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Abstract
We draw a parallel between hashtag time series and neuron spike trains. In each case, the

process presents complex dynamic patterns including temporal correlations, burstiness,

and all other types of nonstationarity. We propose the adoption of the so-called local varia-

tion in order to uncover salient dynamical properties, while properly detrending for the time-

dependent features of a signal. The methodology is tested on both real and randomized

hashtag spike trains, and identifies that popular hashtags present regular and so less bursty

behavior, suggesting its potential use for predicting online popularity in social media.

Introduction
In this paper, we focus on the statistical properties of Twitter and, in particular, on the dynam-
ics and popularity of hashtags. Twitter is a micro-blogging service allowing users to post short
messages and to follow those published by other users. Messages often incorporate hashtags,
keywords identified by the symbol #, which users can track and respond to the message content
and makes the platform interactive. Hashtags play a significant role in information diffusion by
enhancing information and rumor spreading and consequently increase the impact of news.
Discussions on protests [1, 2] and political elections, advertisement of new products in market-
ing, announcements of scientific innovations [3], panic events such as earthquakes [4], and
comments on TV shows are some examples where hashtags are widely used. Additionally,
hashtags can be even used to track and locate crisis [5] and can spread under the influences of
both endogeneous factors, that is the propagation between Twitter users following each others,
and exogeneous sources such as TV and newspapers [6].

The statistical properties of Twitter and, more generally, of human activity, are character-
ized by a strong heterogeneity in different dimensions. First, human behavior is known to gen-
erate bursty temporal patterns, significantly deviating from independent Poisson processes, as
a majority of events take place over short time scales while a few events take place over very
large times. This property translates into fat-tailed distributions for the timings Δτ between
occurrences of a certain type of events, e.g. between two phone calls or two emails emitted by
an individual. For instance, the inter-event time distribution P(Δτ) for the timings between two
tweets of a user, or the use of a hashtag is well fitted by a power law such as P(Δτ)� Δτα [3].
The deviation from an exponential (uncorrelated) distribution may be either driven by
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complex decision-making and cascading mechanisms [7–9] or by the time dependency of the
underlying process, partly because of its intrinsic circadian and weekly rhythms [10, 11], as
described in Fig 1, or by a combination of these factors [12–15]. Importantly, the nonstationar-
ity of the signal is known to broaden P(Δτ) and therefore to artificially increase the value of
standard metrics, such the variance or the Fano factor, originally defined for stationary
processes.

In addition to temporal heterogeneity in Δτ, online human activity often generates a hetero-
geneity in popularity [16]. The popularity p of a hashtag is measured by the number of times
that it appears in an observation time window. While a majority of hashtags attracts no atten-
tion only very few of them propagate heavily [8, 17]. Understanding the mechanisms by which
certain hashtags or messages gain attention is a central topic of research in the study of online
social media [18]. Potential mechanisms for the emergence of this heterogeneity include forms
of preferential attachment and competition-induced forces [19–22] driven by the limited
amount of attention of users.

Our main purpose is to explore connections between temporal heterogeneity and heteroge-
neity in popularity. As a first contribution, we introduce a temporal measure for online human
dynamics, suited for the analysis of nonstationary time series to quantify bursts, regularity, and
temporal correlations. Originally defined for the study of inter-spike intervals of neurons [23–
27], the so-called local variation LV is then shown to identify deviations from Poisson (uncorre-
lated) processes and to help characterize successful hashtags.

Data mining and basic analysis

Data collection and basic overview
The data set has been collected via the publicly open Twitter streaming API between April 30,
2012, 10 pm and May 10, 2012, 10 pm. Only the geographical constraint has been applied as
follows: The actions of all Twitter users located in France have been considered to avoid the
existence of time differences between countries and regions, and no language filtering has been
applied. The time resolution is 1 second and multiple activity can be recorded in the same sec-
ond. During this time period, two major public events took place: An important political
debate held on May 2 and the French presidential election-2012 held on May 6. These events
are not the topic of this work, but they are clearly visible in the time series, as shown in Fig 1.

The total number of tweets, including retweets, captured during the data collection is
9,747,351. The total number of tweets including at least one hashtag is 2,942,239. Around 30%
of the tweets therefore contain a hashtag. The fact that hashtags are used in regular tweets or in
retweets is not specified. Moreover, any message (identical or not) considering at least one
hashtag is recorded. Due to the debate and the election taking place during the data collection,
the most popular hashtags are related to politics, as seen in Table 1. The time series of the hash-
tag study in this paper are provided in Supporting Information (S1 File). A total number of
473,243 individual users has been identified. Among those, 228,525 users published at least one
hashtag, e.g. almost half of the social network is associated with hashtag diffusion. To further
characterize the importance of hashtags in Twitter activity, we compare the total number of
seconds when any action is performed in the data set, 763,262 s� 8.8 days and thus 88% of the
total duration, to the number of seconds when at least one hashtag is published, 667,996 s�
7.7 days, that is 77% of the total duration. In any case, the hashtag data cover a majority of the
time window, even during off-peak hours. These numbers confirm the importance of hashtags
in the Twitter ecosystem and their prevalence in a variety of contexts.

Any type of human activity is influenced by circadian and weekly cycles. This observation
has been verified in recent years in a variety of social data sets, going from mobile phone [12]
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to online social media [13–15]. In addition, deviations from these cycles can help at detecting
atypical events such as responses to catastrophes [3–5]. Fig 1 in Introduction shows the total
number of tweets per minute over a sub-period of 6 days and confirms these findings, with
clear circadian patterns and two peaks during major public events related to the French presi-
dential election-2012. Besides this smooth periodic behavior, the data also exhibit a noisy signal
at a finer time scale, as shown in the inset of Fig 1. In the following, we will analyze the proper-
ties of these complex time series, by decomposing it into groups of hashtags depending on their
popularity, and uncover temporal statistical differences between these groups.

Heterogeneity in popularity of hashtags
The success of a hashtag can be measured by its popularity p, defined as its number of occur-
rences, and equivalent to its frequency. Fig 2 presents the Zipf-plot and the probability density
function (PDF) of p, for the 295,697 unique hashtags observed in the data set. The Zipf-plot
[Fig 2(a)] indicates that more than half of the hashtags (� 60%) appears just once in the data
set, with p = 1. Moreover, around 83% of the hashtags has p< 5, in the pink-colored region in
the last (right) rectangle of Fig 2(a). For moderate values of p, if we set a threshold of p to 1000

Fig 1. Circadian pattern of tweeting activity. Increasing amount of tweets frommidday (12:00) to midnight (00:00) is shown in the yellow shaded regions.
Significant decays of the activity are observed during nights. The activity increases during mornings as shown in purple shaded rectangles. In the inset, we
show the temporal evolution at a finer scale, where fluctuations are visible. The data exhibit two peaks: The first one is in the evening of a political debate, on
May 2 2012 and the second is on the French presidential election day, May 6 2012.

doi:10.1371/journal.pone.0131704.g001
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with an upper-bound to 25000, only 0.15% of the hashtags fits in the yellow-colored rectangle.
Finally, the top hashtags with p> 25000, in the red-colored rectangle, are very rare (�
0.0001%), but more frequent than would be expected for values so large as compared to the
median. These observations are confirmed in Fig 2(b), where we show the probability distribu-
tion of p, P(p) in a log-log plot. P(p) is a clear example of a fat-tailed distribution associated
with a strong heterogeneity in the system.

The heterogeneity in p has been already observed [8, 11, 16, 17]. A mechanism proposed for
its emergence is the competition between information overload and the limited capacity of
each user [19–22], sometimes coupled with cooperative effects [8, 9]. It has been also shown
that hashtags having unique textual features become more popular than hashtags presenting
common textual features [28]. In this paper, we are not interested in the origin of the heteroge-
neity, but in its relation with the temporal characteristics of hashtags.

Hashtag spike trains

Temporal heterogeneity
We will draw an analogy between hashtag dynamics and neuron spike trains. To this end, we
introduce standard methods from the spike train analysis into the field of hashtag dynamics.
Hashtags are keywords associated to different topics, which can be created, tracked and reused
by users. Their popularity and unambiguity make them an essential object for information dif-
fusion in Twitter. The statistical description of neuron spike sequences is crucial for extracting
underlying information about the brain [29]. It was originally believed that in vivo cortical

Table 1. Ranking of popular hashtags. The first 40 most used hashtags are listed with the corresponding
popularity p. The hashtags related to the debate and the presidential election such as ledebat, hollande, sar-
kozy, votehollande, france2012, and présidentielle are recognized.

rank hashtag popularity p rank hashtag popularity p

1 ledebat 180946 21 ns 18715

2 hollande 143636 22 ps 18492

3 sarkozy 116906 23 teamfollowback 18476

4 votehollande 99908 24 ggi 17734

5 radiolondres 97622 25 bastille 16056

6 bahrain 71571 26 présidentielle 13799

7 fh2012 67759 27 afp 13710

8 avecsarkozy 67549 28 france2 12906

9 ledébat 66668 29 syria 11594

10 ff 49499 30 psg 10566

11 ns2012 40337 31 sarko 10503

12 ump 25125 32 tf1 10201

13 thevoice 24696 33 mutualite 10093

14 fr 24249 34 egypt 9970

15 bayrou 23029 35 lavictoire 9949

16 fh 22369 36 fn 9763

17 rt 21598 37 franceforte 9626

18 france2012 20635 38 placeaupeuple 9211

19 reseaufdg 19488 39 jemesouviens 9098

20 france 19268 40 bfmtv 9010

doi:10.1371/journal.pone.0131704.t001
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Fig 2. Heterogeneity in the hashtag popularity p is shown in (a) Zipf-plot and (b) probability density function (PDF), P(p). (a) Diversity in p (frequency)
is visible in a power-law scaling in the log-log plot. We rank hashtags from high p (left) to low p (right). Different colored shaded rectangles highlight the value
of p from red and orange (high p) to purple and pink (low p). The percentages describe the overall contributions of the corresponding rectangles. (b) Similarly,
P(p) obeys a slowly decaying function and presents a power-law distribution with a fat tail. The same colored schema in (a) is applied to visualize the
contributions of different values of p.

doi:10.1371/journal.pone.0131704.g002
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neurons behave as time-dependent Poisson random spike generators, where successive inter-
spike intervals are independently chosen from an exponential distribution with a time-depen-
dent firing rate [30]. However, more recent observations have shown that the inter-spike inter-
val distribution exhibits significant deviations from the exponential distribution, which has led
to the construction of appropriate tools to describe neuron signals [23–27].

Similarly, a hashtag spike train is defined as the sequence of timings at which the concerned
hashtag is observed in Twitter. In this framework, we do not specify the type of dynamics of
hashtags, endogeneous or exogeneous [6], i.e. endogeneous, hashtag diffusion among members
of the social network, or exogeneous, the diffusion driven by external factors such as TV and
newspapers, but only in the timings. Each hashtag thus generates a unique hashtag spike train
with a characteristic popularity p. As a first basic indicator, in Fig 3(a) and 3(b) we show the
inter-hashtag spike interval cumulative and probability distributions, CDF(Δτ) and P(Δτ),
respectively. To avoid deforming the distributions artificially because of the heterogeneity in p,
we classify CDF(Δτ) and P(Δτ) in classes depending on p, illustrated by different colors in Fig
2. We observe similar behavior across the classes, as P(Δτ) deviates strongly from an exponen-
tial distribution (Poisson), P(Δτ) = ξe−ξΔτ, where ξ is a firing rate (frequency and so p in our
concept) at which hashtags appear. Instead, we observe fat-tailed distributions [3, 7, 12, 16, 31–
33] as shown in Fig 3(b) for high and moderate p. As mentioned in Introduction, this deviation
may either originate from temporal correlations or non-stationary patterns, making the system
different from a stationary and an uncorrelated random signal [34–37]. Recently and unlikely,
a stochastic model considering Poisson processes also suggests a broad distribution of the
dynamics of brand names in Twitter [15].

Real and randomized data sets
We will analyze two sets of data, which we now describe: The empirical data set, directly com-
ing from the data, and a randomized data set, serving as a null model in our analysis.

The real data set contains one spike train per hashtag, as illustrated in Fig 4(a). The time res-
olution of the spikes is the same as that of the data set, that is 1 second. In situations when mul-
tiple spikes of the same hashtag take place at the same time only one event is considered. The
statistics of such events are provided at the end of this subsection. In each spike train, the
appearance time of the spikes is ordered from the earliest time to the latest time.

The random data set is randomized version of the real data set, where each spike train of
size p generates a spike train of the same size with random times. In practice, we first combine
all hashtag spike trains and obtain one merged hashtag spike train as illustrated in Fig 4(b).
This train carries the full history of all hashtags and, importantly, reproduces the nonstationary
features of the original data in the presence of temporal correlations, burstiness, and the cyclic
rhythm. As before, if two or more spikes generated in the same time, only one spike is shown
in that time in the merged spike train, e.g. see the black spikes in Fig 4(b).

Randomization is performed by permuting elements, as shown in Fig 4(c), for instance by
using randperm(T, p) in Matlab. Here, T represents the full matrix of times in the merged spike
train and p is the desired popularity, number of total spikes in a train. The permutation proce-
dure generates p times uniformly distributed unique numbers out of T and these numbers
define the artificial spike train, e.g. . . ., tri�1, t

r
i , t

r
iþ1, . . ., as shown in Fig 4(c). In our data set, p

� T is always verified, as the maximum p is 180,900 and the length of T is 667,996. This proce-
dure is applied to each spike train of size p [Fig 4(d)]. Generating independent, yet time-depen-
dent events, the procedure is expected to create time-dependent Poisson random processes, P
(Δτ, t) = ξ(t)e−ξ(t)Δτ, where the firing rate ξ(t) in this case explicitly depends on the time of the
day and of the week.
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Fig 3. The cumulative (a),CDF(Δτ), and probability (b), P(Δτ), distributions of the inter-hashtag spike intervals.We observe that P(Δτ), for different
classes of hashtags distinguished by their popularity, exhibits non-exponential features. The different colors correspond to those in Fig 2. The legend
provides the average popularity hpi in each hashtag class. The dash lines indicate the positions of 1 day, 2 days, and 3 days, where P(Δτ) gives peaks for low
p (pink symbols). The binning is varied from 8 minutes to 2 hours depending on p, e.g. 8 min. for high p (red-orange), 1.5 hour for moderate p (yellow-green-
blue-purple), and 2 hours for low p (pink). All P(Δτ) present maxima at 1 second, which is not shown to describe tails in a larger window.

doi:10.1371/journal.pone.0131704.g003
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Fig 4. Real and artificial hashtag spike trains. (a) As an illustration of different hashtag spike trains
representing different types of hashtag propagation of the data set. (b) Merging hashtag spike trains from the
real data. The black spikes describe that only one activity is counted if multiple activities occur at the same
time. (c) Randomization procedure by randperm (Matlab). T contains full hashtag activity of the data set. The
randperm gives a matrix with p elements, p unique independent numbers out of T, and constructing random
time series . . ., tri�1, t

r
i , t

r
iþ1, . . . from full hashtag activity matrix T. (d) The resultant artificial hashtag spike train.

doi:10.1371/journal.pone.0131704.g004
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Statistics of multiple tweets in 1 second. We detect multiple occurrences in 1 second for 6661
hashtags. Fig 5 presents the probability distribution P(ch) of observing ch occurrences of a hash-
tag during one second for different hashtag popularity class. Even though ch > 1 occurs rarely,
we observe that this possibility is more probable for popular hashtags (red open circles), as
expected. For the most popular hashtag, ledebat, one findsmax(ch) = 40.

Local variation
The time series of spike trains are inherently nonstationary, as shown in Fig 1. For this reason,
metrics defined for stationary processes are inadequate and might lead to incorrect conclu-
sions. For instance, the non-exponential shapes of the inter-event time distribution P(Δτ) in

Fig 5. The probability distribution of count of hashtag activity per second P(ch).We show that, except for the top most popular hashtags listed in
Table 1 with ranking 1–11 and presented here in red symbols, multiple activity in 1 second is very rare. The different colors correspond to those in Figs 2 and
3. The legend provides the average popularity hpi in each hashtag class.

doi:10.1371/journal.pone.0131704.g005
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Fig 3 might originate from either correlated (and maybe even collective) dynamics or nonsta-
tionarity of the hashtag propagation. Similarly, statistical indicators based on this distribution,
such as its variance or Fano factor, might be affected in a similar way. For this reason, we con-
sider here the so-called local variation LV, originally defined to determine intrinsic temporal
dynamics of neuron spike trains [23–27].

Unlike quantities such as P(Δτ), LV compares temporal variations with their local rates and
is specifically defined for nonstationary processes [27]

LV ¼ 3

N � 2

XN�1

i¼2

ðtiþ1 � tiÞ � ðti � ti�1Þ
ðtiþ1 � tiÞ þ ðti � ti�1Þ

� �2

ð1Þ

Here, N is the total number of spikes and . . ., τi−1, τi, τi+1, . . . represents successive time
sequence of a single hashtag spike train. Eq 1 also takes the form [27]

LV ¼ 3

N � 2

XN�1

i¼2

Dtiþ1 � Dti
Dtiþ1 þ Dti

� �2

ð2Þ

where Δτi+1 = τi+1−τi and Δτi = τi−τi−1. Δτi+1 quantifies the forward delay and Δτi represents
the backward waiting time for an event at τi. Importantly, the denominator normalizes the
quantity such as to account for local variations of the rate at which events take place. By defini-
tion, LV takes values in the interval [0:3].

The local variation LV presents properties making it an interesting candidate for the analysis
of hashtag spike trains [23–27]. In particular, LV is on average equal to 1 when the random pro-
cess is either a stationary or a non-stationary Poisson process [23], with the only condition that
the time scale over which the inverse firing rate 1/ξ(t) fluctuates is slower than the typical time
between spikes. Deviations from 1 originate from local correlations in the underlying signal,
either under the form of pairwise correlations between successive inter-event time intervals,
e.g. Δτi+1 and Δτi which tend to decrease LV, or because the inter-event time distribution is
non-exponential. An interesting case is given by Gamma processes [23, 25]

P ðDt; t; x; kÞ ¼ ðxkÞkDtðk�1Þe�xkDt=GðkÞ ð3Þ

where κ is called a shape parameter and determines the shape of the distribution, ξ is a firing
rate (frequency) as previously defined, and Γ is the Gamma function. Here, ξ and κ are the two
parameters of the Gamma process and both can be time-dependent. While ξ determines the
speed of the dynamics, κ controls for the burstiness (irregularity) of the spike trains. Assuming
that events are independently drawn, the shape factor is related to LV as follows [23, 25]

hLVi ¼
3

2kþ 1
ð4Þ

Here, the brackets describe the average taken over the given distribution [23]. When κ = 1, an
exponential is recovered, and one finds hLVi = 1 as expected. Smaller values of κ increase the
variance in Δτ and therefore its burstiness, making LV larger than 1. On the other hand, larger
values of κ decrease the variance of Δτ and the burstiness of the process, making hLVi � 0
smaller than 1.

We measure LV of hashtag spike trains and group the values depending on the popularity p
of their hashtags as was done in Figs 2 and 3. Fig 6 shows scatter plots of LV for the real data set
(a), the empirical sequence . . ., τi−1, τi, τi+1, . . ., and the random data set (b), the random
sequence . . ., tri�1, t

r
i , t

r
iþ1, . . ., on linear-log plots. Different colors are used to distinguish the

different groups and the inset legend provides the average popularity hpi in the groups.
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A more readable representation is provided in Fig 7, where we show histograms P(LV) of
the values of LV, for the two data sets and for the distinguished hashtag groups in p. The results
clearly show that LV fluctuates around 1 in the random data set [Fig 7(b)], as expected for a
time-dependent Poisson process. On the other hand, LV systematically deviates from 1 in the
original data set [Fig 7(a)], where temporal correlations and bursts are expected to be present.

These observations are confirmed in Fig 8(a), where we plot the mean μ(LV) of LV, with
error bars, as a function of hpi. LV of the original data (blue circles) indicates that high impact
hashtags (high p) are associated with lower values of LV suggesting more homogeneous and
regular time distributions. The results encourage the potential use of LV as a metric not only to
capture deviations from Poisson temporarily uncorrelated processes (red squares), but also to
identify distinct statistical properties generated specifically in high p. Moreover, Fig 8(b) pres-
ents the statistical differences between the real and the random spike trains in detail. The devia-
tions from Poisson processes where μ0(LV) = 1 are calculated by z =
mðLVÞ � m0ðLVÞ=sðLVÞ=

ffiffiffi
n

p
with the standard deviations of LV, σ(LV), and the number of the

data points given in the distributions in Fig 7, n. We observe that z−values for the random
spikes (red squares) are almost equal to 0, excluding in high p, indicating the agreement
between Poisson signals and our random spike trains, which is not the case for the real trains
(blue circles) giving z ≇ 0 in any of hpi.

To conclude, we perform an analysis to test the persistence of the temporal characteristics
of the hashtags, as measured by LV, through time. To do so, we divide each hashtag time series
into two equal time series. The resulting values of local variations are LV(t1) for the first half of
a spike train and LV(t2) for the second half of the train, and then we calculate the Pearson cor-
relation coefficient r(LV(t1), LV(t2)) between these values [38]. In Fig 9(a), we show the linear
relations between LV(t1) and LV(t2) for different p classes and Fig 9(b) presents r(LV(t1), LV(t2))
as a function of the average popularity hpi on a linear-log plot. Both indicate that the values of
LV for the same hashtags at different times are significantly and temporarily correlated.

Fig 6. The local variation LV of hashtag spike trains versus popularity p on a linear-log plot. Each color and symbol summarized in the legend present
different range of p: Low p, pink and purple colors, and moderate p, blue, green, and yellow colors, and then high p, orange and red colors. In addition, the
average p, hpi, indicated in the legend ranks colors and symbols quantitatively. (a) Hashtag spike trains of the data set. (b) Artificial (randomized) hashtag
spike trains.

doi:10.1371/journal.pone.0131704.g006
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Fig 7. Probability density function (PDF) of the local variation LV of real hashtag propagation (a) and
random hashtag time sequences (b). Two distinct shapes are visible: (a) From high p to low p, the peak
position of P(LV) shifts from low values of LV to higher values of LV. (b) P(LV) always peaks around 1 for the
random sequences generated by artificial hashtag spike trains. The same color coding is applied as already
used in Fig 6.

doi:10.1371/journal.pone.0131704.g007
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Fig 8. Statistical inference of LV and comparison between the real and the random hashtag spike
trains. (a) Mean μ of the local variation LV of single hashtag time series versus the logarithmic average
popularity log10hpi. The real hashtag propagation is described in blue circles, whereas red squares represent
randomly selected hashtag activity from the real data set. The arrow indicates the decay of μ(LV) when hpi
increases, which shows that popular hashtags propagate regularly on the contrary to moderately popular
hashtags presenting bursty time sequences. The bars indicate the corresponding standard deviations σ(LV).
(b) A standard z−values versus log10hpi. While the random trains (red squares) with z� 0 show the evidence
of Poisson signals with mean μ0(LV) = 1, large and non-zero values of z for the real trains (blue circles)
suggest the presence of temporal correlations.

doi:10.1371/journal.pone.0131704.g008
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Fig 9. Linear correlation of LV through real hashtag spike trains. (a) The linear relations of the first and the second halves of the empirical spike trains,
LV(t1) and LV(t2), respectively, are investigated. The legend ranks hpi in different colors and symbols. (b) The Pearson correlation coefficient r(LV(t1), LV(t2))
between these quantities shows that while the linear correlations through moderately popular spike trains give maximum values, r reaches the minimum
values for both bursty (high LV and low p) and regular (low LV and high p) spike trains.

doi:10.1371/journal.pone.0131704.g009
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Interestingly, we observe that while bursty (low p) and regular (high p) signals give small r, the
spike trains with moderate p provide the largest values of r, indicating more uniform temporal
behavior through the individual trains in moderate p.

Discussion
The main purpose of this paper is to introduce a statistical measure suitable for the analysis of
non-stationary time series, as they often take place in online social media and communications
in social systems. As a test case, we have focused on the dynamics of hashtags in Twitter. How-
ever, the same methodology could be also applied to the other types of correlated, bursty, and
non-stationary signals, for instance the dynamics of cascades in Twitter and Facebook or
phone call activity.

Instead of measuring standard statistical properties of noisy hashtag signals such as the
inter-event time distribution, the variance or the Fano factor, conventionally applied to charac-
terize non-stationarity of a signal, we have focused on the local variation LV, a metric capturing
the fluctuations of a signal as compared to a local characteristic time. This measure, previously
defined for neuron spike train analysis, nicely uncovers the regularity and the firing rate of the
trains [23–27] and so helps to identify local temporal correlations. It is important to stress that
the current analysis exclusively focuses on properties of time series and considers neither the
mechanisms leading to the observed statistical dynamic properties nor the effects of the under-
lying topology, e.g. through following-follower relations. Interesting lines of research would
study the relation between LV and the underlying topology [39] and would consider diffusive
models, for instance the Hawkes process [40, 41]. In addition, both neurons [30] and hashtags
can be driven by multiple firing rates and LV analysis associated to Gamma distributions would
provide more concrete results on hashtag spike trains, as done for neuron spikes [25].

We should also note that the finite temporal resolution of the data (1 sec), which induces
the fact that multiple events per time window are neglected, makes LV artificially small for pop-
ular hashtags. In an extreme case, the time series is indeed regular, with events taking place
every second. In this work, we have therefore carefully verified that the fluctuations in LV are
not artificially driven by these limitations. To this end, we have compared the values of LV in
the empirical data with those of a null model. We observe a small decay of LV for popular hash-
tags in the null model (see Fig 8), but this decay is much more limited than the one observed in
the empirical data, e.g. LV = 0.89 for hpi � 105 in the null model while it is equal to LV = 0.54
for the real data. In addition, a decay of LV in the real hashtag data is also present in moderately
popular hashtags, where multiple events per second are very rare. An interesting research
direction would be to generalize the definition of local variation to allow for the analysis of
multiple events per time window, thereby evaluating the dense time series more precisely.
Finally, in a finite time window, as observed in the empirical data, the statistics of high fre-
quency hashtags is much better than that of low frequency hashtags, simply because the former
occurs many more times than the latter. For this reason, the measurements of LV for less popu-
lar hashtags are more subject to noise.

The empirical analysis also reveals an interesting pattern observed in the data, as more pop-
ular hashtags tend to present more regular temporal behavior. This lack of burstiness ensures
that popular hashtags do not disappear from the social network for very long periods of time,
consequently allowing for a regular activation of the interest of Twitter users. These findings
are reminiscent of a recent observation in numerical simulations showing that burstiness hin-
ders the size of cascades [42], and should be incorporated into the modeling of theoretical
information diffusion models, in particular threshold [43] and stochastic [44] models, on tem-
poral networks.

Local Variation and Popularity in Twitter

PLOS ONE | DOI:10.1371/journal.pone.0131704 July 10, 2015 15 / 18



Supporting Information
S1 File.
(ZIP)

Acknowledgments
We thank Takaaki Aoki and Taro Takaguchi for their useful comments and Lionel Tabourier
for providing preliminary data set. This work was supported by grant number: F.N.R.S MIS
F4527.12 48888F3 (Grant holder: RL, Funding receiver: CS—http://www.fnrs.be/), the EU 7th
Framework OptimizR Project: 48909A2 CE OPTIMIZR (Grant holder: RL, Funding receiver:
CS—http://optimizr.eu/), and the National Institute of Informatics Tokyo (http://www.nii.ac.
jp/en/) for partial traveling support. This funder had a role in preparation of the manuscript,
but did not have a further role in study design, data collection and analysis or decision to
publish.

Author Contributions
Conceived and designed the experiments: CS RL. Performed the experiments: CS. Analyzed
the data: CS. Contributed reagents/materials/analysis tools: RL. Wrote the paper: CS RL.

References
1. Borge-Holthoefer J, Rivero A, García I, Cauhé E, Ferrer A, Ferrer D, et al. Structural and Dynamical

Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study. PLoS ONE.
2011 08; 6(8):e23883. doi: 10.1371/journal.pone.0023883 PMID: 21886834

2. González-Bailón S, Borge-Holthoefer J, Rivero A, Moreno Y. The Dynamics of Protest Recruitment
through an Online Network. Sci Rep. 2011 12; 1:197. doi: 10.1038/srep00197 PMID: 22355712

3. Domenico MD, Lima A, Mougel P, Musolesi M. The Anatomy of a Scientific Rumor. Sci Rep. 2013 10;
3:2980. Available from: http://dx.doi.org/10.1038/srep02980.

4. Sasahara K, Hirata Y, Toyoda M, Kitsuregawa M, Aihara K. Quantifying Collective Attention from Tweet
Stream. PLoS ONE. 2013 04; 8(4):e61823. doi: 10.1371/journal.pone.0061823 PMID: 23637913

5. Kenett DY, Morstatter F, Stanley HE, Liu H. Discovering Social Events through Online Attention. PLoS
ONE. 2014 07; 9(7):e102001. doi: 10.1371/journal.pone.0102001 PMID: 25076410

6. Deschâtres F, Sornette D. Dynamics of book sales: Endogenous versus exogenous shocks in complex
networks. Phys Rev E. 2005 Jul; 72:016112. doi: 10.1103/PhysRevE.72.016112

7. Barabási AL. The origin of bursts and heavy tails in human dynamics. Nature. 2005 05; 435:207–211.
doi: 10.1038/nature03459 PMID: 15889093

8. Coscia M. Competition and Success in the Meme Pool: A Case Study on Quickmeme.com; 2013. Avail-
able from: http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/5990.

9. Myers SA, Leskovec J. Clash of the Contagions: Cooperation and Competition in Information Diffusion.
In: Data Mining (ICDM), 2012 IEEE 12th International Conference on; 2012. p. 539–548.

10. Malmgren RD, Stouffer DB, Motter AE, Amaral LAN. A Poissonian explanation for heavy tails in e-mail
communication. Proceedings of the National Academy of Sciences. 2008; 105(47):18153–18158.
Available from: http://www.pnas.org/content/105/47/18153.abstract. doi: 10.1073/pnas.0800332105

11. Lambiotte R, Ausloos M, Thelwall M. Word statistics in Blogs and {RSS} feeds: Towards empirical uni-
versal evidence. Journal of Informetrics. 2007; 1(4):277–286 Available from: http://www.sciencedirect.
com/science/article/pii/S1751157707000582. doi: 10.1016/j.joi.2007.07.001

12. Jo HH, Karsai M, Kertész J, Kaski K. Circadian pattern and burstiness in mobile phone communication.
New Journal of Physics. 2012; 14(1):013055. Available from: http://stacks.iop.org/1367-2630/14/i=1/a=
013055. doi: 10.1088/1367-2630/14/1/013055

13. Myers SA, Leskovec J. The Bursty Dynamics of the Twitter Information Network. In: Proceedings of the
23rd International Conference onWorld WideWeb. WWW '14. New York, NY, USA: ACM; 2014.
p. 913–924. Available from: http://doi.acm.org/10.1145/2566486.2568043.

14. França U, Sayama H, McSwiggen C, Daneshvar R, Bar-Yam Y. Visualizing the “Heartbeat” of a City
with Tweets. ArXiv e-prints. 2014 Nov;.

Local Variation and Popularity in Twitter

PLOS ONE | DOI:10.1371/journal.pone.0131704 July 10, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0131704.s001
http://www.fnrs.be/
http://optimizr.eu/
http://www.nii.ac.jp/en/
http://www.nii.ac.jp/en/
http://dx.doi.org/10.1371/journal.pone.0023883
http://www.ncbi.nlm.nih.gov/pubmed/21886834
http://dx.doi.org/10.1038/srep00197
http://www.ncbi.nlm.nih.gov/pubmed/22355712
http://dx.doi.org/10.1038/srep02980
http://dx.doi.org/10.1371/journal.pone.0061823
http://www.ncbi.nlm.nih.gov/pubmed/23637913
http://dx.doi.org/10.1371/journal.pone.0102001
http://www.ncbi.nlm.nih.gov/pubmed/25076410
http://dx.doi.org/10.1103/PhysRevE.72.016112
http://dx.doi.org/10.1038/nature03459
http://www.ncbi.nlm.nih.gov/pubmed/15889093
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/5990
http://www.pnas.org/content/105/47/18153.abstract
http://dx.doi.org/10.1073/pnas.0800332105
http://www.sciencedirect.com/science/article/pii/S1751157707000582
http://www.sciencedirect.com/science/article/pii/S1751157707000582
http://dx.doi.org/10.1016/j.joi.2007.07.001
http://stacks.iop.org/1367-2630/14/i=1/a=013055
http://stacks.iop.org/1367-2630/14/i=1/a=013055
http://dx.doi.org/10.1088/1367-2630/14/1/013055
http://doi.acm.org/10.1145/2566486.2568043


15. Mollgaard A, Mathiesen J. Emergent user behavior on Twitter modelled by a stochastic differential
equation. ArXiv e-prints. 2015 Feb;.

16. Ratkiewicz J, Fortunato S, Flammini A, Menczer F, Vespignani A. Characterizing and Modeling the
Dynamics of Online Popularity. Phys Rev Lett. 2010 Oct; 105:158701. Available from: doi: 10.1103/
PhysRevLett.105.158701 PMID: 21230945

17. Weng L, Menczer F, Ahn YY. Virality Prediction and Community Structure in Social Networks. Sci Rep.
2013 08; 3:2522. doi: 10.1038/srep02522 PMID: 23982106

18. Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J. Can Cascades Be Predicted? In: Proceedings
of the 23rd International Conference onWorld WideWeb. WWW’14. New York, NY, USA: ACM; 2014.
p. 925–936. Available from: http://doi.acm.org/10.1145/2566486.2567997.

19. Weng L, Flammini A, Vespignani A, Menczer F. Competition among memes in a world with limited
attention. Sci Rep. 2012 03; 2:335. doi: 10.1038/srep00335 PMID: 22461971

20. Gleeson JP, Ward JA, O'Sullivan KP, LeeWT. Competition-Induced Criticality in a Model of Meme Pop-
ularity. Phys Rev Lett. 2014 Jan; 112:048701. doi: 10.1103/PhysRevLett.112.048701 PMID: 24580496

21. Cetin U, Bingol HO. Attention competition with advertisement. Phys Rev E. 2014 Sep; 90:032801. doi:
10.1103/PhysRevE.90.032801

22. Gleeson JP, O’Sullivan KP, Baños RA, Moreno Y. Determinants of Meme Popularity. ArXiv e-prints.
2015 Jan;.

23. Shinomoto S, Shima K, Tanji J. Differences in Spiking Patterns Among Cortical Neurons. Neural Com-
put. 2003 12; 15:2823–2842. doi: 10.1162/089976603322518759 PMID: 14629869

24. Koyama S, Shinomoto S. Empirical Bayes interpretations of random point events. Journal of Physics A:
Mathematical and General. 2005 07; 38(29):L531–L537. Available from: http://stacks.iop.org/0305-
4470/38/i=29/a=L04. doi: 10.1088/0305-4470/38/29/L04

25. Miura K, Okada M, Amari S. Estimating Spiking Irregularities Under Changing Environments. Neural
Comput. 2006 10; 18:2359–2386. doi: 10.1162/neco.2006.18.10.2359 PMID: 16907630

26. Shimazaki H, Shinomoto S. A Method for Selecting the Bin Size of a Time Histogram. Neural Comput.
2007 04; 19:1503–1527. doi: 10.1162/neco.2007.19.6.1503 PMID: 17444758

27. Omi T, Shinomoto S. Optimizing Time Histograms for Non-Poissonian Spike Trains. Neural Comput.
2011 12; 23:3125–3144. doi: 10.1162/NECO_a_00213 PMID: 21919781

28. Coscia M. Average is Boring: How Similarity Kills a Meme’s Success. Sci Rep. 2014 09; 4:6477. doi:
10.1038/srep06477 PMID: 25257730

29. Tuckwell HC. Introduction to Theoretical Neurobiology. vol. 2. Cambridge University Press; 1988.

30. Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of
random. J Neurosci. 1993 1; 13:334–350. Available from: http://www.jneurosci.org/content/13/1/334.
abstract. PMID: 8423479

31. Takaguchi T, Masuda N. Voter model with non-Poissonian interevent intervals. Phys Rev E. 2011 Sep;
84:036115. doi: 10.1103/PhysRevE.84.036115

32. Vestergaard CL, Génois M, Barrat A. Howmemory generates heterogeneous dynamics in temporal
networks. Phys Rev E. 2014 Oct; 90:042805. doi: 10.1103/PhysRevE.90.042805

33. Miotto JM, Altmann EG. Predictability of Extreme Events in Social Media. PLoS ONE. 2014 11; 9(11):
e111506. doi: 10.1371/journal.pone.0111506 PMID: 25369138

34. Karsai M, Kaski K, Barabási AL, Kertész J. Universal features of correlated bursty behaviour. Sci Rep.
2012 05; 2:397. doi: 10.1038/srep00397 PMID: 22563526

35. Szabolcs V, Tóth B, Kertész J. Modelling bursty time series. New J Phys. 2013 10; 15:103023. doi: 10.
1088/1367-2630/15/10/103023

36. Lambiotte R, Tabourier L, Delvenne JC. Burstiness and spreading on temporal networks. The Euro-
pean Physical Journal B. 2013; 86(7). doi: 10.1140/epjb/e2013-40456-9

37. Jo HH, Perotti JI, Kaski K, Kertesz J. Correlated bursts and the role of memory range. ArXiv e-prints.
2015 May;.

38. Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, et al. Relating Neuronal Firing
Patterns to Functional Differentiation of Cerebral Cortex. PLoS Comput Biol. 2009 07; 5(7):e1000433.
doi: 10.1371/journal.pcbi.1000433 PMID: 19593378

39. Rodriguez MG BDSB Leskovec J. Uncovering the structure and temporal dynamics of information prop-
agation. Network Science. 2014 4; 2:26–65. Available from: http://journals.cambridge.org/article_
S2050124214000034. doi: 10.1017/nws.2014.3

Local Variation and Popularity in Twitter

PLOS ONE | DOI:10.1371/journal.pone.0131704 July 10, 2015 17 / 18

http://dx.doi.org/10.1103/PhysRevLett.105.158701
http://dx.doi.org/10.1103/PhysRevLett.105.158701
http://www.ncbi.nlm.nih.gov/pubmed/21230945
http://dx.doi.org/10.1038/srep02522
http://www.ncbi.nlm.nih.gov/pubmed/23982106
http://doi.acm.org/10.1145/2566486.2567997
http://dx.doi.org/10.1038/srep00335
http://www.ncbi.nlm.nih.gov/pubmed/22461971
http://dx.doi.org/10.1103/PhysRevLett.112.048701
http://www.ncbi.nlm.nih.gov/pubmed/24580496
http://dx.doi.org/10.1103/PhysRevE.90.032801
http://dx.doi.org/10.1162/089976603322518759
http://www.ncbi.nlm.nih.gov/pubmed/14629869
http://stacks.iop.org/0305-4470/38/i=29/a=L04
http://stacks.iop.org/0305-4470/38/i=29/a=L04
http://dx.doi.org/10.1088/0305-4470/38/29/L04
http://dx.doi.org/10.1162/neco.2006.18.10.2359
http://www.ncbi.nlm.nih.gov/pubmed/16907630
http://dx.doi.org/10.1162/neco.2007.19.6.1503
http://www.ncbi.nlm.nih.gov/pubmed/17444758
http://dx.doi.org/10.1162/NECO_a_00213
http://www.ncbi.nlm.nih.gov/pubmed/21919781
http://dx.doi.org/10.1038/srep06477
http://www.ncbi.nlm.nih.gov/pubmed/25257730
http://www.jneurosci.org/content/13/1/334.abstract
http://www.jneurosci.org/content/13/1/334.abstract
http://www.ncbi.nlm.nih.gov/pubmed/8423479
http://dx.doi.org/10.1103/PhysRevE.84.036115
http://dx.doi.org/10.1103/PhysRevE.90.042805
http://dx.doi.org/10.1371/journal.pone.0111506
http://www.ncbi.nlm.nih.gov/pubmed/25369138
http://dx.doi.org/10.1038/srep00397
http://www.ncbi.nlm.nih.gov/pubmed/22563526
http://dx.doi.org/10.1088/1367-2630/15/10/103023
http://dx.doi.org/10.1088/1367-2630/15/10/103023
http://dx.doi.org/10.1140/epjb/e2013-40456-9
http://dx.doi.org/10.1371/journal.pcbi.1000433
http://www.ncbi.nlm.nih.gov/pubmed/19593378
http://journals.cambridge.org/article_S2050124214000034
http://journals.cambridge.org/article_S2050124214000034
http://dx.doi.org/10.1017/nws.2014.3


40. Onaga T, Shinomoto S. Bursting transition in a linear self-exciting point process. Phys Rev E. 2014
Apr; 89:042817. doi: 10.1103/PhysRevE.89.042817

41. Jovanović S, Hertz J, Rotter S. Cumulants of Hawkes point processes. Phys Rev E. 2015 Apr;
91:042802. doi: 10.1103/PhysRevE.91.042802

42. Backlund VP, Saramäki J, Pan RK. Effects of temporal correlations on cascades: Threshold models on
temporal networks. Phys Rev E. 2014 Jun; 89:062815. doi: 10.1103/PhysRevE.89.062815

43. Karimi F, Holme P. Threshold model of cascades in empirical temporal networks. Physica A: Statistical
Mechanics and its Applications. 2013; 392(16):3476–3483. Available from: http://www.sciencedirect.
com/science/article/pii/S0378437113002835. doi: 10.1016/j.physa.2013.03.050

44. Kawamoto T. A stochastic model of tweet diffusion on the Twitter network. Physica A: Statistical
Mechanics and its Applications. 2013; 392(16):3470–3475. Available from: http://www.sciencedirect.
com/science/article/pii/S0378437113002811. doi: 10.1016/j.physa.2013.03.048

Local Variation and Popularity in Twitter

PLOS ONE | DOI:10.1371/journal.pone.0131704 July 10, 2015 18 / 18

http://dx.doi.org/10.1103/PhysRevE.89.042817
http://dx.doi.org/10.1103/PhysRevE.91.042802
http://dx.doi.org/10.1103/PhysRevE.89.062815
http://www.sciencedirect.com/science/article/pii/S0378437113002835
http://www.sciencedirect.com/science/article/pii/S0378437113002835
http://dx.doi.org/10.1016/j.physa.2013.03.050
http://www.sciencedirect.com/science/article/pii/S0378437113002811
http://www.sciencedirect.com/science/article/pii/S0378437113002811
http://dx.doi.org/10.1016/j.physa.2013.03.048

