JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 3, SUMMER 2002

A parameter optimization algorithm for
intensity-modulated radiotherapy prostate
treatment planning *

J. Barbiere,” M. F. Chan,* J. Mechalakos, D. Cann, K. Schupak,

and C. Burman

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 23 Pocono Rd.,
Denville, New Jersey 07834

(Received 19 November 2002; accepted for publication 24 April 2002

An iterative algorithm has been developed to analytically determine patient specific
input parameters for intensity-modulated radiotherapy prostate treatment planning.
The algorithm starts with a generic set of inverse planning parameters that include
dose and volume constraints for the target and surrounding critical structures. The
overlap region between the target volume and the rectum is used to determine the
optimized target volume coverage goal. Sequential iterations are performed to vary
the numerous parameters individually or in sets while other parameters remain
fixed. A coarse grid search is first used to avoid convergence on a local maximum.
Linear interpolation is then used to define a region for a fine grid search. Selected
parameters are also tested for possible improvements in target coverage. In several
representative test cases investigated the coverage of the planning target volume
improved with the use of the algorithm while still meeting the clinical acceptability
criteria for critical structures. The algorithm avoids time-consuming random trial
and error variations that are often associated with difficult cases and also eliminates
lengthy user learning curves. The methodology described in this paper can be
applied to any treatment planning system that requires the user to select the input
optimization parameters. @002 American College of Medical Physics.
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INTRODUCTION

A large fraction of the intensity-modulated radiothergilyIRT) planning process involves the
optimization stage. Certain algorithms require a set of initial input parameters characterizing the
target and surrounding critical structures. Inverse planning algorithms determine the optimized
dose distribution by incorporating those input parameters in an objective function and then mini-
mizing the objective function. The end result of optimization is dependent on the user selected
input parameters?

The degree of optimization achieved when the planner selects the input parameters, referred to
as “manual planning,” is dependent on the individual planner’s experiéniee number of
variations in optimization parameters that can be tested is limited by*tiRrevious work in
automated inverse treatment planning has shown that a single set of inverse planning parameters
can generate acceptable plans.

The algorithm presented in this work, referred to as “automated planning,” analytically deter-
mines consistent individual input parameters. An orderly series of changes are made on predeter-
mined initial values that can improve target coverage while maintaining the critical structure
constraints. Also, instead of relying on generic acceptable target coverage, the algorithm computes
a specific goal for individual cases.
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Fic. 1. Linear variation of the target volume treated to 95% of the §g98) as a function of the percent PTV which does
not overlap with the rectum volum@F). For a patient with TF= 95.6 the corresponding V95 goal is 97.7.

MATERIALS AND METHODS

This work was performed at a regional center of the Memorial Sloan-Kettering Cancer Center
(MSKCC) where prostate patients were planned with a five-field IMRT technique to 81 Giye
radiation oncologist entered the planning target vol(R€V) and critical structures. The PTV
included the prostate and seminal vesicles with a 0.6 cm posterior margin and 1.0 cm margin
elsewhere. The IMRT plans were carried out on a planning system developed at the MSKCC. The
IMRT option in the planning system uses an inverse planning algorithm to minimize an objective
function which is represented as the quadratic sum of squares of the difference between the
desired and the actual do$ba dose that deviates from the prescribed dose in the PTV or exceeds
the constraints in critical structures is subjected to a relative penalty in the objective function. The
resultant dose distribution from these intensity-modulated beams is calculated using a pencil beam
algorithm?

IMRT prostate plans require a number of input parameters for the PTV and surrounding critical
structures. A prescription dose, minimum desired dd3g;{), penalty for dose lower thab .,
maximum desired dos@® 50, and penalty for dose higher th&n,,, are specified for the PTV.

Input parameters for a critical structure include a dose limit, penalty for dose higher than the dose
limit, and volumetric constraints specified as a dose limit, penalty, and volume. Acceptable pros-
tate plans compared in this study had a PTV maximum dose of 110% with at least 90% of the
volume treated to 95% of the prescribed ddse., V95>90%). Rectum and bladder were con-
strained by both maximum dose and volume receiving 50% of the prescribed dose.

The optimization parameter algorithm sets a goal of target coverage that meets and often
exceeds the generic acceptable value. Since the PTV includes a target margin that overlaps critical
structures, it is impossible and undesirable to expect 100% target coverage with 100% of the
prescribed dose. The rectum constraints limit the dose to a portion of the PTV. Increased rectal
overlap results in decreased PTV coveradeThe percentage target voluniéF) that does not
overlap with the rectum is calculated from the PTV volu(fi®/) and overlap volumégOV),

TF =100 TV — OV)/TV.

The algorithm in this study generates the goal V95 as a linear function of TF based on five
optimized cases representing the expected TF range. The goal value of V95 is useful in plan
evaluation to determine if an effort should be made to improve an otherwise acceptable plan
generated by the initial input parameters. For the example shown in Fig. 1, a plan wit®bT6-
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TasLE |. Initial input parameters for MSKCC prostate treatment planning
to 8100cGy. All the “Target and rectum” overlap parameters and “Target
not rectum” doseD in, Dmax ShOown in gray are kept constant.

Dose D min Penalty D.. Penalty

Target not rectum 100 98 50 102 100
Target and rectum 96 93 10 96 20
Dose limit Penalty Dose limit Penalty Volume
Rectum 96 20 40 20 70
Bladder 100 5 40 20 70

has a V95 goal of 97.7. If the initial input parameters result in plan with V95 of 93, which is above

the generic acceptable value of 90, manual planning may be terminated. However, automated
planning indicates that improved target coverage should be expected and proceeds to generate new
input parameters.

The algorithm separates the input parameters into four categories. The first type of input
parameter, including all the overlap region dose constraints, does not change from the initial value
shown in Table I. These constant parameters serve as a basis for normalizing the remaining
variables in the objective functions.

The second type of input parameter consists of parameters that are varied as a set. The volu-
metric constraints for the critical structures are varied as pdese, penalty, volume]. The critical
structure dose constraints are varied as dd@te limit, penalty]. By varying parameters as a set
we are able to keep all variables relatively close to their initial values, which experience has
shown to be generally acceptable and also reduce the number of free variables in the search
process. The third type of input parameter is that which can be varied independently, such as the
target doséD ,in, Dmay] penalties. Finally, the fourth type of input parameter is that which can be
disregarded. In cases where there is no significant overlap between the target and the bladder, the
bladder parameters can be left out of the optimization process. The decrease in number of vari-
ables results in a fewer iterations to complete the optimization process.

Unlike optimization schemes that randomly vary parameters seeking improvements in the
outcome as exemplified by the classic simulated anne&itigis algorithm searches for new
values for input parameters in three ways: grid search, linear interpolation, and discrete values.
Since experience has shown that the generic initial input parameters shown in Table | produce
results in the neighborhood of the final choice, some parameters are varied using a simple grid
search. Grid searches are first performed with relatively large chdogase gridto avoid being
trapped in a local maximum and are then followed by small chaffgesgrid). For the example
shown in Table Il, if the rectum volume sitose limit, penalty, volumedf [40,20,70]results in
a value 10% above the acceptable limit for the volume of rectum treated to 50% of the prescribed
dose(RV50), the next three iterations are performed with changes of 5%, 10%, and 15%, i.e.,
[38,21,73.5][36,22,77], and34,23,80.5]. In order to decrease RV50, the dose limit is decreased

TaLE Il. Rectum volume set input parameter grid search to decrease
RV50 by 10%.

Dose limit Penalty Volume
Initial value 40 20 70
5% change 38 21 73.5
10% change 36 22 77.0
15% change 34 23 80.5
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Fic. 2. Linear variation of the rectufidose, penalty, volunjeset. Coarse grid, linear interpolation, and fine grid searches
determine the optimum input parameters to treat 50% of the rectum volume with 60% for the target dose.

while the penalty and volume parameters are increased. If the RV50 result is close to the accept-
able limit, then the change required to produce new trial values would be reduced proportionally.

For the cases presented in this work, it has been observed that many outcomes such as the
rectum RV50 are linearly dependent on the input paramgdese, penalty, volumer the vicinity
of acceptable plans. Linear interpolation in two dimensibnsing several data points obtained
from the coarse grid search is a very good estimate of the final input parameter. The actual value
can be found by performing a fine grid search in the vicinity of the interpolated value. Figure 2
shows an example in which the rectum volume input parameters are determined analytically for a
desired RV50=60%.

Experience has also shown that some parameters are insensitive to small changes. Instead of
using repeated interval iterations, the target dose minimum penalty was chosen to only have the
discreet values of 50 or 20. The target dose maximum penalty was chosen to only have the discrete
values of 50, 100, or 150.

In order to minimize the effect that changes in one input parameter produce in the overall dose
distribution, the optimization is performed in a predefined order. The algorithm sequence used in
this work consists of finding parameters for the rectum, bladder, target, and then revising the
rectum parameters. Other sequences were not investigated.

Using this approach, optimization of the rectum parameters consists of a coarse grid search for
the sefdose limit, penalty, volumebllowed by linear interpolation and a fine grid search to yield
the acceptable limit of RV50 as described in the preceding section. If required, the bladder, which
does not affect target coverage as much as the rectum, is simply varigdlasealimit, penalty,
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TasLE Ill. Target penalty grid search. All combination values are tested
and the sefD in,Dmad,» Which produces the highest target coverage, is
used for critical structure optimization.

Chosen target dose minimum penalB,, P): 50 and 20.

Chosen target dose maximum pendBy,,, P): 50,100,150.

D max P=50 D nax P=100 D nax P=150

D yin P=50 [50,50] 50,100] 50,150]
D i, P=20 [20,50] P0,100] p0,150]

volume] set for a scaled percentage change until no more than 60% of the bladder volume is
covered by 50% of the prescribed dod®/50). If the bladder optimization affects the rectum
RV50 by more than 2%, then the rectum optimization is repeated. The maximum dose limits to the
rectum and bladder can be adjusted by changing their correspondifapsetlimit, penaltyby a

preset increment of—1, +10] for each percentage point above the limit. For example, if the
bladder sefdose limit, penalty]of [100,5]resulted in a maximum bladder dose 2% above the
acceptable limit, the next iteration would use the seft9&,25]. Target optimization consists of a
grid search for the dose minimum penalty and dose maximum pdipaitaltyD i, ,penaltyD

sets shown in Table III.

The “optimum” set of target input parameters consists of the one that generates the best target
coverage while maintaining the limits on the critical structures. We have found that the target
volume receiving 100% of the dog&/100) is a sensitive index to select the optimum input
parameters. Only the input parameter values that generate the highest improvement in V100 are
used to re-optimize the critical structures.

RESULTS AND DISCUSSION

The last phase of our optimization is to perform a limited search for those parameters that yield
the best target coverage while maintaining the limits on the critical structures. Since the rectum set
[dose limit, penalty, volumehas been the most important factor in determining the final target
coverage, the final individual parameter search is limited to the rectum volumetric constraints. If
the rectum penalty is held constant, the rectum dose as demonstrated by the data shown for a
sample case in Fig. 3 to be a linear function of the rectum volume for a plan that is at the limit of
acceptability as defined by a point on the rectum DVH. This greatly reduces the number of
iterations. Using only a few points to generate a linear fit, the rest of the points are quickly
evaluated to determine the best target coverage.

The rectum penalty is next changed % and the process is repeated. If the first few test
points do not improve target coverage, the process stops. However, if the target coverage im-
proves, the rectum penalty is varied again and the rectum dose limit and rectum volume evaluated.
The algorithm ends when changes in rectum penalty do not improve target coverage. In extreme
cases where acceptable plans cannot be generated the user may manually alter the fixed parameters
and repeat the automated planning.

The algorithm computed deterministic input parameters are independent of the planner. These
parameters generated better than acceptable plans. Dose distributions and DVHs were used to
assess and compare the automated plans with corresponding manual plans. Analysis of DVHs
showed that the V95 of PTV coverage improved by an average of 4.3% from that in plans
generated without using the algorithm while still meeting the clinical acceptability criteria for
critical structures, as shown in Table IV. The algorithm should also prove useful in dose escalation
studies where it becomes increasingly difficult to maintain dose and volume limits to critical
structures and the required subtle changes in the input parameters are harder to determine manu-
ally.

Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002



232 Barbiere et al.: A parameter optimization algorithm . . . 232

& (D,V) for RV50=60 @ Target Volume at 100% Dose
90

85

80

Rectum Volume Parameter

75

Target Volume at 100% Dose

70

35 40 45

Rectum Dose Parameter

Fic. 3. For a fixed rectum volume penalty, the corresponding dose and volume parafdetrsxhibit a linear relation-
ship in order to produce a rectum DVH with a rectum dose of 50% to 60% of the rectum volume. Each parameter set
produces a change in the target volume that receives 100% of the target dose.

The concept of individual patient criteria for acceptability should be considered whenever
reviewing patient results. If generic criteria are used for all patients, then a patient with a small
overlap volume treated with a minimally acceptable plan could be underdosed in the clinical target
volume. Furthermore, any single value nominal treatment “dose” for 3D plans may be inappro-
priate without a DVH. Two acceptable plans normalized to the same maximum dose may have
similar V95 PTV values but vary significantly in the PTV covered by 100% of the prescribed dose.

Additional studies will be required to validate our findings and determine the usefulness of the
algorithm on a large scale. At this time we have limited the search to a small interval for a limited
number of cases. Testing will be required to determine if the algorithm converges on a local or
absolute maximum and if it is of any clinical significaniCezurther evaluation is also needed to
confirm that optimized plans at the limit of critical structure acceptability do not significantly
increase complication rates. Since many plans can be generated that have a common point for a
critical structure DVH, a detailed comparison of entire curves may be necessary to compare plans
rather than individual points.

TaBLE IV. Improvement in V95 treated to 95% dose using automated
optimization compared to cases with input parameters manually selected
by various planners.

Case V95.n VOS5, Percent change
1 91.0 98.5 8.3
2 97.7 99.0 13
3 95.5 99.2 3.8
4 98.3 98.8 0.5
5 90.2 97.1 7.7
Mean 4.3
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The parameter sequence, search categories, and computations can be facilitated by any readily
available computational aid. We have usedeagEL table augmented with a Visual Basic Appli-
cation to perform some of the tasks. Obviously the optimum situation would be to implement the
algorithm as part of the IMRT treatment planning system so that “optimized” plans could be
generated automaticall§. Artificial intelligence techniques such as a rule-based expert system
could replace the human interface to the treatment planning system.

The methods described can be applied to any treatment planning system that requires the user
input for selection of optimization parameters, especially if that system incorporates a similar
inverse planning algorithm. Following our procedure, initial values of all the input parameters are
determined based on manual planning experience for an anatomical site with standard fields. The
various parameters are grouped into several categories, including those that will not change
(fixed), those that can vary togethgets), those that can only have predetermined valdiss
crete), and those that can vary continuously over a rdimgkvidual). The number of free vari-
ables should be reduced as much as possible. After evaluating a few values for a parameter in the
neighborhood of its initial value with a grid search, interpolation techniques can be used to
determine the exact value. It is very helpful to formulate relationships between parameters to limit
the number of values to be tested. A simple but clinically relevant function, such as target coverage
or dose uniformity, can be used to compare plans. Finally, there should be a predetermined goal to
end the process.

Optimization is a relative process with numerous compromises. Gains in one area, such as
improved target coverage, are often accompanied by undesirable effects such as increased dose to
a critical structure. A mathematical recipe can facilitate plan evaluation but cannot replace expe-
rienced clinical judgment.

CONCLUSIONS

An algorithm has been developed to assist in IMRT prostate treatment planning. Individual
goals for target coverage are calculated for each case. The algorithm provides a comprehensive
method to analytically select input parameters that result in improved acceptable plans based on
target coverage and limits to critical structures. Optimization is also performed on the rectum
volume parameters to maximize target coverage. Several cases planned automatically with input
parameters that were calculated using the algorithm showed a significant improvement in target
coverage when compared to manual plans. Typical manual acceptable plans can often be generated
with fewer than ten trial input parameter values, but automated plans may require 20 to 30
iterations. However, quick random trials to determine if manual plans can be improved are incon-
clusive, and a thorough exhaustive analysis can easily exceed the number of automated planning
iterations.

*This material was presented at the 43rd annual meeting of the American Association of Physicists in Medicine at Salt
Lake City, UT, July 22—-26, 2001.

"Email address: barbierj@mskcc.org.

*Email address: chanm@mskcc.org
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