests that it is reasonable to expect that
cell decision-making will be represented by one of the small
number of decision structures described in this way. These
archetypal landscapes provide a conceptual framework for
understanding the cell fate decisions and the operation
of GRNs.

This theory also highlights some under-appreciated
points about cell state transitions. First, it brings to the fore
the role of the unstable manifolds of index 1 saddles in deter-
mining the escape paths that underlie the transitions. This is
relevant even for noise-driven transitions and provides a
potential link between experimental data and theoretical
models. Second, in addition to local bifurcations, such as
the fold, global bifurcations, which include the heteroclinic
flip are likely to be important in cell decisions because they
change the decision structure. These facilitate certain types
of cell fate transitions, such as the proportional allocation of
a precursor population into two differentiated cell types.
Third, the landscape potential on its own is not sufficient to
determine the paths cells take and is therefore inadequate
to determine the decision structure or the changes in this
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structure caused by changing signals. Additional information
is needed to accurately represent cell dynamics and we refer
to the complete model as Waddington dynamics (figure 6).

An important aspect of the approach we describe is the
idea that the connections between cell states along which
transitions take place correspond to the unstable manifolds
of certain saddle points sitting between the system’s attrac-
tors. Thus, our discussion includes a precise idea of a
transition state. This is a distinguishing feature of the approach
with strong predictive content. It perhaps provides insight
into why evolution has chosen to construct complex cell
types by using signals to steer a sequence of transitions
between intermediate cell states (i.e. attractors) as a robust
strategy rather than some method more akin to using tran-
scription factors as in synthetic cellular reprogramming.
One can reasonably argue that in a complex stochastic dyna-
mical system this sequencing is a more natural, robust and
flexible strategy.

Although we have focused on systems with a 2D phase
space, in higher dimensions cellular decisions are represented
by attractors and the saddles with 1D unstable manifolds.
This means saddles with higher dimensional unstable mani-
folds can be ignored with the caveat mentioned in §3.7.
Because of this, the decision structures that arise in higher
dimensions have the same topology as those in 2D, provided
we assume the phase space is bounded and trajectories cross
the spherical boundary transversally. This is a non-trivial
result about the topology of the unstable manifolds of these
saddles which is explained in §3 of [2]). If the topology is
known the way the attractors are joined by saddles can be
deduced because these unstable manifolds divide the phase
space into the basins of attraction of the various attractors.

Moreover, although GRNs are not necessarily gradient
systems, MS theory and extension of this work [2,14] indicate
that gradient systems defined using a Riemannian metric can
be used to provide qualitatively accurate models of them (box
3) and fit to experimental data. This provides a systematic
approach to the sort of gene-free modelling first advocated
by Corson & Siggia [8,9] and provides parametrized quanti-
tative models that can be used to generate predictions
about new experiments [8,10,11].

These considerations indicate that certain types of data
will be particularly valuable. In particular, rather than focus-
ing exclusively on end states, data that are sensitive to the sort
of dynamical structures guiding the decision-making, such as
saddles and bifuractions, are particularly important. This
implies the need for temporal data and perturbation
experiments that probe key decision points.

6.2. Developmental stability, competence, potency and
commitment

As well as providing a classification scheme for cell fate
decision-making, landscape models also provide insight
into several well-established developmental concepts. The
Waddington picture (e.g. figure 1) suggests directionality to
development is given by the downhill orientation of the land-
scape. In a landscape family with changing signals, motion
would also be downhill. However, as the signals seen by a
cell change over time, and these alter the landscape, what
is downhill at one time could be uphill at other times. Simi-
larly, stochasticity introduces fluctuations to the landscape
and can therefore alter the trajectories that cells take through

the landscape. To accommodate this and orientate develop-
mental paths, the observed bifurcations can be used to
define a hierarchy for a given temporal signal that orders
the bifurcations into the sequence in which they are encoun-
tered by a cell. This provides a hierarchical structure to the set
of attractors a cell sees. This viewpoint is also relevant to the
idea of the potency of a cell. The hierarchical ordering of the
bifurcations indicates which fates remain available to a cell
located at a specific position within the landscape.

Two cells will undergo the same sequence of developmen-
tal decisions if the corresponding paths in parameter space
cross the bifurcation set in the same way. This also offers
insight into developmental stability: a developmental path is
stable if all nearby paths intersect the bifurcation set in a quali-
tatively similar way. A corollary to this is that paths that are
close to a cusp are likely to be unstable, as are paths involving
a pitchfork bifurcation. The French flag path in figure 9a is
stable but the symmetry breaking path y, in figure 10b is
not. Thus, the reproduciblity of development depends on
evolving systems that avoid regions close to cusps. On the
other hand, in different contexts, the instability near a cusp
might be useful. A population of cells in a similar state cross-
ing near a cusp enables the production a population with a
mixture of two distinct states. This could be used for pattern-
ing into two states or, by combination with stochasticity, for
bet hedging.

Landscape models and the relationships between bifur-
cation sets also provides an illustration for competence—the
ability of a cell to respond to an inductive signal by acquiring
a specific identity. The fates available for a cell to adopt are indi-
cated by the bifurcation set and the basins of attraction
neighbouring its current attractor. A new competence can be
acquired if a signal induces a bifurcation that leads to the cre-
ation of a new attractor neighbouring the current attractor.
For example, starting in the green attractor in R; of figure 7
and following the path indicated by y; would result in cells
acquiring competence to become the blue cell type, when
they crossed the fold curve B,4. In the R; region cells occupying
the green attractor would have the competence to adopt the
blue cell type but this would not be realized until fold curve
Bg is crossed.

Furthermore, commitment—the irreversible assignment
of a cell to a particular identity—can also be viewed from
the perspective of landscape bifurcations. If, following a
bifurcation, the landscape returns to its original configuration
when the original signalling regime is reinstated, a cell could
fall back into its original basin. This will happen if the new
attractor disappears when the original signal is reinstated,
or if the cell has had insufficient time to cross the saddle.
By contrast, given sufficient time after a bifurcation, transi-
tioning cells will have travelled down the unstable manifold
towards the new attractor. Reversing the signal in this situ-
ation will re-establish the old attractor, but now the cells
will be on the other side of the saddle and therefore com-
mitted to the new identity. Thus the saddle defines the
point of no return and determines when commitment
occurs. In this view, therefore, phenomena such as potency,
competence and commitment arise out of the dynamical
properties of the system and are a natural consequence of
the dynamical landscape of cell differentiation. Having this
picture in mind should enable the design of experiments
that distinguish these topological mechanisms from genetic
ones that enforce commitment.
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Figure 13. Three developmental spaces. A developing cell can be followed
through three distinct spaces. The location of a cell in tissue space gives the
coordinates of a cell in a developing embryo and indicates the signalling
environment to which it is exposed. The same cell can also be represented
in gene expression space by its molecular identity. In addition, the cell occupies
a position within cell decision space. This is the location in a Waddington
dynamics landscape, which represents its cell fate and describes the
decision-making process. The goal is to be able to link cells in these three
spaces and to map how a cell moves through them over time.

7. Outlook

The image of the Waddington landscape has become a power-
ful and intuitive metaphor for the process of developmental
decision-making. Here we have argued that applying tech-
niques from dynamical systems theory offers the opportunity
to turn this metaphor into quantitative and predictive
models, based on experimental data, that shed light on the
underlying biology. Not only are these methods applicable
to cells in developing tissues but they can also be used to
study the in vitro differentiation of stem cells and dysregulated
cellular behaviour in diseases such as cancer. To fully realize
this potential, further developments are necessary.

To construct a landscape model from experimental data,
the first step is the identification of the appropriate family
of landscapes. This can be challenging. However, the realiz-
ation that there are a limited set of simplest qualitatively
distinct geometries, each of which has distinct features, pro-
vides a framework for designing informative experiments to
distinguish between options. After determining the relevant
landscape family, building and analysing a parametrized
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