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The pathophysiology of late kidney-allograft failure remains complex and poorly

understood. Activation of filtered or locally produced complement may contribute to

the progression of renal failure through tubular C5b-9 formation. This study aimed to

determine urinary properdin and sC5b-9 excretion and assess their association with

long-term outcome in renal transplant recipients (RTR).

Methods: We measured urinary properdin and soluble C5b-9 in a well-defined

cross-sectional cohort of RTR. Urinary specimens were taken from a

morning urine portion, and properdin and sC5b-9 were measured using an

enzyme-linked-immunosorbent assay (ELISA). Cox proportional hazard regression

analyses were used to investigate prospective associations with death-censored

graft failure.

Results: We included 639 stable RTR at a median [interquartile range] 5.3 (1.8–12.2)

years after transplantation. Urinary properdin and sC5b-9 excretion were detectable

in 161 (27%) and 102 (17%) RTR, respectively, with a median properdin level of

27.6 (8.6–68.1) ng/mL and a median sC5b-9 level of 5.1 (2.8–12.8) ng/mL. In

multivariable-adjusted Cox regression analyses, including adjustment for proteinuria,

urinary properdin (HR, 1.12; 95% CI 1.02–1.28; P = 0.008) and sC5b-9 excretion (HR,

1.34; 95% CI 1.10–1.63; P = 0.003) were associated with an increased risk of graft

failure. If both urinary properdin and sC5b-9 were detectable, the risk of graft failure was

further increased (HR, 3.12; 95% CI 1.69–5.77; P < 0.001).

Conclusions: Our findings point toward a potential role for urinary complement

activation in the pathogenesis of chronic allograft failure. Urinary properdin and sC5b-9

might be useful biomarkers for complement activation and chronic kidney allograft

deterioration, suggesting a potential role for an alternative pathway blockade in RTR.
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INTRODUCTION

Despite improvements in immunosuppressive therapy over
the last decades, chronic and irreversible deterioration of a
transplanted kidney graft remains a major problem and is
responsible for disappointing outcomes in long-term graft
survival (1). Even though registry data can be used to
define risk factors, chronic allograft failure pathophysiology
remains complex and poorly understood, due to difficulty
in distinguishing the contribution of several immunological
and non-immunological factors (2). Interstitial fibrosis/tubular
atrophy (IFTA), presents itself as renal allograft dysfunction
(occurring at least 3 months post-transplant) in the absence of
active acute rejection, drug toxicity, or other diseases. Due to its
multiple possible causes and complex etiology, classification of
IFTA is still an ongoing process (3, 4). The clinical diagnosis is
usually suggested by gradual deterioration of allograft function,
manifested by a slowly rising serum creatinine concentration,
worsening hypertension, and increasing proteinuria. Proteinuria
is known to be a progression marker and a predictor for renal
failure (5, 6). It is thought that proteinuria contributes to the
progression of renal failure by various mechanisms. One of
these mechanisms is suggested to be leakage of albumin-bound
lipids across the damaged glomerular filtration barrier, leading
to lipoapoptosis after reabsorption by the downstream proximal
tubule (7, 8). Alongside this, activation of filtered or locally
produced complement may be harmful to renal tubular cells
and contribute to the progression of renal failure by initiating
interstitial fibrosis (9, 10). Complement activation leads to the
formation of C5b-9 (11), which can be used as a clinical indicator
of complement activation in native kidney diseases (12, 13).

Renal proximal tubular cells are known to activate
complement via the alternative pathway (AP) (14). Gaarkeuken
et al. showed that complement activation on tubular cells is
mediated by properdin binding on the tubular brush border
(15). Our group identified tubular heparan sulfate as the docking
platform for properdin and the consequent AP activation on
tubular cells (9). In proteinuric patients, urinary properdin
excretion is associated with intrarenal complement activation
and poor renal function (16, 17).

Although it has been established that there is a strong
relationship between proteinuria, tubulo-interstitial injury and
a poor prognosis in kidney disease, to our knowledge no
studies have examined the role of urinary complement activation
products in kidney transplantation outcomes.

We hypothesized that the AP regulator properdin and the
terminal complement complex sC5b-9 play an important role in
graft failure and could serve as early biomarkers for late graft
failure. Hence, the aim of the present study is to investigate the
role of properdin and sC5b9 in renal transplant recipients (RTR)
in relation to the development of graft failure over time.

METHODS

Study Population
The study population consisted of a well-characterized and
previously described cohort of 707 RTR (18). In short, this cohort

comprised RTR (aged ≥ 18 years) who visited the outpatient
clinic of the University Medical Center Groningen (UMCG),
Groningen, The Netherlands, between November 2008 and June
2011, and who had a functional graft for at least 1 year after
transplantation. All patients provided written informed consent.
Urinary morning samples were collected at inclusion in the study
and immediately placed on ice. The samples were centrifuged
at 4◦C at 4,000 RPM for 15min to remove components and
debris, and the supernatants were stored at−80◦C. They were not
subjected to freeze/thaw cycles before analysis. There were 639
patients eligible for analysis after we excluded 67 patients with
missing urinary samples which precluded the measurement of
urinary properdin and sC5b-9 levels. Death-censored graft failure
was defined as return to dialysis or re-transplantation. Kidney
function was assessed by estimating glomerular filtration rate
(eGFR) by applying the Chronic Kidney Disease Epidemiology
Collaboration equation (19). Protein excretion of ≥0.5 g per
day was defined as proteinuria. The study was approved by the
UMCG institutional review board (METc 2008/186), adheres to
the Declarations of Helsinki and Istanbul and has NCT02811835
as ClinicalTrials.gov identifier.

Quantification of Urinary Properdin
Urinary properdin levels were assessed by a previously described
sandwich enzyme-linked-immunosorbent assay (ELISA) (9, 17),
with a detection limit of 1.2 ng/mL, a plasma intra-variation
of <17% and an inter-variation of <20%. In brief, 96-well
ELISA plates (NUNC MaxiSorpTM, Sigma-Aldrich, Saint Louis,
MO, USA) were coated overnight at 4◦C with monoclonal anti-
human properdin (Hycult HM2282, Uden, the Netherlands).
Urinary samples were diluted 5 times in DPBS with 0.1%
Tween and bovine serum albumin (PTB) and incubated for
1 h at 37◦C, followed by secondary antibody; polyclonal rabbit
anti-human properdin-biotin (kindly provided by M. R. Daha,
Leiden, The Netherlands) and detection with Streptavidin-HRP
(Dako P0397, Glostrup, Denmark). Enzyme activity was detected
using 2,2′azino-bis (3-ethylbenzo-thiazoline-6-sulphonic acid)
(A1888, Sigma-Aldrich, Saint Louis, MO, USA). The optical
density was measured at 415 nm using a microplate ELISA reader
(Benchmark Plus, Bio-Rad, Veenendaal, The Netherlands).
A standard curve was prepared using a serial dilution of
zymosan activated serum in PTB with a known concentration
of properdin. A reference sample, diluted in PTB with a known
concentration of properdin was included as positive control.
Potential background signal was assessed and corrected for, with
PTB functioning as blank.

Quantification of Urinary Soluble C5b-9
Urinary sC5b-9 levels were assessed by a previously standardized
and validated sandwich ELISA (17, 20), with a detection
limit of 2.1 ng/mL, a plasma intra-variation of <13% and
an inter-variation of <19%. In brief, 96-well ELISA plates
(NUNC MaxiSorpTM, Sigma-Aldrich) were coated overnight
at 4◦C with monoclonal mouse anti-human C5b-9 (Dako
M0777). Urinary samples were diluted 1.25 times and incubated
for 1 h at 37◦C. Secondary antibody polyclonal goat anti-
human C5 (Quidel Ca92121, San Diego, CA, USA), followed
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by tertiary antibody polyclonal mouse anti-goat IgG HRP
(Jackson 205-035-108) were added. Enzyme activity was detected
using 3,3′,5,5′-tetramethylbenzidine. The optical density was
measured at 450 nm using a microplate ELISA reader. The
standard curve, reference sample, and the assessment of
a potential background signal was prepared in the same
way as the properdin ELISA, with a known concentration
of sC5b-9.

Statistical Analyses
Data were analyzed using IBM SPSS software, version 23.0
(SPSS Inc., Chicago, IL, USA) and R version 3.2.3 (Vienna,
Austria). Data are expressed as mean ± SD for normally
distributed variables and as median [25th−75th interquartile
range (IQR)] for variables with a skewed distribution. Categorical
data are expressed as number (percentage). Under normal
conditions complement factors are not present in the urine.
Therefore, we defined urinary properdin and sC5b9 as a negative
test when undetectable in the urine and as a positive test
when detectable.

We evaluated between-group differences at baseline,
comparing RTRs with vs. without detectable properdin and
sC5b-9 using Student t-test, Mann-Whitney U-test, or Chi
square test, as appropriate. To visualize the association between
urinary properdin and urinary sC5b-9 excretion, we generated a
restricted cubic spline plot based on linear regression analyses.
Knots were placed on the 10th, 50th, and 90th percentile of
ln properdin. To visualize the association between urinary
properdin and urinary sC5b-9 excretion with proteinuria, we
generated restricted cubic spline plots based on linear regression
analyses, with knots placed on the 10th, 50th, and 90th percentile
of ln proteinuria. Further, Kaplan Meier curves were used to
depict the effect of the presence of urinary properdin and/or
sC5b-9 on graft failure and all-cause mortality. Differences
in survival rates were tested using the Cox-Mantel log-rank
test. To study the prospective association with death-censored
graft failure and all-cause mortality, we used Cox proportional
hazards regression analysis. Prior to analyses, we first adjusted
for statistically significant different parameters at baseline and
for other known predictors of graft failure like HLA mismatches.
First, death-censored graft failure was adjusted for age, sex,
primary renal disease, time since transplantation at inclusion,
eGFR, HLAmismatches, and donor type (model 1). Additionally,
adjustment was made for high sensitive-CRP (hs-CRP) (model
2); further adjustment for systolic blood pressure, and smoking
(model 3); and final adjustment for proteinuria (model 4).
Due to skewed distribution, hs-CRP, properdin, and sC5b-9
were natural log-transformed. To determine the optimal cut
off value of urinary properdin and sC5b-9 for prediction of
graft failure in RTR, the Youden index was used. Finally, we
performed mediation analyses to assess whether sC5b-9 was a
mediator in the association between properdin and graft failure.
For this purpose, we used the method as stated by Preacher
and Hayes, which is based on logistic regression (21, 22).
These analyses allow for testing significance and magnitude
of mediation. For all analyses, a two-sided P < 0.05 was
considered significant.

RESULTS

Baseline Characteristics
We included 639 RTR (age 53 ± 13 years; 58% males at 5.3 (1.8–
12.2) years after transplantation). Mean eGFR was 52.2 ± 20.1
ml/min/1.73 m2, and urinary properdin excretion was detectable
in 161 (27%) RTR with a median [interquartile range] properdin
level of 27.6 (8.7–68.1) ng/mL. Urinary sC5b-9 excretion was
detectable in 102 (17%) RTR with median sC5b-9 levels of 5.1
(2.8–12.8) ng/mL.

RTR with detectable urinary properdin were more frequently
females (P < 0.001), had significantly higher: body surface area
(m²) (P = 0.004), creatinine (P = 0.003), hs-CRP (P < 0.001),
frequency of proteinuria (≥0.5 g/24 h) (P < 0.001), and received
a deceased—donor kidney transplant (P = 0.02). RTR with
detectable urinary sC5b-9 weremore frequently males (P= 0.01),
had higher levels of creatinine (P < 0.001), a higher frequency of
proteinuria (P < 0.001), and a deceased-donor kidney transplant
(P = 0.02). An inverse association between eGFR and detectable
properdin (P< 0.001) and sC5b-9 levels (P< 0.001) was detected
at baseline. No significant differences were found at baseline
in HLA mismatches, primary renal disease, history of delayed
graft function, and rejection between patients with and without
detectable urinary properdin or sC5b-9.

Detectable urinary properdin excretion was present in 11
and 16% of RTR with and without proteinuria, respectively.
Detectable urinary sC5b-9 excretion was present in 9 and 8%
of RTR with and without proteinuria, respectively (Figure 1).
Urinary properdin was significantly associated with urinary
sC5b-9 excretion in RTR in whom both complement products
were detectable (β = 0.25; P < 0.001) (Figure 2). Urinary

FIGURE 1 | Prevalences of urinary properdin, urinary sC5b-9, and proteinuria.
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FIGURE 2 | Association between urinary properdin and urinary sC5b-9

excretion in the RTR. A restricted cubic spline is generated based on linear

regression analyses. Knots are placed on 10th, 50th, and 90th percentile of ln

properdin. Blue line represents the coefficient, and pink band represents the

95% confidence interval.

properdin and urinary sC5b-9 excretion were both significantly
associated with proteinuria (β = 0.26; P < 0.001 and β =

0.36; P < 0.001, respectively) (Supplementary Figures 1, 2).
Further demographics and clinical characteristics dichotomized
into detectable or undetectable urinary properdin and sC5b-9 are
specified in Table 1.

Urinary Properdin and Graft Failure
During a median follow-up of 5.3 (4.5–6.0) years, 75 (12%)
RTRs developed death-censored graft failure. As depicted in
the Kaplan Meier curves shown in Figure 3, RTR with both
detectable urinary properdin and sC5b-9 had the highest risk
of developing graft failure (P < 0.001). RTR with urine in
which either properdin or sC5b-9 was detectable, showed an
intermediate risk with worse graft survival compared to RTR
without detectable urinary properdin or sC5b-9 (Figure 3).

In unadjusted Cox regression analysis, detectable urinary
properdin was significantly associated with development of
death-censored graft failure (HR, 3.08; 95% CI 1.95–4.85; P <

0.001), in patients with neither urinary properdin or sC5b-9 as
the reference group. In multivariable analyses, detectable urinary
properdin remained associated with development of graft failure
(HR, 2.30; 95% CI 1.37–3.82; P < 0.001, Table 2), independent
of adjustment for age, sex, primary renal disease, time since
transplantation, eGFR, HLA mismatches, donor type, hs-CRP,
systolic blood pressure, and smoking. However, the association
between detectable properdin and graft failure became borderline
significant after further adjustment for proteinuria (HR, 1.47;
95% CI 0.85–2.54; P = 0.05).

When we assessed the association between properdin as a
continuous variable and graft failure, findings were similar.
After adjustment for potential confounders, urinary properdin
as a continuous variable was significantly associated with graft
failure (HR, 1.25; 95% CI 1.10–1.42; P < 0.001) (Table 3). After

adjustment for proteinuria, the association of properdin as a
continuous variable with graft failure remained significant (HR,
1.12; 95% CI 1.02–1.38; P = 0.008). The optimal cut-off (Youden
index) of urinary properdin for prediction of graft failure was
2.35 ng/mL. At this cut-off value, there was a sensitivity of 59%
and a specificity of 79% for prediction of graft failure.

Urinary sC5b-9 and Graft Failure
In unadjusted analysis, detectable urinary sC5b-9 was
significantly associated with development of death-censored
graft failure (HR, 4.17; 95% CI 2.63–6.63; P < 0.001). In
multivariable analyses, detectable sC5b-9 remained associated
with the development of graft failure (HR, 3.09; 95% CI 1.87–
5.11; P < 0.001), independent of age, sex, primary renal disease,
time since transplantation, eGFR, HLA mismatches, donor type,
hs-CRP, systolic blood pressure, and smoking (Table 2). The
association between detectable sC5b-9 and graft failure also
remained after further adjustment for proteinuria (HR, 2.16;
95% CI 1.30–3.61; P = 0.003).

When we assessed the association between sC5b-9 as a
continuous variable and graft failure, findings were similar. sC5b-
9 as a continuous variable was associated with risk of developing
graft failure in the unadjusted analysis and in multivariable
analyses, after adjustment for potential confounders, including
proteinuria (HR, 1.34; 95% CI 1.10–1.63; P = 0.004) (Table 3).
The optimal cut-off (Youden index) of urinary sC5b-9 for
prediction of graft failure was 2.88 ng/mL, there was a sensitivity
of 48% and a specificity of 91% for prediction of graft failure.

Mediation Analyses
Since properdin is involved in sC5b-9 complex formation via the
alternative complement pathway (9), we aimed to assess whether
the association between properdin and graft failure was mediated
by sC5b-9. In mediation analyses, sC5b-9 was found to be a
significant mediator of the association between properdin and
graft failure, 31% of the association between properdin and graft
failure was explained by sC5b-9, the P value for indirect effect is
<0.05 (Table 4).

Properdin, sC5b-9, and Mortality
In an unadjusted Cox regression analysis, detectable urinary
properdin was significantly associated with an increased risk
of mortality (HR, 1.58; 95% CI 1.11–2.25; P = 0.01), whereas
detectable urinary sC5b-9 was not significantly associated
with increased risk of mortality(HR, 1.39; 95% CI 0.92–2.11;
P = 0.12). After adjustment for potential confounders, the
association between properdin and mortality was abrogated, and
the association between sC5b-9 and mortality remained non-
significant (Supplementary Table 1).

In unadjusted Cox regression analyses, both urinary
properdin and sC5b-9 as continuous variables were significantly
associated with an increased risk of mortality (HR, 1.16;
95% CI 1.05–1.27; P = 0.003 and HR, 1.26; 95% CI 1.08–
1.48; P = 0.004, respectively). However, after adjustment for
potential confounders, the associations between properdin
and mortality, and between sC5b-9 and mortality were lost
(Supplementary Table 2).
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TABLE 1 | Baseline characteristics according to detectable urinary properdin urinary sC5b-9 levels.

Variables Urinary properdin P-value Urinary sC5b-9 P-value

Not detectable (n = 478) Detectable (n = 161) Not detectable (n = 537) Detectable (n = 102)

RECIPIENT

Age (years) 53 ± 13 53 ± 13 0.96 53 ± 13 53 ± 13 0.88

Male sex (n, %) 305 (64) 66 (41) <0.001 298 (56) 70 (69) 0.01

Body mass index, kg/m2 26.5 ± 4.2 26.7 ± 5.0 0.65 26.6 ± 4.7 26.3 ± 4.9 0.44

Body surface area (m2 ) 1.96 ± 0.21 1.90 ± 0.22 0.004 1.95 ± 0.21 1.94 ± 0.22 0.95

Alcohol use (n, %) 387 (82) 124 (77) 0.28 441 (82) 74 (73) 0.69

Current smoking (n, %) 55 (12) 20 (12) 0.72 58 (11) 17 (17) 0.06

Primary renal disease 0.34 0.95

Primary glomerular disease (n, %) 143 (30) 36 (22) 156 (29) 25 (25)

Glomerulonephritis (n, %) 43 (9) 11 (7) 43 (8) 11 (11)

Tubulo-interstitial disease (n, %) 48 (10) 25 (16) 63 (12) 11 (11)

Polycystic renal disease (n, %) 95 (20) 36 (22) 109 (20) 22 (22)

Dysplasia and hypoplasia (n, %) 19 (4) 6 (4) 22 (4) 4 (4)

Renovascular disease (n, %) 29 (6) 8 (5) 30 (6) 7 (7)

Diabetic nephropathy (n, %) 23 (5) 8 (5) 27 (5) 4 (4)

Other or unknown cause (n, %) 78 (16) 31 (19) 87 (16) 18 (18)

History of CV-disease (n, %) 58 (12) 23 (14) 0.31 71 (13) 10 (10) 0.65

Time since transplantation (years)* 5.3 (1.7–12.0) 6.1 (2.1–12.6) 0.39 5.1 (1.9–11.6) 7.1 (1.7–15.0) 0.07

Delayed graft function (n, %) 31 (7) 15 (9) 0.27 36 (7) 10 (10) 0.24

Rejection (n, %) 130 (27) 45 (28) 0.82 143 (27) 32 (31) 0.33

Diabetes mellitus (n, %) 109 (23) 38 (24) 0.75 124 (23) 23 (23) 0.84

Systolic blood pressure (mmHg) 136 ± 17 135 ± 18 0.84 135 ± 17 139 ± 19 0.05

Diastolic blood pressure (mmHg) 82 ± 11 82 ± 11 0.64 82 ± 11 85 ± 11 0.02

LABORATORY MEASUREMENTS

sC5b-9 (ng/mL) 0 (0–0) 0 (0–3.8) <0.001 0 (0–0) 5.1 (2.8–12.8)

Properdin (ng/mL) 0 (0–0) 27.6 (8.7–68.1) 0 (0–0) 0 (0–32.4) <0.001

Hemoglobin (mmol/L) 8.3 ± 1.1 7.9 ± 1.0 <0.001 8.2 ± 1.1 8.1 ± 1.2 0.31

Total cholesterol (mmol/L) 5.1 ± 1.1 5.2 ± 1.1 0.60 5.1 ± 1.1 5.2 ± 1.1 0.49

eGFR (ml/min/1.73 m2) 54 ± 20 47 ± 21 <0.001 54 ± 20 44 ± 21 <0.001

Creatinine (µmol/L) 133 ± 46 154 ± 83 0.003 132 ± 48 172 ± 91 <0.001

Proteinuria (>0.5 g/24 h) (n, %) 74 (15) 65 (40) <0.001 83 (16) 56 (55) <0.001

hs-CRP (mg/L) 1.5 (0.6–3.7) 2.5 (1.0–7.6) <0.001 1.6 (0.7–4.3) 2.1 (0.8–6.1) 0.09

TREATMENT

ACE-inhibitors (n, %) 157 (33) 58 (36) 0.47 176 (33) 39 (38) 0.29

Bèta-blocker (n, %) 300 (63) 113 (70) 0.08 346 (64) 67 (66) 0.81

Calcium channel blockers (n, %) 117 (25) 39 (24) 0.95 128 (24) 28 (28) 0.44

Diuretic use (n, %) 189 (40) 72 (45) 0.26 209 (39) 52 (51) 0.02

Calcineurin inhibitor (n, %) 281 (59) 92 (57) 0.57 315 (59) 60 (59) 0.44

Sirolimus (n, %) 10 (2) 2 (1) 0.33 11 (2) 1 (1) 0.50

Prednisolon, mg/24 h (n, %) 468 (99) 161 (100) 0.47 532 (99) 101 (99) 0.53

MMF (n, %) 294 (62) 87 (54) 0.10 328 (61) 55 (54) 0.70

Azathioprine (n, %) 77 (16) 41 (26) 0.68 93 (17) 27 (27) 0.71

DONOR

Donor age (years) 46 ± 18 43 ± 15 0.07 43 ± 15 42 ± 16 0.29

Male sex donor (n, %) 232 (49%) 90 (56%) 0.11 280 (53%) 45 (46%) 0.19

Deceased type donor (n, %) 298 (62%) 117 (73%) 0.02 341 (63%) 77 (75%) 0.02

HLA MISMATCHES (n, %)

Class I 0.46

0 (n, %) 102 (22) 27 (17%) 103 (19%) 26 (25%)

(Continued)
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TABLE 1 | Continued

Variables Urinary properdin P-value Urinary sC5b-9 P-value

Not detectable (n = 478) Detectable (n = 161) Not detectable (n = 537) Detectable (n = 102)

1 (n, %) 113 (24%) 31 (19%) 125 (23%) 21 (20%)

2 (n, %) 169 (36%) 53 (33%) 191 (36%) 33 (32%)

3 (n, %) 43 (9%) 20 (12%) 51 (10%) 12 (12%)

4 (n, %) 21 (4%) 9 (6%) 27 (5%) 3 (3%)

Class II 0.82

0 (n, %) 199 (42%) 60 (37%) 215 (40%) 46 (45%)

1 (n, %) 198 (42%) 66 (41%) 226 (42%) 40 (39%)

2 (n, %) 47 (10%) 14 (9%) 52 (10) 9 (9%)

Normally distributed data are presented as means± standard deviation, skewed data as medians (interquartile range), and categorical data as number (percentage). P-values have been

calculated by means of independent samples T-test, Mann-Whitney U-test, or Chi-square test. eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C-reactive protein;

ACE, angiotensin-converting enzyme; MMF, mycofenolaat mofetil; HLA, human leukocyte antigens. * time since transplantation at inclusion.

FIGURE 3 | Kaplan-Meier analyses for percentage graft failure (A) and survival

(B) according to no sC5b-9/no properdin, sC5b-9/no properdin, no

sC5b-9/properdin, sC5b-9/properdin. Log-rank tests showed that the

prevalence of graft failure and survival were significantly higher in the patients

with urinary properdin and sC5b-9. Associations between survival and urinary

properdin and sC5b-9 did not remain significant after adjustment for potential

confounders.

DISCUSSION

In this study, we show that the alternative pathway complement
factor properdin and the terminal sC5b-9 complex are detectable
in the urine of patients after kidney transplantation and are
independently associated with chronic allograft failure. To our
knowledge, this is the first report indicating urinary alternative

complement pathway involvement in chronic renal allograft
failure, independent of potential cofounders including eGFR
and proteinuria.

It has long been recognized that patients with high-grade
proteinuria are more likely to develop chronic renal failure than
patients without proteinuria (23, 24). Urinary proteins elicit pro-
inflammatory and pro-fibrotic effects that directly contribute to
chronic tubulo-interstitial damage. Additionally, amongmultiple
other pathways complement activation may be an important
component leading to fibrogenesis in the kidney. In physiological
conditions complement components are not filtered through
the glomerular barrier, however complement components are
present in the urine of patients with non-selective proteinuria
(25, 26). Properdin positively regulates the AP of the complement
system and is also a pattern recognition molecule for C3b that
subsequently stabilizes the C3bBb complex and thus contributes
to C5b-9 formation (27–30). Tubular epithelial cells are especially
susceptible to the effects of C5b-9 formation because they
lack the membrane-bound complement regulators on the apical
cell surface (31). Recently, urinary complement measurements
and their clinical value are of increasing interest in transplant
medicine. Schröppel et al. showed not long ago the importance of
anaphylatoxins C3a and C5a in donor urine and their association
with delayed graft function (32), and van Essen et al. recently
reviewed the detection of complement biomarkers in urine to
monitor local injury in renal diseases, including properdin (33).

In this study, we have shown a potential role of urinary
properdin and sC5b-9 in the pathogenesis of chronic allograft
failure. Our data show that graft survival is reduced in patients
in whom properdin is present in the urine together with sC5b-9.
Remarkably, in patients without overt proteinuria, we identified
that properdin, sC5b-9 or both properdin and sC5b-9, were also
associated with a worse graft survival. More importantly, not only
the presence of properdin and sC5b-9 was significantly associated
with graft failure, but also properdin and sC5b-9 were robustly
associated with graft survival when analyzed as continuous
parameters, pointing toward a dose-dependent effect. There
are several possible explanations for this association. Properdin
is the only known complement protein that is not produced
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TABLE 2 | Association of detectable urinary properdin and detectable urinary sC5b-9 with graft failure in renal transplant recipients.

Model Detectable properdin Detectable sC5b-9 Both properdin and sC5b-9

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Univariate 3.08 (1.95–4.85) <0.001 4.17 (2.63–6.63) <0.001 7.13 (4.30–11.83) <0.001

Model 1 2.35 (1.44–3.82) 0.001 3.03 (1.86–4.96) <0.001 8.04 (4.74–13.63) <0.001

Model 2 2.27 (1.38–3.73) 0.001 2.99 (1.83–4.89) <0.001 7.63 (4.46–13.10) <0.001

Model 3 2.30 (1.37–3.82) <0.001 3.09 (1.87–5.11) <0.001 6.75 (3.79–12.02) <0.001

Model 4 1.47 (0.85–2.54) 0.05 2.16 (1.30–3.61) 0.003 3.12 (1.69–5.77) <0.001

Model 1, adjustment for age, sex, primary renal disease, time since transplantation at inclusion, eGFR, HLA mismatches, and donor type;model 2, model 1 + adjustment for hs-CRP;

model 3, model 2 + adjustment for systolic blood pressure, and smoking; model 4, model 3 + adjustment for proteinuria.

Reference group defined as patients with neither urinary properdin or C5b-9, with a hazard ratio of 1.0.

TABLE 3 | Association of continuous natural log transformed urinary properdin

and urinary sC5b-9 with graft failure in renal transplant recipients.

Model Ln properdin Ln sC5b-9

HR (95% CI) P-value HR (95% CI) P-value

Univariate 1.36 (1.21–1.52) <0.001 1.76 (1.51–2.06) <0.001

Model 1 1.26 (1.11–1.43) <0.001 1.61 (1.35–1.91) <0.001

Model 2 1.25 (1.10–1.42) 0.001 1.61 (1.36–1.92) <0.001

Model 3 1.25 (1.10–1.42) 0.001 1.63 (1.36–1.96) <0.001

Model 4 1.12 (1.02–1.28) 0.008 1.34 (1.10–1.63) 0.004

Model 1, adjustment for age, sex, primary renal disease, time since transplantation at

inclusion, eGFR, HLA mismatches, and donor type; model 2, model 1 + adjustment

for hs-CRP; model 3, model 2 + adjustment for systolic blood pressure, and smoking;

model 4, model 3 + adjustment for proteinuria.

in the liver, but synthesized by various other cell types like
monocytes, primary T cells, granulocytes, and endothelial cells
(34–38). Therefore, it is possible that locally produced properdin
and/or filtered properdin with other filtered small complement
components, causes intratubular C5b-9 activation leading to
progressive renal disease without manifest proteinuria, defined
as proteinuria >0.5 g/24 h (39, 40). In kidney transplant patients
it is generally believed that small amounts of proteinuria, defined
as< 0.5 g/24 h, are harmless (41, 42). Only persistent proteinuria,
>0.5 g/24 h for at least 3–6 months is considered significant
according to American Society of Transplantation guidelines,
and low-grade proteinuria is often referred to as “subclinical”
(43). However, low grade proteinuria may be less harmless than
originally described. Halimi et al. showed a dose-dependent effect
in transplant patients with low grade proteinuria (<0.5 g/24 h) in
whom each 0.1 g/24 h difference in proteinuria increased the risk
of graft loss by 25% (44). In line with our findings in transplanted
patients, Siezenga et al. showed an association between urinary
properdin and worse renal function in patients with diabetic
nephropathy or glomerular disease. Furthermore, the association
of urinary properdin with urinary sC5b-9 was independent of the
degree of proteinuria (17).

The fact that adjustment for proteinuria > 0.5 g/24 h did not
materially alter the prospective association in the prospective

TABLE 4 | Mediation analyses of the impact of sC5b-9 on the association

between properdin and graft failure.

Potential

mediator

Outcome Effect (path)* Multivariable model**

Coefficient

(95% CI)
†

Proportion

mediated***

C5b-9 Graft

failure

Indirect effect (ab path) 0.08 (0.04;0.13) 31%

Total effect (ab + c’ path) 0.26 (0.13;0.37)

Unstandardized total

effect‡
0.22 (0.07;0.38)

Adjusted for age, sex, primary renal disease, time since transplantation, and hs-CRP.

*The coefficients of the indirect ab path and the total ab + c’ path are standardized for

the standard deviations of the potential mediators and outcomes.

**All coefficients are adjusted for age, sex, eGFR, time since transplantation at inclusion,

primary renal disease, donor type and proteinuria.

***The size of the significant mediated effect is calculated as the standardized indirect

effect divided by the standardized total effect multiplied by 100.
†
95% CIs for the indirect and total effects were bias-corrected confidence intervals after

running 2,000 bootstrap samples.
‡Odds ratios for risk of outcomes can be calculated by taking the exponent of the

unstandardized total effect.

analysis of continuous properdin and sC5b-9 measurements,
is supportive of our hypothesis that alternative pathway
complement activation might be one of the driving forces of
chronic graft failure. More importantly, after correction for other
well-known predictors of graft failure, like HLA mismatches and
donor type, the association remains. In mediation analysis, we
showed that the association between properdin and graft failure
was mediated to a considerable extent by urinary sC5b-9.

This may explain why RTR with properdin alone, or sC5b-
9 alone in the urine have a better allograft survival compared
to both properdin and sC5b9 in the urine. Therefore, it seems
that AP complement activation plays an important role in
the loss of allograft function of RTR. The possible mechanism
of this effect at a tubular level is illustrated by the scheme
presented in Figure 4. Interestingly, urinary properdin was more
frequently detected in females and urinary sC5b-9 was more
frequently detected in males. We can only speculate on the
causes of these differences. Innate immune function may vary
between males and females (45), however a limited number of
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FIGURE 4 | The possible mechanism on a tubular level illustrating tubular alternative pathway complement activation via properdin as pattern recognition molecule.

studies have investigated the influence of sex on the complement
system (46–49). Properdin is encoded on the short arm of
the X chromosome, and together with hormonal differences
between males and females this could be explanations of the
sexual differences in properdin (50, 51). However, in a healthy
Caucasian population, Gaya da Costa et al. recently found
decreased serum properdin and serum C9 in healthy human
females compared to males (49). In contrast, animal studies
have shown that female mice have a similar serum complement
cascade functionality at the level of C3 activation compared to
male mice, but a strongly reduced level of serum C9, leading to
an inability of female mice to promote inflammation through
C5b-9 (46).

Multiple therapeutic modalities to inhibit complement
pathway intervention are currently being developed. Our study
points toward the potential for complement inhibition at the
tubular level in proteinuric patients, which may improve long
term outcome in patients with chronic allograft nephropathy.

The main strength of our study is that it comprises a
large prospective cohort of stable RTR, in which several renal

parameters as well as both urinary properdin and sC5b-9 were
measured. In addition, end-point evaluation was complete in all
participants despite the long follow-up period. We acknowledge
several limitations of the study. First, no gold standard exists
for the definition of urinary properdin and sC5b-9. In our
study, we defined the detectability of properdin and sC5b-9
as urinary properdin and urinary sC5b-9. Second, complement
activation may only be partially reflected by urinary properdin
and sC5b-9 excretion, since the excretion may be altered
by tubular complement binding and fixation. Third, possible
residual confounding in this study cannot be excluded due to
the observational status of this single center study. Furthermore,
we do not have data on the presence of donor specific antibodies
or protocol biopsies in this cohort. Thus, we cannot differentiate
between general effects of glomerular filtration of complement
products and a specific contribution of alloantibody mediated
complement activation. Unfortunately our prospective cohort
contained too few events of graft failure to perform analysis
for the underlying cause of graft loss and their relation to
urinary complement.
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We identified that the presence of urinary properdin and
sC5b-9 is independently associated with increased risk of late
graft failure in RTR, compared to RTRwithout urinary properdin
and sC5b-9. This suggests that urinary properdin and sC5b-
9 can serve as useful biomarkers of immunological injury and
kidney allograft deterioration. Importantly, urinary properdin
and sC5b-9 was associated with graft failure independently of
eGFR and significant proteinuria. We suggest that an important
part of proteinuria mediated toxicity, is caused by the presence
of complement in the primary urine and subsequent activation
at the tubular surface. Further studies are needed to unravel
the exact interplay between urinary properdin, sC5b-9 and
the development of fibrosis, and moreover the potential for
therapeutic interventions.
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