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Abstract: Understanding constraints on the functional properties of biomolecular circuit dynamics, such as the possible
variations of amplitude and timescale of a pulse, is an important part of biomolecular circuit design. While the amplitude-
timescale co-variations of the pulse in an incoherent feedforward loop have been investigated computationally using
mathematical models, experimental support for any such constraints is relatively unclear. Here, the authors address this using
experimental measurement of an existing pulse generating incoherent feedforward loop circuit realisation in the context of a
standard mathematical model. They characterise the trends of co-variation in the pulse amplitude and rise time computationally
by randomly exploring the parameter space. They experimentally measured the co-variation by varying inducers and found that
larger amplitude pulses have a slower rise time. They discuss the gap between the experimental measurements and predictions
of the standard model, highlighting model additions and other biological factors that might bridge the gap.

1 Introduction
An examination of the limits to which important functional
properties can be varied provides a design guide for achievable
system performance. Examples include the gain-bandwidth
constraint in electronic amplifiers [1], the Cramer-Rao bound in
statistics [2], and the space-time constraint in software [3].
Investigations in biology from a systems perspective, particularly
in the dynamics of biomolecular circuits, have provided instances
of such constraints, for example in the robustness and efficiency of
glycolytic oscillations [4], responsiveness to noise susceptibility in
yeast galactose network [5], the effectiveness and optimality of
generalised homeostasis system [6], and sensitivity and adaptation
ability in a feedforward loop [7]. These constraints provide a guide
to the limits of achievable performance in biomolecular circuit
dynamics.

Pulses in protein activity (Fig. 1a), in particular, are important
dynamics in biomolecular circuits [8]. Both the amplitude of the
pulse as well as its duration may be functionally important, for
example in the timescale-based regulatory activity of crz1 in yeast
proteomes [9] and in the pulse amplitude-dependent cellular
differentiation in Bacillus subtilis [10]. One way to generate pulses
is when a step input is applied to an incoherent feedforward loop
(Fig. 1a (inset)). These are a class of biomolecular circuits that are
recurring motifs [11] and have been investigated, both in natural
circuits [12, 13] and in synthetic circuits [14, 15], in the context of
adaptation [12], fold-change detection [16], scale invariance [17]
and Pareto-optimality of amplitude and response time [18]. In the
context of adaptation, it has been found, computationally, that the
sensitivity to input is constrained to be inversely proportional to the
adaptation ability for a class of feedforward loops [7]. Variations of
these relations have been found in other feedforward loops as well
[19]. Finally, we have previously addressed, also computationally,
the quantitative co-variation between the amplitude and timescale
properties for a standard model and noted the different trends
possible [20]. An understanding of such constraints can guide the
design space of pulse generating biomolecular circuits.

There are at least three striking aspects of the dynamics of
pulses generated by biomolecular circuits. First, is the wide
prevalence of such dynamics, perhaps reflecting the dynamic
environments the cells experience, with more instances of pulsing
being found due to advances in measurement techniques [8, 21].
Second is that both amplitude and timescale of the pulse may have

biological regulatory activity and hence be of functional
importance. Third, these amplitude and timescale properties may
be interlinked in that they may co-vary in response to changes in
circuit parameters, rather than being independently tunable
properties. For example, it may take the cell a longer time to
produce enough proteins to make a larger amplitude pulse. Given
these, it is important to experimentally investigate the possible co-
variation in amplitude and timescale.

Here we ask whether there is any experimental evidence of
constraints in the co-variation of the amplitude and timescale
properties of a pulse generating circuit (Fig. 1b). To address this,
we used experimental measurements of an existing incoherent
feedforward loop circuit realisation and analysed these in the
context of a mathematical model. We randomly sampled the
parameter space of the mathematical model and categorised the co-
variations of pulse amplitude and rise time as individual parameters
are varied, finding different trends of independence and
proportionality, both direct and inverse. We experimentally
characterised these co-variations using inducers and found that as
the pulse amplitude increased, the rise time always increased,
providing evidence for a trade-off between pulse height and pulse
speed. We discuss this disconnect between the model and
experiment, investigating model additions and other possible
biological factors that might underlie the observed behaviour.
These results help to understand the constraints in the design of
biomolecular pulsing circuits and may also be relevant to naturally
occurring biomolecular circuits that pulse.

2 Results
2.1 Parameter space exploration for amplitude-rise time co-
variation

We have previously investigated co-variations of the amplitude of
pulse with respect to the timescale properties, including rise time
[20]. We did this using a standard model used in multiple contexts
such as adaptation, scale-invariance, fold-change detection [17, 22,
23], and by individually varying one parameter at a time (see
Section 4). For this incoherent feedforward loop model, we found
that the amplitude and rise time can mutually increase as the
degradation rate of the output protein (γy) increases, and that
amplitude can decrease with an increase in rise time as the
degradation rate of intermediate protein (γx) increases (Fig. 2a). 
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This is supported by an analytical derivation of the area under the
pulse (please see Supplementary Material S1). Further, we found
that only the pulse amplitude, not the rise time, changes when the
production factors (αx and αy) change. In this study, we quantified
the amplitude with pulse height from the initial point. This metric
has been used as a sensitivity measure with respect to the change in
the input [7, 24, 25]. Further, we used rise time as a measure of
timescale. There are other ways to quantify the timescale, for
example decay time, pulse width [20] and centre of mass in the
pulse [18]. In our previous study, we observed that the decay time
mimics the trends of rise time [20]. For pulse width and pulse
height co-variation, please see Supplementary Material S2.

To investigate whether the previously observed trends persist
for other points in the parameter space, we randomly varied the
parameters around the nominal parameter set and for each of the
points, computed the change in pulse height and the change in rise
time as each parameter is individually perturbed (Fig. 2b). The
change in rise time is the Δtr = tr1 − tr2, where tr1 is the rise time
when the parameter set is θ1 and tr2 is the rise time when the
parameter set is θ2. Similarly, change in pulse height is
Δph = ph1 − ph2, where ph1 is the pulse height when the parameter
set is θ1 and ph2 is the pulse height when the parameter set is θ2. For
the degradation rate of output protein (γy), the points lie in the first
quadrant, implying that for an increase in pulse height, the rise time
also increases. For the degradation rate parameter of intermediate
protein (γx), the points lie in the second quadrant implying that an
increase in pulse height results in a decrease in rise time. For the
production rate of the proteins (αx and αy), the points lie on the y-
axis showing that the amplitude can increase or decrease without
altering the rise time. Therefore, the trends noted earlier persist
across these parameter sets as well.

To further study the effect of perturbations on simultaneous
multiple parameters and, we randomly perturbed all parameters.
The parametric density plot on the amplitude and rise time-space
shows a larger density of points with relatively lower amplitude
and faster rise time (Fig. 2c). A pairwise perturbation study is
reported in Supplementary Material S3.

In summary, we note that for this model, the amplitude of the
pulse height can independently be varied without altering the rise
time on the perturbing production factor of proteins. The amplitude
and rise time vary inversely when the degradation rate parameter of

Fig. 1  Pulse metrics and their possible co-variations
(a) Illustration of a pulse. The ph, and tr denote the maximum amplitude and the time
to reach this amplitude, respectively. Inset a schematic diagram of an incoherent
feedforward loop and typical trajectories of protein concentrations for a step input, (b)
Amplitude-timescale where different pulse trajectories may exist

 

Fig. 2  Co-variations of pulse height and rise time
(a) Solid lines are the amplitude and rise time co-variations as the parameters are
individually varied from the nominal parameter set, (b) Symbols represent the change
in pulse height and change in rise time as different randomly sampled points in
parameter space as individually parameters are perturbed, (c) Colour bar represents the
density of parameters at a particular point in the amplitude-rise time-space as multiple
parameters are simultaneously perturbed. The encircled point shows the nominal
parameter set
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intermediate protein is changed and they vary proportionally when
the degradation rate parameter of output protein is changed.

2.2 Experimental evidence of co-variation

To experimentally investigate these co-variations, we obtained a
previously constructed incoherent feedforward loop circuit (Fig. 3a
inset, Section 3.1) that pulses in response to a step-change in
arabinose in the presence of anhydrotetracycline (aTc). In this
circuit, the transcriptional activator AraC is constitutively
produced. The transcriptional repressor TetR is expressed from a
AraC-regulated promoter PBAD, and expression is activated when
inducer arabinose is added. A degradation-tagged green
fluorescent protein (deGFPssrA) is expressed from a
combinatorically regulated promoter; repressed by TetR and
activated by AraC (in the presence of arabinose). This is the output
of the circuit. The input is a step-change in arabinose. It has been
previously reported that TetR dominates activation in this circuit
[26]. aTc binds to and inactivates TetR, thereby weakening
repression. We replicated the pulse with an arabinose step in the
presence of aTc (Fig. 3a, Section 4). We find a pulse height of 2600
fluorescence unit and a rise time of 75 min for 0.2% arabinose and
1 ng/ml aTc.

We used the inducers to experimentally explore the parameter
space in terms of the properties of the pulse. We repeated the
experiment for different arabinose levels at a fixed aTc level, and
for different aTc levels at a fixed arabinose level (Fig. 3b). We find
that as arabinose levels increase, pulse height increases and rise
time increases. Further, we find that as aTc levels increase, the
pulse height increases and rise time increases. When the growth
medium changes from LB to minimal media, we note that the
height of the pulse increases and the rise time increases too. This is
due to the change in growth rate, which is equivalent to the
degradation rate of the model. These results show that for these
experimental conditions, there is a constraint that as the pulse
height increases, the rise time increases, making a higher amplitude
pulse also slower (Fig. 3c).

2.3 Systematic model analysis

While we find, experimentally, that as the pulse height increases,
the rise time also increases, these results do not match the
expectations from the standard model considered above. In the
model, an increase in arabinose should change the parameter
dissociation constant of AraC from Ku0 to Ku
(Ku = Ku0(arabinose + K1)/arabinose, Please see Supplementary
Material S4). As this parameter increases, we find the pulse height
decreases and rise time increases (Fig. 4a). This is not seen
experimentally. Similarly, an increase in aTc should change the
parameter dissociation constant of TetR from Kx0 to Kx
(Kx = Kx0(aTc + K2)/K2, Please see Supplementary Material S4).
As this parameter increases, we find the pulse height increases with
no change in the rise time (Fig. 4a). This is also not seen
experimentally. A possible reason for this discrepancy could be the
difference in the experimental circuit in relation to the model.

To investigate these discrepancies, we first expanded the model
to include TetR–aTc interactions. An assumption used in the
standard model is that the repression is strong. Therefore, we
replaced the term Kx/x with a general term for repression
Kx/(x + Kx) to obtain a modified model (see Section 4). We find
that the modified model can replicate the experimental results as
far as aTc is concerned (Fig. 4b). To understand how the modified
model captures the experimental results, we considered the
analytical solution of the models. For the standard model, with
equal degradation rate parameters, the output solution is

y(t) = y(0) 1 − ΔXe−γtlogeγt + ΔX
1 + ΔX , (1)

where ΔX = (x(0) − x(∞))/x(∞), x(0) = (αxu/γKu0) + α0, and
x(∞) = (αxu/γKu) + α0. This is independent of the dissociation
constant Kx for the standard model. The solution of the modified
model is

y(t) = y(0) 1 − ΔZe−γtlogeγt + ΔZ
1 + ΔZ , (2)

Fig. 3  Experimentally obtained pulse trajectories for different levels of inducers
(a) Solid line represents the pulse generated by the incoherent feedforward loop (inset) for aTc = 1 ng/ml and arabinose = 0.2 %. Error bars represent the standard deviation of three
separate repeats, (b) Pulse trajectories for inducer variations with indicated level and media, (c) Solid lines with indicated symbols represent the pulse height and rise time co-
variations for the above description

 

IET Syst. Biol., 2020, Vol. 14 Iss. 5, pp. 217-222
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

219



where ΔZ = (z(0) − z(∞))/z(∞),
z(0) = (αxu/γKu0) − ((α0 + γKx0)/γ), and
z(∞) = (αxu/γKu) − ((α0 + γKx)/γ). We note that the solution of the
modified model depends on Kx which is not the case for the
standard model. Hence, the timescales in the standard model are
unaffected by perturbation in Kx.

Next, we similarly expanded the model to include arabinose–
AraC dynamics (see Section 4). We replaced the term u/Ku with a
general term for activation u/(u + Ku). However, we could not
replicate experimental results (Fig. 4c). The output solution of this
model is

y(t) = y(0) 1 − ΔZe−γtlogeγt + ΔZ
1 + ΔZ , (3)

where ΔZ = (z(0) − z(∞))/z(∞),
z(0) = (αxu/γ(u + Ku0)) − ((α0 + γKx0)/γ),
z(∞) = (αxu/γ(Ku + u)) − ((α0 + γKx)/γ). The solution has a similar
timescale dependency as the earlier models. Therefore, the model
is not able to capture the experimental results when arabinose is
changed, just like in the earlier models. This is a gap in our
understanding of the experimental results in relating to the model.
The gap could be due to aspects such as ignoring the resources
needed to produce proteins and other possible dynamics such as
host-circuit interactions or resource competition.

To summarise, in Fig. 3c, the pulse height as well as the rise
time increases for an increase in the inducer, both aTc and
arabinose concentrations. Next (Fig. 4), we investigated how the
model and its variations respond to similar inducer-like parameter
changes. In Fig. 4a, we noted that the rise time remains unaffected
but the pulse height increases for an increase in aTc and the pulse
height increases and rise time decreases for an increase in
arabinose. In Figs. 4b and c, we noted that the rise time as well as
the pulse height increases for an increase in aTc and the pulse
height increases and rise time decreases for an increase in
arabinose.

3 Discussion
Understanding constraints in the co-variation trends of amplitude
and timescale in biomolecular pulsing circuits is important for their
design. Using experimental measurements and mathematical
models of a benchmark pulse generating biomolecular circuit – the
incoherent feedforward loop – we address this issue and present
three main points. First, we explore the parameter space of a
widely used model of an incoherent feedforward loop and find
semi-global trends for the co-variation of amplitude and rise time.
Second, we find experimental evidence that, as the amplitude of
the pulse increases, the rise time also increases. Third, we discuss
the inconsistencies between the standard mathematical model and
experimental measurements and biological factors that may help to
reconcile these. These results provide experimental evidence for
the existence of constraints in the design space of such pulse
generating circuits.

The disconnect between the standard model (4) and the
experiment is likely due to the assumptions and approximations in
the model. We have investigated different variations, such as due to
the inducers (Section 2.3) as well as due to input dynamics, RNA
dynamics, co-operativity, GFP maturation, and resource limitation
(Supplementary Material S5). Addition of explicit aTc–TetR
interactions can improve the match between model and experiment
with respect to aTc variance. The addition of resource limitations,
modelled as a change in growth due to the protein production [27,
28], can give a qualitative match between model and experiment
(Supplementary Material S5.5). An important direction of future
work is to quantitatively map the experimental circuit to a
mathematical model using further experimentation and parameter
estimation.

The importance of pulse regulation arises from the regulatory
information that can be encoded in tunable amplitude or time
durations. However, these may not be independent variables,
perhaps due to finite energy or resource limitations. These co-
variations may play a significant role in the evolution of such
processes. In fact, a recent study suggests that a judicious choice of
amplitude and rise time may be underlie the Pareto front of
different circuit topologies [18]. This highlights the importance of
understanding amplitude and timescale co-variation of a pulse
generating circuit.

4 Methods
4.1 Materials

The plasmid for feedforward loop is pBEST-OR2-OR1-Pr-araC,
pBAD-TetR, pBADTetO1-deGFP-ssrA was from plasmids from

Fig. 4  Amplitude-rise time co-variation for change of the inducers in
computational models
(a) Solid lines represent the amplitude and rise time co-variations in the standard
model for inducers indicated by arrows for corresponding aTc or arabinose as ara, (b)
Solid lines represent the amplitude and rise time co-variations in the modified model
of aTc - TetR dynamics for inducers. The figure inset represents the modification in the
model compared to the inset figure in (a), (c) Solid lines represent the amplitude and
rise time co-variations in the modified model of aTc - TetR and arabinose - AraC
dynamics for inducers. The figure inset represents the modification in the model
compared to the inset figure in (a)
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the lab of Prof. Richard M. Murray (Addgene plasmid # 45789;
http://n2t.net/addgene:45789; RRID:Addgene_45789). This was
transformed into the E. coli MG1655 strain background. The
realisation is based on the transcriptional activator AraC,
transcriptional repressor TetR, and reporter deGFPssrA, as shown
in Fig. 3a. The deGFP - ssrA is a green fluorescent protein with a
ssrA degradation tag at the C-terminal of the deGFP protein. The
protein AraC is constitutively expressed from promoter Pr-OR2-
OR1. The TetR and deGFP are expressed from the promoter PBAD
that can be activated by AraC in the presence of arabinose.
Additionally, the operator sites for TetR are fused to a promoter
PBAD regulating the deGFP. This allows TetR to repress the
promoter. The circuit plasmid has an Ampicillin resistance marker
and a ColE1 origin of replication. All these three genes are on the
same plasmid. The untranslated region for all of these is UTR1, a
strong ribosome binding site. The transcriptional terminator for all
three is called T500. In 5′ to 3′ order, the genes are pBAD-tetO1
(repressed by TetR)-UTR1-deGFP-ssrA-T500, pBAD-UTR1-TetR-
T500, and OR2-OR1-Pr (bacteriophage lambda with one
mutation)-UTR1-araC-T500. The pBAD-TetR insert is inverted
relative to the reporter gene. A plasmid map and illustration of
inducer actions are presented in Supplementary Figure S11.

4.2 Measurement protocol

For experimental measurement, the strain was inoculated in LB
media (HiMedia) supplemented with Ampicillin (HiMedia,
100 μg/ml) for 16 h. The culture was subsequently diluted 1:200 in
fresh M9 minimal media (supplemented with 0.2% casamino acid,
0.4% glucose, 100 mM thiamine, 1 M MgSO4, 1 M CaCl2) and LB
media supplemented with Ampicillin (100 μg/ml). The culture was
induced with aTc (Sigma-Aldrich) of concentrations (0, 1, 2 and 4 
ng/ml) in different samples and incubated for two hours. Next,
different levels (0, 0.2 and 0.4%) of indicated arabinose (HiMedia)
were added to the incubated culture. This final culture is placed in
three wells of a 96 well clear bottom plate (Eppendorf) and placed
in a plate reader (Biotek Synergy H1 multimode) for measurement
of optical density (600 nm) and fluorescence (excitation: 485 nm,
emission: 525 nm and gain: 60). Based on the plate reader optical
density measurement, these cells are in log phase (Supplementary
Figure S10). The measurement was taken for ten hours for
arabinose co-variations and twelve hours for aTc co-variations at
37°C with 5 min sampling and 2 min double orbital shaking
between successive readings. The above protocol was repeated for
three days.

4.3 Data analysis

MATLAB was used for data analysis. A blank sample containing
only media and no cells was used as background and subtracted
from culture reading for both optical density and fluorescence.

4.4 Model simulations

The standard mathematical model of the incoherent feedforward
model is [16],

dx
dt = α0 + αx

u
Ku

− γxx,

dy
dt = αy

u
Ku

Kx
x − γyy,

(4)

where the input u represents AraC:arabinose complex, x represents
‘free’ TetR, and the output y represents deGFPssrA. The model
parameters γx is the degradation rate for protein x, γy is the
degradation rate for protein y, αx is the production rate of protein x,
αy is the production rate of protein y, and Kx is the dissociation
constant for the binding of x to the promoter of y. For simulation,
the parameters values considered are α0 = 0.01 nM/h,
αx = 10 nM/h, αy = 10 nM/h, γx = 1 1/h, γy = 10 1/h. The model
assumes only strong activation from u and strong repression from
x, hence the approximated term u/Ku and Kx/x. More generally,

repression can be represented by Kx/(Kx + x) instead of Kx/x, so
that the modified model becomes

dx
dt = α0 + αx

u
Ku

− γxx,

dy
dt = αy

u
Ku

Kx
x + Kx

− γyy .
(5)

Similarly, a more general activation is modelled as u/(Ku + u)
instead of u/Ku,

dx
dt = α0 + αx

u
Ku + u − γxx,

dy
dt = αy

u
Ku + u

Kx
x + Kx

− γyy .
(6)

These models are simulated in MATLAB using the function ode45
with default settings.

For Fig. 2a, individual parameters (αx, αy, γx, γy) are varied from
0.1 to 10. The initial parameters are considered as unity. For
random simulations, parameter space is explored by varying
parameters individually (in Fig. 2b) and multiple parameters
simultaneously (in Fig. 2c). For these, parameter sets are uniformly
sampled in the range αx = 1 − 100, αy = 1 − 100, γx = 0.1 − 10,
and γy = 0.1 − 10 using random function from MATLAB.
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