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Abstract: The improvement of optical and optoelectronic properties of the individual poly [2-methoxy-
5- (2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-
1,4-phenylenevinylene]–End capped with Dimethyl phenyl (OC1C10–PPV–DMP), and poly (9,9′-di-
n -octylfluorenyl-2,7-diyl) (F8) was revealed by blending them in ternary hybrid with optimal ratio
(F8/2 wt.% MEH-PPV/2 wt.% OC1C10–PPV–DMP). All individual and optimal ternary solutions
were prepared via the solution-blending method followed by depositing them onto glass and ITO
substrates using spin-coating technique. The semi-crystalline phase of the ternary hybrid and the
strong mixing between the conjugated polymers were evidenced by observing the X-ray diffraction
patterns that related to F8 into the hybrid diffractogram. The optical and optoelectronic properties of
all prepared thin films were investigated in terms of absorption and emission spectra, Commission
International d′Eclairage (CIE) coordinates, and current–voltage (I-V) characterizations. Emission
peaks at the entire range of visible spectrum can be revealed from the ternary hybrid of the three
individual conjugated polymers, producing white emission as evidenced from the emission spectrum
and CIE coordinates of the hybrid. Among all fabricated organic light-emitting diodes (OLEDs)
devices, the ternary hybrid-based-OLED revealed the best performance in terms of current and
turn-on voltage.

Keywords: F8; MEH-PPV; OC1C10-PPV-DMP; optical and optoelectronic properties; OLED

1. Introduction

The hybrids of conjugated polymers (CPs) are of increasing application in electronics
and optoelectronics, for example, transistors, photoemission devices, sensors and solar
cells [1–4]. Remarkably, mixing different CPs results in merging numerous different assets
of diverse compounds in one material. Regarding photoemission devices, mixing CPs
presented light tunability and polychrome emissions. As white light emission is character-
istically accomplished by mingling the three foremost colors (red, green, and blue), at least
two emissive materials are coated in a multilayer structure [5–7] or classified as a single
layer by doping (or mixing) [8–10]. The existence of various fluorophores tips into one of
the following intermolecular interactions in CPs mixing [11]: (i) Ground states interaction
to form a new state identified as a ground-state complex, that affects the emission and
absorption spectrum; (ii) Exciplex and excimer formation subsequently photo-excitation;
in this situation the interaction occurs between ground state and the excited state of the
molecules; (iii) Energy transfer amongst altered fluorophores. The fluorophore having the
highest energy band-gap between the lowest unoccupied molecular orbital (LUMO) and
the highest occupied molecular orbital (HOMO) is named donor and the other fluorophores
are named acceptors.
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The source of Förster resonance energy transfer (FRET) is a spectral overlay amid
acceptor absorption and donor emission, space amid acceptor and donor, and the placing
of the dipoles of donor and acceptor molecules and the dominant medium [12,13]. The
FRET emerges due to dipole–dipole interaction, where the separation between acceptor
and donor must be less than 100 Å [14,15]. Three different methods have been deliberated
on to evaluate the Förster radius: spectral overlap [16]; photoluminescence quantum
efficiency [17]; and a direct measurement of the energy transfer rate [18]. In all these
methods, it is necessary to consider the molecules of the polymer as a solid sphere so that
the concentration of a particular combination can be linked to the intermolecular space
of the acceptor and the donor. In the measurements of steady-state photoluminescence,
the energy transfer in most composites was perceived to be a two-step process involving
exciton migration in the donor and then FRET from molecules of the donor to those of
acceptor [19,20]. The technique of FRET was subjugated in the current work to harvest
WOLED with enhanced outcome. In addition to the good spectral overlap between donor
emission and acceptor absorption, the good blending between them is required to produce
FRET excitation in the hybrid [21]. Mixing of both the donor and acceptor for FRET can
significantly decrease the concentration quenching of the excitons created, improving the
device performance [22–24].

In the present work, we considered the ternary blend of “poly (9,9′-di- n -octylfluorenyl-
2,7-diyl) (F8)”, “poly [2-methoxy-5- (2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)”
and “poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene]–end capped with
Dimethyl Phenyl (OC1C10–PPV–DMP)” to accomplish cascade energy transfer for regulat-
ing emission colors and enhancing device performance. Three diverse emission modules
of F8/OC1C10-PPV-DMP/MEH-PPV with the energy-band gap order of F8 (3.0 eV) >
OC1C10-PPV-DMP (2.2 eV) or MEH-PPV (2.2 eV) [25–27] were miscible with each other so
that the energy levels of both MEH-PPV and OC1C10-PPV-DMP fall within that of F8 and
thus the possibility of a FRET in this system. Additionally, the emission spectrum of the
donor (F8) and the absorption spectrum of the acceptor (MEH-PPV or OC1C10-PPV-DMP)
coincided considerably. The leading constituent of F8 acted as a matrix, diluent, excitation
energy donor for the ternary hybrid and for generating light with high efficiency. Therefore,
once the ternary hybrid was excited near the donor absorption peak wavelength, light
emission can be predicted from both acceptors, suggesting the cascade energy transfer used
for WOLEDs. As the studies on the photophysical mechanisms of ternary hybrid systems
are exceptional, the present work concentrated on how the dual FRET mechanism can
improve optoelectronic properties of the individual polymer and produce OLED device
with desired white emissions and lower turn-on voltage.

2. Materials and Methods

The OC1C10-PPV-DMP (Mw~100,000 g/mol) was obtained from American Dye
Source, Inc. (Morgan Boulevard, QC, Canada), whereas MEH-PPV (Mw~40,000 g/mol)
and F8 (Mw~58,200 g/mol) were purchased from Sigma Aldrich (Saint Louis, MO, USA)
and used as received without any purification. All of these conjugated polymers were
dissolved separately in toluene prior to preparing optimal ternary blend by blending the
F8 with 2.0 wt.% of each acceptor (OC1C10-PPV-DMP and MEH-PPV) using the blending
solution method, as confirmed in our recent report where the emission of each component
was in balance with each other [27]. The concentration of F8 was 15 mg/mL, whereas the
concentration of each acceptor was 0.15 mg/mL in the ternary hybrid. All samples from the
toluene solutions were separately spin-coated onto clean glass substrates, for absorption
and emission spectra characterizations, and onto etched ITO substrates for OLED fabrica-
tions. A 50 µL of each sample was deposited onto the substrates by spin coating technique
at 2000 rpm for 30 s, thus the obtained thickness of all thin films was close to 130–150 nm
(130 nm for F8, 140 nm for MEH-PPV, 143 nm for OC1C10-PPV-DMP, and 150 nm for the
ternary hybrid thin film). The structure of all prepared films was characterized by X-ray
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diffraction (XRD; Miniflex 600, Rigaku, Japan) with a Cu-Kα radiation source (λ = 1.5418 Å).
The diffractograms were collected in the 2θ range of 5◦ to 80◦ with a step size of 0.025◦.

Both absorption and emission spectra were obtained using a UV-Vis spectrometer
(JASCO V-670, Cremella, Italy) and spectrofluorometer (JASCO FP-8200, Cremella, Italy),
respectively. The OriginLab program version 2019b (Northampton, MA, USA) was used to
collect the CIE coordinates of all thin films from their emission data. For OLEDs fabrication,
each coated ITO substrate was positioned into an electron-beam chamber for the aluminum
cathode deposition with 150 nm thick at a deposition rate of 2 Å/min. A Keithley 238
measurement system was employed for current–voltage (I-V) and thus turn-on voltage.
The chemical structure of the conjugated polymers and the energy levels schematic of all
used materials are presented in Figure 1a,b, respectively.
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Figure 1. (a) Chemical structure of the F8, MEH-PPV and OC1C10-PPV-DMP; (b) Energy levels
schematic of all used materials.

3. Results and Discussion

Figure 2 shows the X-ray diffraction (XRD) patterns for pristine F8, MEH-PPV, OC1C10–
PPV-DMP and their ternary hybrid. A broad peak in the range 2θ of 10.0◦–40.0◦ was
indicated for all thin films of conjugated polymers, indicating the amorphous phase of
all thin films. Despite the dominant amorphous phase of F8, few narrow peaks with low
intensity were marked by arrows at 6.5, 15.0 and 20.2◦, indicating the semi-crystalline
structure of the F8 [28,29]. As clearly shown inset in Figure 2, these narrow peaks can be
also detected in the thin film of ternary hybrid, indicating the strong incorporation between
the compositions and that the ternary hybrid has a semi-crystalline structure that is placed
between the amorphous and crystalline phases. Since neither new peak appeared in the
hybrid nor was there any shifting in the narrow peaks, there is no variation in the structure
of the polymers due to the blending process being detected.
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Figure 2. X-ray diffraction spectra of pristine F8, MEH-PPV, OC1C10-PPV-DMP and their ternary
hybrid. The inset shows the narrow peaks in both F8 and ternary hybrid diffractograms.

Figure 3 shows normalized absorption spectra of pristine thin films of F8, MEH-PPV,
OC1C10-PPV-DMP and their optimal ternary hybrid. The maximum absorbance of F8,
MEH-PPV and OC1C10-PPV-DMP was at 385, 507 and 500 nm, respectively. Both MEH-PPV
and OC1C10-PPV-DMP have shoulders in the UV-region at 336 and 284 nm for MEH-PPV
while they are at 337 and 276 nm for OC1C10-PPV-DMP. Upon incorporating both the
acceptors into the donor to form the ternary blend, the main absorbance of F8 was red-
shifted to 391 nm while the main absorbance of both acceptors was red-shifted to 512 nm
and their shoulders to 294 nm. This finding may indicate the possibility of decreasing
the optical band gap of the donor and thus increasing its conjugation length [24,30]. The
cut-off wavelength of the donor absorbance edge also red-shifted from 444 nm to 450 nm
in the ternary blend. The energy tail (Etail) of the donor, which refers the expansion of tail
depth states into the forbidden energy gap below the absorption edge, was decreased from
2.793 to 2.755 eV in the ternary blend while the steepness parameter (σ), which indicates
the extension/shrinkage of the optical absorption edge due to the exciton–phonon or
electron–phonon interactions, was increased from 0.00931 to 0.00943. The decrease in
width of the localized tails of electronic states within the forbidden band gap of the
donor can be expected from the decrease in the energy tail (Etail) and the increase in the
σ value [31,32].
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Figure 3. Normalized absorbance spectra of pristine F8, MEH-PPV, OC1C10–PPV-DMP and their
ternary hybrid.

The emission spectra of pristine thin films of F8, MEH-PPV, OC1C10-PPV-DMP and
their optimal ternary hybrid at the excitation wavelength of 355 nm are shown in Figure 4.
Two peaks at 434 nm and 460 nm and one shoulder at 492 nm (all placed in the blue region)
were detected for F8, and two peaks observed in the violet region at 406 nm and 410 nm
for MEH-PPV and OC1C10-PPV-DMP, respectively, in addition to another peak at 580 nm
(yellow color) for both acceptors. By addition of these individual polymers to form the
ternary blend, the emission was observed in the whole visible region and thus obtaining a
white emission. Although the content of both acceptors was low (2 wt.%), their emission
intensities in the yellow region were close to that of the donor. This result provides evidence
for the FRET from F8 to both acceptors, where the mechanism of the dual FRET has been
revealed in our recent report [27]. In the dual FRET mechanism, the excited molecules
of F8 with light energy ~3.50 eV resulted in the generation of their oscillating dipoles
and thus resonance with the dipoles of MEH-PPV and OC1C10-PPV-DMP molecules.
Subsequently, the excited state energy transfers in space (without electron exchange) from
the F8 molecules to the MEH-PPV molecules through dipole–dipole interaction. This type
of transfer (Förster type) takes place when the F8 molecules return back to the ground
state and the MEH-PPV molecules enter the excited state. Since identical processes take
place for the OC1C10-PPV-DMP molecules, dual FRET mechanism can be carried out in
the F8/MEH-PPV/OC1C10-PPV-DMP ternary hybrid thin-films.
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Figure 4. Normalized emission spectra of pristine F8, MEH-PPV, OC1C10-PPV-DMP, and their
ternary hybrid.

The CIE coordinates of all pristine polymers and their ternary blend thin-films are
displayed on the color chart of Figure 5. The CIE coordinates of pristine F8 were pre-
sented at the point (0.149, 0.067), confirming its blue emission, while they presented at the
points (0.427, 0.374) and (0.413, 0.366) for MEH-PPV and OC1C10-PPV-DMP, respectively,
confirming their existence on the whole visible region. The good white emission for the
ternary hybrid was confirmed from their CIE coordinates at the point (0.262, 0.335). This
observation reinforces our previous finding of an efficient dual Förster energy transfer in
the ternary hybrid from F8 to both MEH-PPV and OC1C10-PPV-DMP.
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Figure 6 shows the current (I) under the forward bias (V) condition for the OLED
devices based on pristine F8, MEH-PPV, OC1C10-PPV-DMP, and their ternary hybrid.
Compared to the OLED devices based on pristine polymers, a significant increase in the
current and a decrease in the turn-on voltage of injection current were revealed in the device
based on ternary hybrid. The rise in the current as the direct result of the reduction in the
resistance indicated the existence of a greater number of charge carriers in the emissive
layer of the ternary hybrid and thus a lower turn-on voltage was achieved. These findings
can be attributed to the existence carriers trapped by acceptors in addition to the dual
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FRET from F8 to both MEH-PPV and OC1C10-PPV-DMP, that resulted in an improvement
of the device performance which is consistent with previous reports [24,27]. Since the
HOMO and LUMO of each acceptor are located within that of F8 as shown in Figure 1b,
the carriers (electrons and holes) can be trapped into the emissive layer of the device,
resulting in increasing the exciton recombination. The dual FRET within the emissive layer
of the device as well as the increased exciton recombination led together to raise the white
emission and thus enhance the device performance.
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4. Conclusions

The optoelectronic properties of the individual F8, MEH-PPV, and OC1C10-PPV-DMP
can be successfully improved by blending them as a ternary blend. The existence of the
narrow peaks that related to the semi-crystalline phase of the donor into the ternary hybrid
indicated the good mixing of all of the conjugated polymers in the hybrid. Increasing
the conjugation length and decreasing the width of the localized tails of electronic states
within the forbidden band gap of the donor (F8) can be achieved by the addition of both
acceptors, MEH-PPV and OC1C10-PPV-DMP, into the donor matrix with an appropriate
ratio. This achievement was evidenced from the red-shifting of the main absorbance of
F8 and decreasing its energy tail from 2.793 to 2.755 eV. The desired white emission can
be obtained from the addition of the individual polymers in the form of ternary hybrid,
as proved from its broadened emission spectrum in the whole visible region and its CIE
coordinates at the point (0.262, 0.335). Moreover, the OLED based on the ternary blend
exhibited a white emission with lower turn-on voltage compared to that based on the
individual polymers, due to efficient charge trapping effect and FRET. The ternary hybrid
of F8/2 wt.% MEH-PPV/2 wt.% OC1C10-PPV-DMP–based OLED with the addition of
hole and electron transport layers will be very interesting for the design of high quality
optoelectronic devices in future work.
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