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An iterative algorithm has been developed to analytically determine patient specific
input parameters for intensity-modulated radiotherapy prostate treatment planning.
The algorithm starts with a generic set of inverse planning parameters that include
dose and volume constraints for the target and surrounding critical structures. The
overlap region between the target volume and the rectum is used to determine the
optimized target volume coverage goal. Sequential iterations are performed to vary
the numerous parameters individually or in sets while other parameters remain
fixed. A coarse grid search is first used to avoid convergence on a local maximum.
Linear interpolation is then used to define a region for a fine grid search. Selected
parameters are also tested for possible improvements in target coverage. In several
representative test cases investigated the coverage of the planning target volume
improved with the use of the algorithm while still meeting the clinical acceptability
criteria for critical structures. The algorithm avoids time-consuming random trial
and error variations that are often associated with difficult cases and also eliminates
lengthy user learning curves. The methodology described in this paper can be
applied to any treatment planning system that requires the user to select the input
optimization parameters. ©2002 American College of Medical Physics.
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INTRODUCTION
A large fraction of the intensity-modulated radiotherapy~IMRT! planning process involves th
optimization stage. Certain algorithms require a set of initial input parameters characterizi
target and surrounding critical structures. Inverse planning algorithms determine the opti
dose distribution by incorporating those input parameters in an objective function and then
mizing the objective function. The end result of optimization is dependent on the user se
input parameters.1,2

The degree of optimization achieved when the planner selects the input parameters, refe
as ‘‘manual planning,’’ is dependent on the individual planner’s experience.3 The number of
variations in optimization parameters that can be tested is limited by time.4 Previous work in
automated inverse treatment planning has shown that a single set of inverse planning par
can generate acceptable plans.5

The algorithm presented in this work, referred to as ‘‘automated planning,’’ analytically d
mines consistent individual input parameters. An orderly series of changes are made on pr
mined initial values that can improve target coverage while maintaining the critical stru
constraints. Also, instead of relying on generic acceptable target coverage, the algorithm co
a specific goal for individual cases.
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MATERIALS AND METHODS

This work was performed at a regional center of the Memorial Sloan-Kettering Cancer C
~MSKCC! where prostate patients were planned with a five-field IMRT technique to 81 Gy.6,7 The
radiation oncologist entered the planning target volume~PTV! and critical structures. The PTV
included the prostate and seminal vesicles with a 0.6 cm posterior margin and 1.0 cm m
elsewhere. The IMRT plans were carried out on a planning system developed at the MSKC
IMRT option in the planning system uses an inverse planning algorithm to minimize an obje
function which is represented as the quadratic sum of squares of the difference betwe
desired and the actual doses.8 A dose that deviates from the prescribed dose in the PTV or exc
the constraints in critical structures is subjected to a relative penalty in the objective function
resultant dose distribution from these intensity-modulated beams is calculated using a penc
algorithm.9

IMRT prostate plans require a number of input parameters for the PTV and surrounding c
structures. A prescription dose, minimum desired dose (Dmin), penalty for dose lower thanDmin ,
maximum desired dose~Dmax!, and penalty for dose higher thanDmax are specified for the PTV
Input parameters for a critical structure include a dose limit, penalty for dose higher than the
limit, and volumetric constraints specified as a dose limit, penalty, and volume. Acceptable
tate plans compared in this study had a PTV maximum dose of 110% with at least 90%
volume treated to 95% of the prescribed dose~i.e., V95.90%!. Rectum and bladder were co
strained by both maximum dose and volume receiving 50% of the prescribed dose.

The optimization parameter algorithm sets a goal of target coverage that meets and
exceeds the generic acceptable value. Since the PTV includes a target margin that overlaps
structures, it is impossible and undesirable to expect 100% target coverage with 100%
prescribed dose. The rectum constraints limit the dose to a portion of the PTV. Increased
overlap results in decreased PTV coverage.2,10 The percentage target volume~TF! that does not
overlap with the rectum is calculated from the PTV volume~TV! and overlap volume~OV!,

TF 5 100~TV 2 OV!/TV.
The algorithm in this study generates the goal V95 as a linear function of TF based o

optimized cases representing the expected TF range. The goal value of V95 is useful i
evaluation to determine if an effort should be made to improve an otherwise acceptable
generated by the initial input parameters. For the example shown in Fig. 1, a plan with TF595.6

FIG. 1. Linear variation of the target volume treated to 95% of the dose~V95! as a function of the percent PTV which doe
not overlap with the rectum volume~TF!. For a patient with TF5 95.6 the corresponding V95 goal is 97.7.
Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002
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has a V95 goal of 97.7. If the initial input parameters result in plan with V95 of 93, which is a
the generic acceptable value of 90, manual planning may be terminated. However, auto
planning indicates that improved target coverage should be expected and proceeds to gene
input parameters.

The algorithm separates the input parameters into four categories. The first type of
parameter, including all the overlap region dose constraints, does not change from the initia
shown in Table I. These constant parameters serve as a basis for normalizing the rem
variables in the objective functions.

The second type of input parameter consists of parameters that are varied as a set. Th
metric constraints for the critical structures are varied as a set@dose, penalty, volume#. The critica
structure dose constraints are varied as a set@dose limit, penalty#. By varying parameters as a
we are able to keep all variables relatively close to their initial values, which experienc
shown to be generally acceptable and also reduce the number of free variables in the
process. The third type of input parameter is that which can be varied independently, such
target dose@Dmin , Dmax# penalties. Finally, the fourth type of input parameter is that which can
disregarded. In cases where there is no significant overlap between the target and the blad
bladder parameters can be left out of the optimization process. The decrease in number
ables results in a fewer iterations to complete the optimization process.

Unlike optimization schemes that randomly vary parameters seeking improvements
outcome as exemplified by the classic simulated annealing,11 this algorithm searches for new
values for input parameters in three ways: grid search, linear interpolation, and discrete v
Since experience has shown that the generic initial input parameters shown in Table I p
results in the neighborhood of the final choice, some parameters are varied using a simp
search. Grid searches are first performed with relatively large changes~coarse grid!to avoid being
trapped in a local maximum and are then followed by small changes~fine grid!. For the example
shown in Table II, if the rectum volume set@dose limit, penalty, volume#of @40,20,70#results in
a value 10% above the acceptable limit for the volume of rectum treated to 50% of the pres
dose~RV50!, the next three iterations are performed with changes of 5%, 10%, and 15%
@38,21,73.5#,@36,22,77#, and@34,23,80.5#. In order to decrease RV50, the dose limit is decre

TABLE I. Initial input parameters for MSKCC prostate treatment planning
to 8100cGy. All the ‘‘Target and rectum’’ overlap parameters and ‘‘Target
not rectum’’ dose,Dmin , Dmax shown in gray are kept constant.

Dose Dmin Penalty Dmax Penalty

Target not rectum 100 98 50 102 100
Target and rectum 96 93 10 96 20

Dose limit Penalty Dose limit Penalty Volume

Rectum 96 20 40 20 70
Bladder 100 5 40 20 70

TABLE II. Rectum volume set input parameter grid search to decrease
RV50 by 10%.

Dose limit Penalty Volume

Initial value 40 20 70
5% change 38 21 73.5
10% change 36 22 77.0
15% change 34 23 80.5
Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002
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while the penalty and volume parameters are increased. If the RV50 result is close to the a
able limit, then the change required to produce new trial values would be reduced proportio

For the cases presented in this work, it has been observed that many outcomes such
rectum RV50 are linearly dependent on the input parameters@dose, penalty, volume#in the vicinity
of acceptable plans. Linear interpolation in two dimensions12 using several data points obtaine
from the coarse grid search is a very good estimate of the final input parameter. The actua
can be found by performing a fine grid search in the vicinity of the interpolated value. Fig
shows an example in which the rectum volume input parameters are determined analyticall
desired RV50560%.

Experience has also shown that some parameters are insensitive to small changes. In
using repeated interval iterations, the target dose minimum penalty was chosen to only ha
discreet values of 50 or 20. The target dose maximum penalty was chosen to only have the d
values of 50, 100, or 150.

In order to minimize the effect that changes in one input parameter produce in the overa
distribution, the optimization is performed in a predefined order. The algorithm sequence u
this work consists of finding parameters for the rectum, bladder, target, and then revisin
rectum parameters. Other sequences were not investigated.

Using this approach, optimization of the rectum parameters consists of a coarse grid sea
the set@dose limit, penalty, volume#followed by linear interpolation and a fine grid search to yie
the acceptable limit of RV50 as described in the preceding section. If required, the bladder,
does not affect target coverage as much as the rectum, is simply varied as a@dose limit, penalty,

FIG. 2. Linear variation of the rectum@dose, penalty, volume# set. Coarse grid, linear interpolation, and fine grid searc
determine the optimum input parameters to treat 50% of the rectum volume with 60% for the target dose.
Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002
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volume# set for a scaled percentage change until no more than 60% of the bladder volu
covered by 50% of the prescribed dose~BV50!. If the bladder optimization affects the rectu
RV50 by more than 2%, then the rectum optimization is repeated. The maximum dose limits
rectum and bladder can be adjusted by changing their corresponding set@dose limit, penalty#by a
preset increment of@21, 110# for each percentage point above the limit. For example, if
bladder set@dose limit, penalty#of @100,5# resulted in a maximum bladder dose 2% above
acceptable limit, the next iteration would use the set of@98,25#. Target optimization consists of
grid search for the dose minimum penalty and dose maximum penalty@penaltyDmin ,penaltyDmax#
sets shown in Table III.

The ‘‘optimum’’ set of target input parameters consists of the one that generates the best
coverage while maintaining the limits on the critical structures. We have found that the
volume receiving 100% of the dose~V100! is a sensitive index to select the optimum inp
parameters. Only the input parameter values that generate the highest improvement in V1
used to re-optimize the critical structures.

RESULTS AND DISCUSSION

The last phase of our optimization is to perform a limited search for those parameters tha
the best target coverage while maintaining the limits on the critical structures. Since the rect
@dose limit, penalty, volume# has been the most important factor in determining the final ta
coverage, the final individual parameter search is limited to the rectum volumetric constrai
the rectum penalty is held constant, the rectum dose as demonstrated by the data show
sample case in Fig. 3 to be a linear function of the rectum volume for a plan that is at the lim
acceptability as defined by a point on the rectum DVH. This greatly reduces the numb
iterations. Using only a few points to generate a linear fit, the rest of the points are qu
evaluated to determine the best target coverage.

The rectum penalty is next changed by65% and the process is repeated. If the first few t
points do not improve target coverage, the process stops. However, if the target covera
proves, the rectum penalty is varied again and the rectum dose limit and rectum volume eva
The algorithm ends when changes in rectum penalty do not improve target coverage. In e
cases where acceptable plans cannot be generated the user may manually alter the fixed pa
and repeat the automated planning.

The algorithm computed deterministic input parameters are independent of the planner.
parameters generated better than acceptable plans. Dose distributions and DVHs were
assess and compare the automated plans with corresponding manual plans. Analysis o
showed that the V95 of PTV coverage improved by an average of 4.3% from that in
generated without using the algorithm while still meeting the clinical acceptability criteria
critical structures, as shown in Table IV. The algorithm should also prove useful in dose esca
studies where it becomes increasingly difficult to maintain dose and volume limits to cr
structures and the required subtle changes in the input parameters are harder to determin
ally.

TABLE III. Target penalty grid search. All combination values are tested
and the set@Dmin ,Dmax#, which produces the highest target coverage, is
used for critical structure optimization.
Chosen target dose minimum penalty~Dmin P!: 50 and 20.
Chosen target dose maximum penalty~Dmax P!: 50,100,150.

Dmax P550 Dmax P5100 Dmax P5150

Dmin P550 @50,50# @50,100# @50,150#
Dmin P520 @20,50# @20,100# @20,150#
Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002
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The concept of individual patient criteria for acceptability should be considered when
reviewing patient results. If generic criteria are used for all patients, then a patient with a
overlap volume treated with a minimally acceptable plan could be underdosed in the clinical
volume. Furthermore, any single value nominal treatment ‘‘dose’’ for 3D plans may be ina
priate without a DVH. Two acceptable plans normalized to the same maximum dose may
similar V95 PTV values but vary significantly in the PTV covered by 100% of the prescribed d

Additional studies will be required to validate our findings and determine the usefulness
algorithm on a large scale. At this time we have limited the search to a small interval for a lim
number of cases. Testing will be required to determine if the algorithm converges on a lo
absolute maximum and if it is of any clinical significance.13 Further evaluation is also needed
confirm that optimized plans at the limit of critical structure acceptability do not significa
increase complication rates. Since many plans can be generated that have a common po
critical structure DVH, a detailed comparison of entire curves may be necessary to compare
rather than individual points.

FIG. 3. For a fixed rectum volume penalty, the corresponding dose and volume parameters~D,V! exhibit a linear relation-
ship in order to produce a rectum DVH with a rectum dose of 50% to 60% of the rectum volume. Each parame
produces a change in the target volume that receives 100% of the target dose.

TABLE IV. Improvement in V95 treated to 95% dose using automated
optimization compared to cases with input parameters manually selected
by various planners.

Case V95man V95opt Percent change

1 91.0 98.5 8.3
2 97.7 99.0 1.3
3 95.5 99.2 3.8
4 98.3 98.8 0.5
5 90.2 97.1 7.7

Mean 4.3
Journal of Applied Clinical Medical Physics, Vol. 3, No. 3, Summer 2002
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The parameter sequence, search categories, and computations can be facilitated by any
available computational aid. We have used anEXCEL table augmented with a Visual Basic Appl
cation to perform some of the tasks. Obviously the optimum situation would be to impleme
algorithm as part of the IMRT treatment planning system so that ‘‘optimized’’ plans could
generated automatically.14 Artificial intelligence techniques such as a rule-based expert sys
could replace the human interface to the treatment planning system.

The methods described can be applied to any treatment planning system that requires t
input for selection of optimization parameters, especially if that system incorporates a s
inverse planning algorithm. Following our procedure, initial values of all the input parameter
determined based on manual planning experience for an anatomical site with standard fiel
various parameters are grouped into several categories, including those that will not c
~fixed!, those that can vary together~sets!, those that can only have predetermined values~dis-
crete!, and those that can vary continuously over a range~individual!. The number of free vari-
ables should be reduced as much as possible. After evaluating a few values for a paramete
neighborhood of its initial value with a grid search, interpolation techniques can be us
determine the exact value. It is very helpful to formulate relationships between parameters t
the number of values to be tested. A simple but clinically relevant function, such as target cov
or dose uniformity, can be used to compare plans. Finally, there should be a predetermined
end the process.

Optimization is a relative process with numerous compromises. Gains in one area, s
improved target coverage, are often accompanied by undesirable effects such as increased
a critical structure. A mathematical recipe can facilitate plan evaluation but cannot replace
rienced clinical judgment.

CONCLUSIONS

An algorithm has been developed to assist in IMRT prostate treatment planning. Indiv
goals for target coverage are calculated for each case. The algorithm provides a compre
method to analytically select input parameters that result in improved acceptable plans ba
target coverage and limits to critical structures. Optimization is also performed on the re
volume parameters to maximize target coverage. Several cases planned automatically wit
parameters that were calculated using the algorithm showed a significant improvement in
coverage when compared to manual plans. Typical manual acceptable plans can often be ge
with fewer than ten trial input parameter values, but automated plans may require 20
iterations. However, quick random trials to determine if manual plans can be improved are
clusive, and a thorough exhaustive analysis can easily exceed the number of automated p
iterations.

*This material was presented at the 43rd annual meeting of the American Association of Physicists in Medicine
Lake City, UT, July 22–26, 2001.
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