
sensors

Article

Discriminative Sparse Filtering for Multi-Source
Image Classification

Chao Han 1 , Deyun Zhou 1, Zhen Yang 1,*, Yu Xie 2 and Kai Zhang 1

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
hanc@mail.nwpu.edu.cn (C.H.); dyzhou@nwpu.edu.cn (D.Z.); zhangkainwpu@mail.nwpu.edu.cn (K.Z.)

2 School of Electronic Engineering, Xidian University, Xi’an 710071, China; sxlljcxy@gmail.com
* Correspondence: nwpuyz@mail.nwpu.edu.cn

Received: 15 September 2020; Accepted: 10 October 2020; Published: 16 October 2020
����������
�������

Abstract: Distribution mismatch caused by various resolutions, backgrounds, etc. can be easily
found in multi-sensor systems. Domain adaptation attempts to reduce such domain discrepancy by
means of different measurements, e.g., maximum mean discrepancy (MMD). Despite their success,
such methods often fail to guarantee the separability of learned representation. To tackle this
issue, we put forward a novel approach to jointly learn both domain-shared and discriminative
representations. Specifically, we model the feature discrimination explicitly for two domains.
Alternating discriminant optimization is proposed to obtain discriminative features with an l2
constraint in labeled source domain and sparse filtering is introduced to capture the intrinsic
structures exists in the unlabeled target domain. Finally, they are integrated in a unified framework
along with MMD to align domains. Extensive experiments compared with state-of-the-art methods
verify the effectiveness of our method on cross-domain tasks.

Keywords: domain adaptation; sparse filtering; alternating discriminant optimization; maximum
mean discrepancy

1. Introduction

A basic assumption of many machine learning algorithms is that the training and testing data share
the same distribution. Now, data sources are more diverse due to the lower costs of data acquisition.
For visual images, it may cause inconsistent distribution with some small changes such as lighting
conditions, acquisitions, or backgrounds. It is expensive to label each source’s data. Domain adaptation
aims to train a robust classifier based on a labeled source domain to predict on an unlabeled target
domain [1], which achieved significant progress in image classification [2,3], speech recognition [4,5],
person re-identification [6], and many other areas.

An intuitive idea for domain adaptation is to re-weight the training samples and reduce the
distance between the source and target domains at the instance level [7]. Another popular way is to
reduce the discrepancy between domains at the feature level, which attempts to learn domain-shared
representations. Ben et al. pointed out that the transferable features can be obtained by minimizing
the distance of domains and maximizing the source margin simultaneously [8]. Based on this theory,
many feature-driven domain adaptation methods have been proposed. Pan et al. mapped the data
from both domains to high-dimensional Hilbert space and then minimized the domain discrepancy [9].
The measurement employed in [9] is maximum mean discrepancy (MMD) [10], which is capable of
characterizing the distance between two sets of samples. Long et al. adapted the marginal probability
and conditional probability of the two domains simultaneously by assigning pseudo-labels to the
target domain, and achieved more accurate results in an iterative manner [11]. Gong et al. integrated
an infinite number of subspaces and characterized changes in consideration of geometric and statistical

Sensors 2020, 20, 5868; doi:10.3390/s20205868 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5809-9988
https://orcid.org/0000-0002-1188-2120
http://dx.doi.org/10.3390/s20205868
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5868?type=check_update&version=2

Sensors 2020, 20, 5868 2 of 17

properties, then proposed a subspace disagreement measure (SDM) to determine the optimal subspace
dimension [12]. The combination of distribution matching measures and deep neural networks also
achieves remarkable performance. Yosinski et al. studied the transferability of layers in deep neural
networks and pointed out that for a particular deep neural network, the first few layers learn general
features such as lines or points, and the latter layers learn more specific features [13]. Inspired by
this, a series of works have been proposed. Ghifary et al. proposed a domain adaptive neural
network for domain adaptation. Compared with a classical neural network, it modeled domain
discrepancy explicitly [14]. Tzeng et al. added an MMD adaptation layer to the classic Alexnet [15] for
distribution alignment [16]. Long et al. obtained better results by adapting more layers of network
and using multi-kernel MMD (MK-MMD) [17]. Inspired by the success of residual structure in image
classification, Long et al. proposed residual transfer networks (RTN) to learn cross-layer transferable
features [18]. Another interesting idea is adversarial training, which establishes a domain classifier
to judge whether a sample comes from the source or target domain. Suppose that a well-trained
classifier cannot distinguish samples in two domains; we can say that there are little differences
between domains. It differs from other methods in that adversarial training does not measure domain
discrepancy with hand-crafted indicators but uses a dynamic classifier. Ganin et al. put forward a
gradient reversal layer (GRL) to learn domain-invariant features [19]. Long et al. combined MMD
and adversarial training to form a more powerful joint maximum mean discrepancy [20]. Pei et al.
considered the multi-mode structures of data and used multiple adversarial networks (each for a
class) to align domains [21]. Zhang et al. simultaneously learned both domain-informative and
domain-uninformative features through domain collaborative and domain adversarial learning [22].

Many studies focus on dimensionality reduction to facilitate calculation and visualization [23].
Similarly, domain adaptation can also be considered as a feature extraction problem to extract
discriminative and shared features. For features with low dimension, it is generally considered
that the good features may hold more information, which has been proven to be effective in
auto-encoder [24] and reconstruction independent component analysis [25]. The reconstruction error
guarantees the completeness of features. However, for the problem of domain adaptation, feature
completeness is not necessary because of the inconsistent distribution between the two domains.
The knowledge or features are not completely shared between the two domains [1]. Another criterion
for extracting features is sparsity, which is generally used as a regular item [26]. Sparse filtering
proposed in [27] avoids explicitly modeling raw data, and obtains ideal features by constraining the
sparsity of features. Sparse representation-based methods have also made dramatic progress in visual
recognition [28].

Most existing methods attempt to shorten the distance between two domains in different feature
spaces while maintaining certain statistical characteristics (e.g., variance [9]). Despite the great success
achieved, they do not model feature distinctiveness explicitly. In order to handle this problem,
we propose a novel dimensionality reduction method for unsupervised domain adaptation in this
paper. Apart from reducing the distance between domains, we employ different measurements for
source and target domain to obtain discriminative features. Our contributions can be summarized
as follows.

• We propose a novel unsupervised domain adaptation solution to reduce domain discrepancy and
extract discriminative features simultaneously. Compared to existing works, the proposed method
models feature distinctiveness with explicitly constraint. Comparisons with state-of-the-art
methods show that our method works well in accuracy and efficiency.

• Alternating discriminant optimization is proposed to obtain discriminative features in the labeled
source domain, which utilizes an l2 objective to measure feature distinctiveness. We use a toy
example to demonstrate how it works.

• We combine sparse filtering and maximum mean discrepancy into an integrated framework,
and propose an unified optimization method with full-batch and mini-batch gradient descent.

Sensors 2020, 20, 5868 3 of 17

The rest of the paper is organized as follows. Section 2 details the domain adaptation problem
and related works, then introduces sparse filtering and maximum mean discrepancy. Our method is
introduced in Section 3 and experimental evaluation is presented in Section 4. At last, we summarize
this paper and discuss future work in Section 5.

2. Related Works

In this section, we give a definition of transfer leaning and explain its relationship with domain
adaptation. According to whether the labeled samples in the target domain are available, the problem
can be divided into semi-supervised and unsupervised domain adaptation. In this paper, we focus
on unsupervised domain adaptation, which means that the target domain does not have any labeled
samples. Following that, we introduce sparse filtering and maximum mean discrepancy.

2.1. Transfer Learning and Domain Adaptation

There are two important concepts in transfer learning, domain and task. A domain,D = {X, P(X)},
can be thought of as a set of data, which has a feature space X and a marginal probability distribution
P(X). The task also has two components, T = {Y, f (·)}, Y is the label space and f (·) is the mapping
function. Traditional machine learning methods have the same domains and tasks between training
and testing. When domains or tasks are different, we call it transfer learning (TL). According to the
similarity of domain and task, TL can be divided into inductive TL and transductive TL. In this paper,
we focus on transductive TL, where the domains are different but related and the tasks are the same.

Domain adaptation can be seen as a kind of transductive TL. Given source data and label (Xs,Ys)
and target data (Xt), where data in two domains have different distributions, domain adaptation
(DA) aims to find the label of target data (Yt). When the test set is completely unlabeled, it is called
unsupervised domain adaptation, which is also the focus of this paper. The mathematical form is
defined as follows [11]. {

P(Xs) 6= P(Xt)

P(Ys | Xs) 6= P(Yt | Xt)
(1)

In this paper, we focus on unsupervised domain adaptation which means that target domain
has no labels at all. Existing methods try to align features by means of varieties of transformations
(e.g., kernel [29], deep neural networks [17]). One crucial thing is how to measure the discrepancy
between domains. There are two widely used methods: (a) alignment with moments, whether
the first-order moment (maximum mean discrepancy [10]) or the second-order (CORAL [30]);
and (b) adversarial training. The main idea is to establish a feature extractor and a domain discriminator
simultaneously and train them as generative adversarial nets [31].

2.2. Sparse Filtering

Sparse filtering is an effective and simple unsupervised feature extraction method proposed
in [27]. It only requires one input parameter: the number of features. Unlike other feature extraction
methods, it does not attempt to model the raw data. Instead, it starts with what are good features and
directly constrains the extracted features. As a major contribution, the authors gave three principles of
the so-called good features.

• Population sparsity: Each example should be represented by only a few active features.
Specifically, non-zero elements represent the activation of features, so each sample has few
non-zero elements.

• Lifetime sparsity: Good features should be distinguishable. Therefore, a feature is only allowed
to be activated in few samples. For example, if we want to classify cats and dogs, the feature of
having a tail is activated for all samples, then it is not a good feature.

• High dispersal: It requires each feature to have similar statistical properties across all samples.
No one feature should have significantly more activity than the others. This avoids the

Sensors 2020, 20, 5868 4 of 17

extraction of features that are only activated on very few samples, and prevents the extraction of
similar features.

Furthermore, the authors pointed out that we can obtain ideal representations by jointly
optimizing population sparsity and high dispersal, so there is no need to optimize lifetime sparsity
explicitly; interested readers can refer to the original paper for more details. Suppose now we
have n samples, each with m-dimensional features that can be written as x = x1, x2 . . . , xn ∈ Rm.
The optimization of sparse filtering is as follows:

(1) Linear feature extraction. Let f (i)j represent the jth feature of the ith sample. f (i)j = x(i)wj.
Then we can use some activation functions to make it more expressive, such as the soft absolute function.

f (i)j =
√

ε + (x(i)wj)2 ≈
∣∣∣x(i)wj

∣∣∣ (2)

(2) Solving high dispersal. Each feature is divided by the l2−norm of the feature on all samples.

f̃ j =
f j

‖ f j‖2
(3)

Remember that the requirement of high dispersal is that the statistical properties of each feature are
similar. This step forces the sum of the squares of all features to be 1 roughly.

(3) Solving population sparsity. Each sample is divided by its own l2−norm. Then, we can get
the objective function.

minimize
n

∑
i=1

∥∥∥∥∥ f̃ (i)

‖ f̃ (i)‖2

∥∥∥∥∥
1

(4)

An advantage of using l2 normalization is to introduce the competition mechanism—that is to
say, while some components become larger, some components will become smaller. The result of
competition is that the representation becomes sparse.

2.3. Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is widely used to measure the difference between
distributions [10]. For domain adaptation problems, researchers pointed out that marginal distribution
adaptation can be achieved by minimizing MMD which computes the distance between sample means
in the k−dimensional embeddings [9,11].

∣∣∣∣ 1
ns

ns

∑
i=1

xi A−
1
nt

ns+nt

∑
j=ns+1

xj A
∣∣∣∣2 = tr(ATXT M0XA) (5)

where M0 is the MMD matrix that can be computed as:

(M0)ij =



1
nsns

, xi, xj ∈ Ds

1
ntnt

, xi, xj ∈ Dt

−1
nsnt

, otherwise

(6)

Intuitively, the source and target data are integrated together as X ∈ R(ns+nt)×m where m denotes
the feature dimension of original data and ns/nt denotes the number of source/target samples. The first
ns columns are instances from the source domain and followed nt columns from the target domain.
A ∈ Rm×k is the adaptation matrix which maps the original xi and xj to k−dimensional. As shown

Sensors 2020, 20, 5868 5 of 17

on the left of Equation (5), MMD computes the mean vectors for the source and target domains first,
then takes the l2−norm of the difference between the two vectors.

3. Methodology

In this section, we describe the proposed method in detail. First the framework of our approach is
introduced. Then, it is followed by a detailed description of the proposed alternating discriminant
optimization (ADO) and how the MMD is used in our method. Finally, we summarize the specific
optimization problem.

3.1. Framework of Discriminative Sparse Filtering

In this paper, we try to learn both discriminative and domain-shared features. Our model consists
of two parts: feature transformation and loss function construction. Using the notations defined in
Table 1, feature transformation can be described as:

Step 1. Linear feature extraction. Let fact denote the selected activation function. We use the soft
absolute function as fact in this paper

X̂s = fact(XsW) = |XsW + ε|
X̂t = fact(XtW) = |XtW + ε|

(7)

where ε denotes a small number, such as 1e-5.
Step 2. Solving high dispersal. Observing the form of f1, each row represents a sample, and each

column represents a feature. So this step is actually doing a l2 column normalization. It is worth
noting that we do within-domain normalization instead of cross-domain (which means that using all
the samples from two domains to normalize). The idea is to force each feature has similar statistical
properties in two domains by setting their l2 norm to 1 rudely. As a consequence, a given feature
should (a) have similar statistical properties in different domains and (b) be distinguishable over
samples in the same domain.

X̂s = X̂s ◦Mcs, (Mcs)ij =
1√

ns
∑

i=1
(X̂s)2

ij

X̂t = X̂t ◦Mct, (Mct)ij =
1√

nt
∑

i=1
(X̂t)2

ij

(8)

Here, the symbol ◦ represents Hadamard product.
Step 3. Solving population sparsity. Just like the previous step, this step does an l2 row

normalization.
X̂ = X̂ ◦Mr

where, (Mr)ij =
1√

k
∑

j=1
(X̂)2

ij

, X̂ =

[
X̂s

X̂t

]
(9)

Sensors 2020, 20, 5868 6 of 17

Table 1. Notations and descriptions used in this paper.

Notations Description

Ds/Dt source/target domain
Xs/Xt original source/target domain data
Ys/Yt source/target domain label
ns/nt number of source/target samples
m/k original/transformed feature dimension

X̂s/X̂t transformed source/target domain data
f (·) mapping function, X̂ = f (X)
W the transformation matrix to be solved

Wlr weight matrix for alternating discriminant optimization
Ltarget objective function for sparsity in the target domain
Lsource objective function for alternating discriminant optimization in the source domain
Lmmd objective function for domain discrepancy
α, β the balance factors among three objectives

Notice that steps 2 and 3 do not change the dimension of samples; we can regard them as a specific
activation. Based on the descriptions, the transformation from the initial data X to X̂ is summarized as
X̂ = f (X). The loss function can be described as:

L =αLtarget(f (Xt)) + βLsource(f (Xs), Ys)

+ Lmmd(f (Xs), f (Xt))
(10)

where Ltarget represents the sparse loss on the target domain, Lsource represents the discriminative loss
of the source domain, and Lmmd denotes the MMD loss between the source and target features. α, β

are the parameters that balance the three objectives. Obviously, Lsource and Lmmd correspond to the
two goals presented in [8]. Furthermore, we require the target domain features to be discriminant.
A graphical illustration of the framework is shown in Figure 1. Given raw pictures from source and
target domains, we first extract their vectorized features with pre-trained deep models, e.g., Alexnet
and Resnet. It is worth noting that we do not employ any fine-tuning. Then, they are further reduced
in dimension by a linear transformation matrix W, after steps 1–3. The objective constructing on the
learned representation can be divided into three parts: (1) source domain—objects from different
category should far away from each other; (2) target domain—the learned representation should be
sparse; and (3) cross-domain—there should not be clear gap among two domains’ samples.

Pre-trained

Deep Models

Pre-trained

Deep Models

Source：

Target：

S1：

S2：

S3：

...

...

T1：

T3：

T2：

S1：

S2：

S3：

...

T1：

T2：

T3：

...

 Feature

Transformation

 Feature

Transformation

High dimension,2048/4096 Low dimension,100

ADO

SF

bike

car

Input： Transform：

Objective：

Figure 1. Graphical illustration of the proposed framework.

Sensors 2020, 20, 5868 7 of 17

3.2. Target Domain Sparsity: Sparse Filtering

In order to obtain discriminative features, we first need an indicator to evaluate the impact of
current features on the classification. According to the theory in [32], classification error is the most
effective evaluation criterion for feature selection. The specific process is to establish a classifier using
the existing features and labels, and then take the classifier error as the discriminant index of the
current features. However, there are not any labels in the target domain for unsupervised domain
adaptation, which brings difficulties to extract discriminative structures. Since sparse filtering has
made remarkable achievements in many areas, in this paper, we introduce sparse filtering for the
target domain.

Ltarget(f (Xt)) =
nt

∑
i=1

k

∑
j=1

(f (Xt))ij (11)

3.3. Source Domain Discriminability: Alternating Discriminant Optimization

For the labeled source domain, we can establish a classifier using the transformed features
f (Xs) and labels Ys directly. Different from heuristic feature selection, we hope to solve the optimal
transformation matrix by combining the sparsity of the target domain data, which requires that this
indicator can be optimized using gradient information. So the classification model whose parameters
are solved in an iterative manner (e.g., neural network and SVM) is no longer applicable. In this
paper, we use mean square error, then obtain discriminative features by alternately optimizing
two parameters.

Suppose that we have source features Fs = f (Xs) ∈ Rns×k and labels Ys. To measure the
discriminability of the features, we need Wlr ∈ Rk×1 to map features to label space; here, we use linear
mapping function because it can be easily solved without multiple iterations. The objective can be
described in mathematical form as:

minimize
W,Wlr

L =
1
2

∣∣∣∣FsWlr −Ys
∣∣∣∣

2 (12)

A linear regressor maps original data to label space by means of a transformation matrix
(Wlr). Obviously, we actually perform linear regression in the feature space. As mentioned earlier,
classification error is the most effective index for feature selection, but it is an l0 constraint and makes
trouble for optimizing with gradient information. Here, we relax the constraint to l2 which is equivalent
to linear regression. In general, we hope to measure the discriminability of features by l2 constraint
and optimize it with gradient descent.

For this two-variable (W and Wlr) optimization problem, it is hard to optimize two parameters
simultaneously. So we borrow the ideas of alternating direction method of multipliers (ADMM) [33].
W transforms original data to features space where we construct a linear regressor by means of Wlr.
At each iteration, we first solve the linear regressor by normal equation, then update W by the chain
rule and gradient descent. The specific process is showed in Algorithm 1.

Algorithm 1: Alternating Discriminant Optimization.

Input: Xs ∈ Rn×m, Ys ∈ Rn×1

Output: W = argmin L
Initialize W ∈ Rm×k

while stopping conditions are not satisfied do
Wlr = [(XsW)TXsW]−1(XsW)TYs
∂L
∂W = XT

s (XsWWlr −Y)WT
lr

W = W − α ∂L
∂W

end
return W

Sensors 2020, 20, 5868 8 of 17

The main idea of ADO is to find the optimal classifier parameters Wlr for each generation of input
features, and then optimize the mapping function W based on it. With the iterations, the mapping
features will have a smaller regression error with the optimal Wlr. In Figure 2. we show how ADO
solves XOR problem. Specifically, we set four examples, i.e., class zero (denoted by blue diamonds):
[0,1], [1,0] and class one (denoted by red circular): [0,0], [1,1], which cannot be divided by a single
line. ADO computes the optimal decision boundary, then learns a nonlinear mapping to minimize
classification error. As the figure shows, samples are mapped into another two-dimensional feature
space where they are linearly separable.

Initial Value Iteration:1 Iteration:2

Iteration:3 Iteration:4 Iteration:5

Figure 2. A toy experiment of using ADO for XOR problems.

Correspondingly, we can formulate Lsource as follows.

Lsource(f (Xs), Ys) =
1
2

∣∣∣∣ f (Xs)Wlr −Ys
∣∣∣∣

2 (13)

3.4. Domain Discrepancy: MMD

We have described how MMD works with linear transformation, but there is a small change in
our method. In the previous presentation, we mapped the data to the feature space by multiplying
matrix (x → ATx). The case is more complicated here (x → f (x)), but the idea is similar.

Lmmd =
∣∣∣∣ 1

ns

ns

∑
i=1

f (xi)−
1
nt

ns+nt

∑
j=ns+1

f (xj)
∣∣∣∣2

= tr(f T(X)M0 f (X))

(14)

where X =

[
Xs

Xt

]
denotes the merged data sets.

3.5. Optimization

In this section, we give the detailed process to solve three objectives.

Sensors 2020, 20, 5868 9 of 17

3.5.1. Optimization of Ltarget

It is the same as applying sparse filtering on the target domain data.

∂Ltarget

∂W
= XT

t (Mr ◦Mct ◦
∂ fact(Xt)

∂XtW
) (15)

At each iteration, update Mr, Mct and then use the updated parameters to calculate the gradient.
Notice that we do not give the specific derivation of the select activation functions (soft absolute
function); a more general form of the problem is given here, and more activation functions can be used,
such as sigmoid and tanh.

3.5.2. Optimization of Lsource

Based on the derivation in the previous section and the chain rule, we have:

∂Lsource

∂W
= XT

s [Mr ◦Mc ◦
∂ fact(Xs)

∂Xs
◦ (f (Xs)Wlr −Ys)WT

lr] (16)

where Wlr = [f (Xs)T f (Xs)]−1 f (Xs)TY represents the analytic solution of linear regression applied on
source features.

3.5.3. Optimization of Lmmd

We give the derivation of ∂Lmmd
∂ f (X)

; the rest is the same as ∂Ltarget
∂W .

∂Lmmd
∂W

=
∂Lmmd
∂ f (X)

· ∂ f (X)

∂W
= f T(X)M · ∂ f (X)

∂W
(17)

where X consists of Xs and Xt, so Equation (17) provides the gradients of f (Xs) and f (Xt). It is worth
noting that Mr, Mc are different for the two domains, so we should compute the gradients separately.

Given these, we can update W with W = W − α
∂Ltarget

∂W − β ∂Lsource
∂W − ∂Lmmd

∂W , and the flowchart can
be found in Figure 3.

Input features

Linear mapping and Nonlinear Activation

L2 column normalization

L2 row normalization

ADO SF MMD

Converge?No

Update W

by

gradient

descent

Yes

Output optimal W

Figure 3. Flowchart of the proposed method.

Sensors 2020, 20, 5868 10 of 17

4. Experiments

In this section, we introduce two data sets for domain adaptation and the experimental settings,
then give the results. In addition, we provide an empirical analysis to show the robustness of the
proposed method.

4.1. Data Set

4.1.1. Office-Caltech10

Office-Caltech10 data set is proposed in [12], which consists of four domains—AMAZON (A),
CALTECH (C), DSLR (D), and WEBCAM (W). It comes from the e-commerce website (AMAZON),
data set caltech-256 (CALTECH), high-resolution digital camera photo (DSLR), and low-resolution
photo (WEBCAM). Each domain has 10 types of objects, including laptop, monitor, and so on.
Figure 4. shows the laptop in different domains. It can be seen that there are differences between
domains, which brings difficulties to image recognition.

AMAZON CALTECH DSLR WEBCAM

Figure 4. Laptops in different domains.

4.1.2. ImageCLEF

ImageCLEF is an online competition for domain adaptation, which has three domains (Caltech (C),
Imagenet (I), and PASCAL (P)) and twelve classes of objects.

4.2. Experimental Setting

The existing methods can be roughly divided into shallow methods and deep methods. Though
our method does not have deep architectures, we choose some deep methods to illustrate its
effectiveness. Following [11], we convert the data to 100 dimensions by our method, then use a
1-nearest neighbor for classification. For our method, we set α = 0.1 and β = 1e− 5.

The selected state-of-the-art methods are:

• Nearest neighbor (NN): NN is served as a baseline model to check whether the learned
representations really work for DA problems.

• Joint distribution alignment (JDA): [11]. JDA [ICCV2013] adopts pseudo labels to align the
conditional distributions of two domains.

• Correlation alignment (CORAL): [30]. CORAL [AAAI2016] obtains transferable representations
by aligning the second-order statistics of distributions.

Sensors 2020, 20, 5868 11 of 17

• Confidence-aware pseudo-label selection (CAPLS): [34]. CAPLS [IJCNN2019] uses a selective
pseudo labeling procedure to obtain more reliable labels.

• Modified A-distance sparse filtering (MASF): [35]. MASF [Pattern Recognit.2020] employs
an L2 constraint combining sparse filtering to learn both domain-shared and discriminative
representations.

• Selective pseudo-labeling (SPL): [36]. SPL [AAAI2020] is also a selective pseudo labeling
strategy based on structured prediction.

• Generalized softmax (GSMAX): [37]. GSMAX [Inf. Sci.2020] aims to learn smooth representation
with both labeled source domain and unlabeled target domain.

Follow the experimental setting of JDA and MASF, we set the subspace dimension k = 100.
For JDA, we set the regularization coefficient λ = 1 and the number of iterations T = 10. For CAPLS,
we set the number of iteration T = 10. For MASF, we set the regularization coefficient α = 1e− 3.
For SPL, we set the number of iterations T = 11. For GSMAX, we set the regularization factor to 1e− 5.
It is worth emphasizing that the input features are extracted by deep networks without fine-tuning
and no pre-processing strategy is applied in the experiments.

Following the setting of [35,36], we report the classification accuracy on target data as the
evaluation metric.

Accuracy =

nt
∑

i=1
1(ŷ(xi) = y(xi))

nt
× 100%, x ∈ Xt

1(case) =

{
1 , case is TRUE

0 , otherwise

(18)

where ŷ denotes the predicted label and y is the true label, so 0 ≤ Accuracy ≤ 100.

4.3. Implementation Details

(1) Initialization. We find that setting the initial value near 0 can significantly improve the
convergence. In this paper, we set it to N(0, 1)× 0.001 where N(0, 1) denotes Gaussian distribution.
We fix the random number seed to 0 (in MATLAB) for the reproducibility of this paper.

(2) Gradient descent. We set the maximum number of iterations to 200 and the step size to 0.1.
(3) Our code will be available at https://github.com/wobuhuiyingyu/DA_DSF.

4.4. Results

In this section, we report the accuracy of the proposed method (abbreviated as DSF for
discriminative sparse filtering) and other state-of-the-art works; the results are shown on Table 2
and a detailed comparison can be found on Table 3. From experimental results, we have the following
observations:

• DSF vs. NN. According to the results, DSF is significantly better than NN. NN cannot handle the
domain discrepancy, thus results in unsatisfying performance. On the other hand, it indicates
that our method is able to learn transferable representations.

• DSF vs. CORAL, JDA. DSF is superior to CORAL and JDA. These two methods are classical
distribution matching methods, but they have limited considerations on the discrimination of
learned representations.

• DSF vs. MASF. MASF is another framework based on sparse filtering, which adopts a modified
A distance for domain alignment. Compared to our method, it cannot ensure that the learned
representation can be classified easily.

• DSF vs. CAPLS, SPL. Objectively speaking, our method DSF has comparable performance when
compared state-of-the-art works, only 0.5% decreasing on average accuracy. It reveals that the
proposed discriminative features are applicable for domain adaptation problems.

https://github.com/wobuhuiyingyu/DA_DSF

Sensors 2020, 20, 5868 12 of 17

Table 2. Performance (accuracy %)on Office-Caltech10 (No.1-12) and ImageCLEF (No.13-18).

No. Task NN JDA CORAL CAPLS MASF SPL GSMAX DSF

1 C→A 85.69 89.77 92.00 90.90 90.81 92.80 92.48 91.12
2 C→W 66.10 83.73 80.00 88.83 87.46 85.08 81.02 91.52
3 C→D 74.52 86.62 84.70 90.08 89.81 91.72 89.81 89.17
4 A→C 70.35 82.28 83.20 80.66 87.36 81.39 85.31 83.88
5 A→W 57.29 78.64 74.60 80.69 81.02 84.07 81.69 82.03
6 A→D 64.97 80.25 84.10 89.45 86.62 90.45 87.26 89.17
7 W→C 60.37 83.53 75.50 86.62 85.04 74.00 81.39 81.92
8 W→A 62.53 90.19 81.20 91.38 91.34 91.96 77.97 89.35
9 W→D 98.73 100.00 100.00 100.00 99.36 100.00 97.45 100.00

10 D→C 52.09 85.13 76.80 88.05 85.75 88.51 84.95 84.23
11 D→A 62.73 91.44 85.50 92.32 90.40 93.32 90.61 91.44
12 D→W 89.15 98.98 99.30 98.66 98.98 100.00 98.98 98.30
13 C→I 85.16 92.00 83.00 91.00 89.83 90.83 87.33 93.16
14 C→P 69.16 75.50 71.50 77.33 72.83 78.17 70.39 75.63
15 I→C 91.16 92.33 88.66 94.17 93.17 94.33 92.83 95.66
16 I→P 73.16 77.00 73.66 75.80 76.83 77.50 78.68 77.49
17 P→C 81.33 83.83 72.50 90.67 85.33 91.33 91.33 85.83
18 P→I 74.50 79.16 72.33 85.00 80.83 85.83 86.67 82.50
19 AVG 73.28 86.13 82.14 88.42 87.38 88.40 86.45 87.91

Table 3. An intuitive comparison of average performance (accuracy, %) and average running time
(time, s).

NN JDA CORAL CAPLS MASF SPL GSMAX DSF

Accuracy 73.28 86.13 82.14 88.42 87.38 88.40 86.45 87.91
Time 0.503 13.114 16.441 1078 7.228 1326 2.499 6.176

The difference of sample numbers, also referred as class weight bias, is a fundamental problem
for measuring distribution differences. Existing measurements, e.g., MMD and CORAL, employ the
first/second/higher order moments to quantify distribution differences, which assume that the source
and target data share the same class weights; however, such an assumption does not always hold (like
Office-Caltech10). However, our method also yields good classification results. The reason is twofold:
(1) the class weight biases are not so severe that they will lead to catastrophic accumulation of errors.
(2) There are other regularizations, i.e., the proposed ADO and sparse filtering. The ideal features
should be both domain-shared and discriminative, so the negative effects can be further suppressed.
Another interesting phenomenon is the different results after changing the order of two domains; this
can be explained by the information asymmetry. Imagine that two sets A and B, where A∈B, so if we
choose B as training set and A for testing, the model would achieve satisfactory performance. If the
order is changed, the model would fail since A cannot provide enough discrimination power.

4.5. Empirical Analysis

4.5.1. Ablation Study

For better understanding of the proposed method, we conduct an ablation study to analyze
how different components contribute to the final performance. Since there are too few samples for
some domains of the Office-Caltech10, e.g., 157 images in total for DSLR, we use ImageCLEF for
ablation study only. Compared to original sparse filtering, we proposed two strategies, i.e., MMD for
distribution matching and ADO for source discrimination. Through the arrangement and combination
of two elements, we can construct 22 = 4 experiments. We use 3and 7to denote the status of two
components, e.g., MMD (3) + ADO (7) indicates that current model is MMD regularized sparse

Sensors 2020, 20, 5868 13 of 17

filtering. As Table 4 shows, when the two components are all activated, the method achieves the
highest average performance. Adding one component can also improve the final prediction.

Table 4. Ablation study. Classification accuracy (%) with different measures.

MMD ADO CI CP IC IP PC PI AVG

7 7 91.17 76.48 95.00 75.31 86.83 82.83 84.60
7 3 92.67 76.31 95.00 76.65 87.00 83.83 85.24
3 7 92.17 75.63 95.83 76.82 89.00 83.67 85.52
3 3 93.00 78.17 96.33 77.16 89.17 83.50 86.22

4.5.2. Parameter Sensitivity Analysis

In this paper, we introduce two parameters, α and β, to balance the three parts of our objective. α

is the coefficient of target sparsity; we hope to preserve the invisible structure of target samples by
constraining its sparsity. Similarly, β indicates how much we care about source discriminability.

(1) α = 0, β = 0.
In this situation, we do not care about the discriminability of both domains. All we need is to

reduce domain discrepancy by reducing the MMD loss, which is similar to TCA [9].
(2) α ↑, β ↑.
Extended from TCA, we hope to obtain discriminative representations while reducing domain

discrepancy in some sense. However, if they are too large, we cannot learn transferable knowledge
across domains. As Figure 5 shows, α becomes larger from front to back and β increases from left
to right. Obviously, the highest peak occurs in the middle of the surface, which manifests that the
proposed two strategies are both necessary. When α/β becomes too large (corresponding to the right
and rear of the surface), the accuracy decreases sharply since we pay too much attention to feature
discriminability while ignoring the fundamental problem, i.e., distribution matching.

100

1

0.01

0.0001
0

0

20

40

60

80

100

α

A
cc
ur
ac
y

β

0-20 20-40 40-60 60-80 80-100

Figure 5. Accuracy (%) with different α and β on Office-Caltech10.

4.5.3. Running Time

Using given notations, the computational cost is detailed as follows: max(O(ns · k3),
O(ns ·m · k)) for solving Lsource, O(nt ·m · k) for Ltarget, and O((ns + nt)2 · k) for Lmmd. In summary,
suppose we take T as the number of iterations; the overall computation complexity of algorithm is
T ·max(O(ns · k3), O(ns ·m · k), O(nt ·m · k), O((ns + nt)2 · k)).

In this section, we record the running time (feature extraction + classification with NN) of previous
experiments. All algorithms are implemented via MATLAB 2017a and executed on a Windows PC

Sensors 2020, 20, 5868 14 of 17

with Intel Core i7 CPU at 3.6GHz and 8GB RAM. Table 5 shows the results. Intuitively, we can see that
the proposed method computes faster than most of other works on average running time, especially
CAPLS and SPL.

Table 5. Running time (S) on Office-Caltech10 (No.1–12) and ImageCLEF (No.13–18).

No. Task NN JDA CORAL CAPLS MASF SPL GSMAX DSF

1 C→A 1.134 33.893 25.513 2516.933 13.098 3206.378 3.936 10.515
2 C→W 0.770 16.354 23.638 897.388 9.586 1030.175 2.484 6.755
3 C→D 0.776 13.224 23.356 842.526 8.389 921.195 2.677 5.905
4 A→C 1.240 33.622 23.650 3278.291 12.424 4365.437 3.700 11.097
5 A→W 0.770 12.780 23.045 2870.206 8.399 3528.711 2.412 5.879
6 A→D 0.628 10.275 23.005 2725.151 7.513 3272.032 3.224 4.716
7 W→C 0.655 16.215 22.761 735.878 9.288 833.277 2.229 6.479
8 W→A 0.554 12.702 22.771 1510.084 7.939 1840.393 1.874 5.528
9 W→D 0.239 1.619 22.554 319.998 4.174 369.574 1.612 1.951
10 D→C 0.572 13.368 23.084 519.365 8.080 622.318 1.764 5.375
11 D→A 0.490 10.542 23.049 1336.746 7.332 1751.001 1.731 4.678
12 D→W 0.201 1.631 22.370 241.107 4.257 278.883 1.481 1.982
13 C→I 0.158 10.035 2.991 290.860 4.961 341.601 0.873 6.798
14 C→P 0.155 9.949 2.876 264.467 4.922 304.481 0.835 6.893
15 I→C 0.162 9.989 2.850 293.450 4.953 334.425 0.895 6.666
16 I→P 0.177 9.909 2.801 253.168 4.912 290.072 4.536 6.682
17 P→C 0.179 10.039 2.800 263.583 4.823 302.712 1.760 6.600
18 P→I 0.196 9.897 2.826 249.105 5.051 283.321 6.962 6.674
19 AVG 0.503 13.114 16.441 1078.239 7.228 1326.444 2.499 6.176

5. Discussion

In this section, we discuss the influence of different gradient-based optimization methods on the
proposed framework.

5.1. Mini-Batch versus Full-Batch

In the previous section, we show how to apply gradient descent for optimizing the proposed
method, which means that we need all data (ns + nt) for computing. However, real-world applications
may have large amount of data so that our computer cannot handle the heavy computation.
Consequently, stochastic gradient descent (SGD), which adopts a subset (k� ns + nt) of data during
each iteration, is necessary. In this section, we analyze how mini-batch based optimization may affect
our method both theoretically and practically.

5.1.1. Implementation of Mini-Batch-Based Optimization

Mini-batch SGD randomly selects a part of samples to calculate gradients rather than on the whole
data set. Similarly, we can solve the proposed framework with mini-batch SGD. Firstly, we should
select samples in source and target domain (MiniXs, MiniXt) separately since MMD needs data from
both domains. The batch size can be determined by our computation resource. Then by treating the
two mini-batch (MiniXs, MiniXt) as Xs and Xt, we can update the parameters using gradient descent
(showed in Section 3.5. Optimization).

5.1.2. Influence of Mini-Batch SGD

Here, we analyze how mini-batch SGD affects the proposed method. Since we use random
mini-batch instead of the full batch, the sampling error cannot be ignored. For sparse filtering
(corresponding to Ltarget), as an unsupervised feature extraction method, it requires a diversity of
data. In extreme cases, suppose that we have data from the same class. Sparse filtering tries to extract
distinguishable features; in other works, it tries to make samples from the same class to be different,

Sensors 2020, 20, 5868 15 of 17

which is counterintuitive. For alternating discriminant optimization (corresponding to Lsource), it learns
discriminative features with labeled source samples. If the samples belong to the same class in the
mini-batch, it outputs meaningless gradients. For MMD (corresponding to Lmmd), it measures the
domain discrepancy with first-order statistics. The sampling error is reflected in the gap between the
mean of mini-batch and the full batch (˜MiniXs 6= X̃s, ˜MiniXt 6= X̃t). To summarize, using mini-batch
SGD will lead to performance degradation and the degradation will become larger as the batch size
becomes smaller. As Figure 6 shows, the proposed method achieves higher accuracy as the batch size
becomes larger, as does the average accuracy. It is worth emphasizing that using mini-batch based
optimization is not time-efficient; in fact, it often costs more time. The reason is that we need a small
step size and more iterations to train the model, since a min-batch provides a biased estimation of
the whole data set. It works when our computer cannot handle the large data set at a time—in other
words, it can be seen as a trade-off of time and space.

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

C
→
A

C
→
W

C
→
D

A
→
C

A
→
W

A
→
D

W
→
C

W
→
A

W
→
D

D
→
C

D
→
A

D
→
W

C
→
I

C
→
P

I→
C

I→
P

P
→
C

P
→
I

Batch size = 20

Batch size = 30

Batch size = 50

Batch size = 70

Batch size = 100

Full batch

Office-Caltech10 ImageCLEF

A
cc

u
ra

cy

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1 2 3 4 5 620 5030 70 100 Full

Batch size

 A
v
er

a
g
e

a
cc

u
ra

cy

(a) (b)

Figure 6. Experiments with different batch sizes. (a) Accuracy (%) on every subtask with different
batch sizes. (b) Average accuracy (%) with different batch sizes.

6. Conclusions

In this paper, we propose a novel feature extraction method for unsupervised domain adaptation,
which consists of three parts: (a) Since the target domain has no labels, sparse filtering is introduced
to capture its discriminative structure in nature. (b) For the labeled source domain, we propose
alternating discriminant optimization to directly model the relation of learned representation and
labels; a toy experiment of XOR problem shows its validity. (c) We integrate MMD into the framework
to reduce domain discrepancy and a unified optimization based on gradient descent is raised.
Adequate experiments show that the proposed method is comparable or superior to existing methods.
Furthermore, we give a mini-batch based optimization framework such the proposed method can be
applied in large-scale problems. In the future, we plan to study how different metrics work to measure
domain discrepancy.

Author Contributions: Conceptualization, C.H. and Y.X.; methodology, C.H. and Z.Y.; software, C.H. and Z.Y.;
validation, C.H., Z.Y., and K.Z.; formal analysis, C.H.; investigation, C.H.; resources, Y.X.; data curation, Y.X.;
writing—original draft preparation, C.H.; visualization, C.H.; supervision, D.Z.; project administration, D.Z.;
funding acquisition, D.Z.; writing—review and editing, Z.Y. and K.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

2. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153.
[CrossRef]

http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.neucom.2018.05.083

Sensors 2020, 20, 5868 16 of 17

3. Busto, P.P.; Iqbal, A.; Gall, J. Open Set Domain Adaptation for Image and Action Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 42, 413–429. [CrossRef] [PubMed]

4. Cai, R.; Li, J.; Zhang, Z.; Yang, X.; Hao, Z. DACH: Domain Adaptation Without Domain Information.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 99, 1–13. [CrossRef] [PubMed]

5. Zhao, H.; Des Combes, R.T.; Zhang, K.; Gordon, G. On Learning Invariant Representation for Domain
Adaptation. arXiv, 2019, arXiv:1901.09453

6. Song, L.; Wang, C.; Zhang, L.; Du, B.; Zhang, Q.; Huang, C.; Wang, X. Unsupervised domain adaptive
re-identification: Theory and practice. Pattern Recognit. 2020, 102, 107173. [CrossRef]

7. Dai, W.; Yang, Q.; Xue, G.R.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International
Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 193–200.

8. Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation.
In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 4–5 December 2006;
pp. 137–144.

9. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans.
Neural Netw. Learn. Syst. 2011, 22, 199–210. [CrossRef] [PubMed]

10. Smola, A.J.; Gretton, A.; Song, L.; Scholkopf, B. A Hilbert Space Embedding for Distributions. Int. Conf.
Algorithmic Learn. Theory 2007, 4754, 13–31.

11. Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer Feature Learning with Joint Distribution Adaptation.
In Proceedings of the International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013;
pp. 2200–2207.

12. Gong, B.; Shi, Y.; Sha, F.; Grauman, K. Geodesic flow kernel for unsupervised domain adaptation.
In Proceedings of the Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012;
pp. 2066–2073.

13. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks?
In Proceedings of the Neural Information Processing Systems, Montreal, Canada, 8–13 December 2014;
pp. 3320–3328.

14. Ghifary, M.; Kleijn, W.B.; Zhang, M. Domain adaptive neural networks for object recognition. arXiv 2014,
arXiv:1409.6041.

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012;
pp. 1097–1105.

16. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain
invariance. arXiv 2014, arXiv:1412.3474.

17. Long, M.; Cao, Y.; Cao, Z.; Wang, J.; Jordan, M.I. Transferable Representation Learning with Deep
Adaptation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 3071–3085. [CrossRef] [PubMed]

18. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised domain adaptation with residual transfer networks.
In Proceedings of the Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016;
pp. 136–144.

19. Ganin, Y.; Lempitsky, V.S. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189.

20. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks.
In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017;
pp. 2208–2217.

21. Pei, Z.; Cao, Z.; Long, M.; Wang, J. Multi-Adversarial Domain Adaptation. In Proceedings of the National
Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 3934–3941.

22. Zhang, W.; Ouyang, W.; Li, W.; Xu, D. Collaborative and Adversarial Network for Unsupervised Domain
Adaptation. In Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 3801–3809.

23. Weng, J.; Young, D.S. Some dimension reduction strategies for the analysis of survey data. J. Big Data 2017,
4, 43. [CrossRef]

24. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TPAMI.2018.2880750
http://www.ncbi.nlm.nih.gov/pubmed/30418898
http://dx.doi.org/10.1109/TNNLS.2019.2962817
http://www.ncbi.nlm.nih.gov/pubmed/31976912
http://dx.doi.org/10.1016/j.patcog.2019.107173
http://dx.doi.org/10.1109/TNN.2010.2091281
http://www.ncbi.nlm.nih.gov/pubmed/21095864
http://dx.doi.org/10.1109/TPAMI.2018.2868685
http://www.ncbi.nlm.nih.gov/pubmed/30188813
http://dx.doi.org/10.1186/s40537-017-0103-6
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662

Sensors 2020, 20, 5868 17 of 17

25. Le, Q.V.; Karpenko, A.; Ngiam, J.; Ng, A.Y. ICA with reconstruction cost for efficient overcomplete feature
learning. In Proceedings of the Neural Information Processing Systems, Granada, Spain, 12–14 December
2011; pp. 1017–1025.

26. d’Aspremont, A.; Ghaoui, L.E.; Jordan, M.I.; Lanckriet, G.R. A direct formulation for sparse PCA using
semidefinite programming. In Proceedings of the Neural Information Processing Systems, Vancouver, BC,
Canada, 5–8 December 2005; pp. 41–48.

27. Ngiam, J.; Chen, Z.; Bhaskar, S.A.; Koh, P.W.; Ng, A.Y. Sparse filtering. In Proceedings of the Neural
Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 1125–1133.

28. Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. A Survey of Sparse Representation: Algorithms and
Applications. IEEE Access 2015, 3, 490–530. [CrossRef]

29. Long, M.; Wang, J.; Sun, J.; Yu, P.S. Domain Invariant Transfer Kernel Learning. IEEE Trans. Knowl.
Data Eng. 2015, 27, 1519–1532. [CrossRef]

30. Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the National
Conference on Artificial Intelligence, Phoenix, AR, USA, 12–17 February 2016; pp. 2058–2065.

31. Goodfellow, I.; Pougetabadie, J.; Mirza, M.; Xu, B.; Wardefarley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Proceedings of the Neural Information Processing Systems, Montreal, QC,
Canada, 8–13 December 2014; pp. 2672–2680.

32. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
33. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via

the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
34. Wang, Q.; Bu, P.; Breckon, T.P. Unifying Unsupervised Domain Adaptation and Zero-Shot Visual

Recognition. In Proceedings of the International Joint Conference on Neural Network, Budapest, Hungary,
14–19 July 2019; pp. 1–8.

35. Han, C.; Lei, Y.; Xie, Y.; Zhou, D.; Gong, M. Visual Domain Adaptation Based on Modified A Distance and
Sparse Filtering. Pattern Recognit. 2020, 104, 107254. [CrossRef]

36. Wang, Q.; Breckon, T.P. Unsupervised Domain Adaptation via Structured Prediction Based Selective
Pseudo-Labeling. In Proceedings of the National Conference on Artificial Intelligence, New York, NY,
USA, 7–12 February 2020; pp. 1–10.

37. Han, C.; Lei, Y.; Xie, Y.; Zhou, D.; Gong, M. Learning Smooth Representations with Generalized Softmax
for Unsupervised Domain Adaptation. Inf. Sci. 2020. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2015.2430359
http://dx.doi.org/10.1109/TKDE.2014.2373376
http://dx.doi.org/10.3233/IDA-1997-1302
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1016/j.patcog.2020.107254
http://dx.doi.org/10.1016/j.ins.2020.08.075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Transfer Learning and Domain Adaptation
	Sparse Filtering
	Maximum Mean Discrepancy

	Methodology
	Framework of Discriminative Sparse Filtering
	Target Domain Sparsity: Sparse Filtering
	Source Domain Discriminability: Alternating Discriminant Optimization
	Domain Discrepancy: MMD
	Optimization
	Optimization of Ltarget
	Optimization of Lsource
	Optimization of Lmmd

	Experiments
	Data Set
	Office-Caltech10
	ImageCLEF

	Experimental Setting
	Implementation Details
	Results
	Empirical Analysis
	Ablation Study
	Parameter Sensitivity Analysis
	Running Time

	Discussion
	Mini-Batch versus Full-Batch
	Implementation of Mini-Batch-Based Optimization
	Influence of Mini-Batch SGD

	Conclusions
	References

