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predicts RRM2 and overall survival in hepatocellular carcinoma
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Background: Radiomics can be used to noninvasively predict molecular markers to address the clinical 
dilemma that some patients cannot accept invasive procedures. This research evaluated the prognostic 
significance of the expression level of ribonucleotide reductase regulatory subunit M2 (RRM2) in individuals 
with hepatocellular carcinoma (HCC) and established a radiomics model for predicting the RRM2 expression 
level.
Methods: Genomic data for HCC patients and corresponding computed tomography (CT) images were 
accessed at The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), which were 
utilized for prognosis analysis, radiomic feature extraction and model construction, respectively. The 
maximum relevance minimum redundancy algorithm (mRMR) and recursive feature elimination (RFE) were 
used for feature selection. Following feature extraction, a logistic regression algorithm was fitted to establish 
a dichotomous model that predicts RRM2 gene expression. Establishment of the radiomics nomogram was 
carried out using the Cox regression model. Receiver operating characteristic (ROC) curve analysis was 
employed to assess the model performance. Clinical utility was determined by decision curve analysis (DCA).
Results: High RRM2 expression acted as a risk factor for overall survival (OS) [hazard ratio (HR) =2.083, 
P<0.001] and was implicated in regulation of the immune response. Four optimal radiomics features were 
selected for prediction of RRM2 expression. A predictive nomogram was established using the clinical 
variables and radiomics score (RS), and the areas under the ROC curve (AUCs) of the time-dependent 
ROC curve of the model were 0.836, 0.757, and 0.729 for the 1-, 3-, and 5-year periods, respectively. DCA 
confirmed that the nomogram had good clinical usefulness.
Conclusions: The RRM2 expression level in HCC can considerably affect prognosis of these patients. 
Expression levels of RRM2 and prognosis of HCC individuals can be predicted through radiomics features 
by utilizing CT scan data.
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Introduction

Globally, liver cancer is the sixth most prevalent malignancy 
and the third leading contributor to cancer death. Almost 
75–85% of confirmed cases of primary liver cancer are 
hepatocellular carcinoma (HCC) (1). According to the 
Barcelona Clinic Liver Cancer (BCLC) staging and therapy 
approach, surgical resection is the most efficient option 
to improve prognoses in very early (0) and early-stage (a) 
HCC (2). However, HCC is highly aggressive, resulting 
in high postoperative recurrence frequency. Furthermore, 
the therapeutic options for advanced-stage patients are 
still limited. In September 2017, nivolumab, utilized for 
second-line treatment of advanced HCC, was approved by 
the US Food and Drug Administration (3), marking entry of 
systemic treatment for HCC into the era of immunotherapy. 
However, in the real world, the effect of immunotherapy 
is still modest. Screening patients who will benefit from 
immunotherapy through effective molecular markers is 
a breakthrough in treatment of advanced HCC. Hence, 
more effective predictive indicators are urgently required to 
improve the landscape of HCC diagnosis and management.

Ribonucleotide reductase regulatory subunit M2 (RRM2) 
is one of the two different subunits of ribonucleotide 
reductase. This enzyme is involved in catalysis of 
ribonucleotides to deoxyribonucleotides (4). RRM2 is 
involved in providing precursors required for DNA 
synthesis and participates in inhibition of Wnt signaling. 
The signaling pathways in which RRM2 is involved include 
de novo synthesis of adenosine DNA, the E2 factor (E2F) 
transcription factor network, activity of fluoropyrimidines, 
de novo biosynthesis of guanosine DNA, the cell cycle, and 
others (5). Data show that RRM2 levels are substantially 

greater in HCC tissues than in non-HCC tissues and 
that RRM2 small interfering RNA (siRNA) inhibits cell 
proliferation in HCC (6). Hepatitis B virus (HBV) infection 
is a pathogenic factor of HCC. HBV can activate RRM2 
expression to replicate viral DNA in host hepatocytes (7). 
Overexpression of RRM2 enhances the proliferation and 
migration ability of Hep3B and Huh7 cells (8). These data 
indicate the potential of RRM2 as an indicator for prognosis 
of HCC patients receiving cancer therapy.

Employing dynamic detection and quantitative response 
to tumor features, the high-throughput “image sequencing” 
technology radiomics is a noninvasive process predominantly 
utilized at the clinical level. Radiomics is an emerging field 
of research aimed at extracting quantitative imaging features 
from radiological images for expression of disease signatures. 
These radiological features may not be detectable by the 
radiologist through visual assessment. It has been reported 
that radiomics can predict the molecular classification of 
many disease outcomes. Quantitative radiomics has shown 
potential as a noninvasive imaging biomarker to characterize 
tumor diagnosis, progression/prognosis, and treatment 
response. Prior research has shown its effectiveness in early 
diagnosis and classification of HCC, as well as in assessment 
of the microenvironment and heterogeneity of a tumor (9,10).

This research focused on noninvasively predicting 
messenger RNA (mRNA) expression of RRM2 in HCC 
tissues based on computed tomography (CT) radiomics 
and evaluating the association between our model and 
prognosis. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-23-460/rc).

Methods

Data and image sources

Original clinicopathological and transcriptomics data 
were retrieved from The Cancer Genome Atlas (TCGA; 
https://portal.gdc.cancer.gov/); CT data were obtained 
from The Cancer Imaging Archive (TCIA; https://www.
cancerimagingarchive.net/). The images and data retrieved 
from TCIA and TCGA are anonymous and available 
publicly. Each patient in TCIA was matched with those in 
TCGA via a unique ID number. Clinicopathological and 
transcriptomic data for 377 HCC patients from TCGA and 
CT images for 75 HCC patients from TCIA (accessed in 
October 2022) were retrieved. TCGA data were used for 
prognosis and immune infiltration analysis; TCIA images 
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were utilized for extraction of radiologic features and 
establishment of a model. The criteria applied for exclusion 
of TCGA data included lack of survival data, survival time 
less than 30 days, HCC not as an initial diagnosis, lack 
of clinical data, and lack of RNA-sequencing (RNA-seq) 
data for the primary tumor. Exclusion criteria for TCIA 

data included no intersection with TCGA, CT images 
from tumor resection patients, and poor CT image quality. 
Finally, 286 patients from TCGA and 35 from TCIA were 
enrolled in this study. The brief flowchart is shown in 
Figure 1A. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Model evaluation

Corresponding TCIA image data 
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TCGA HCC genomic data  
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Excluded images with hepatectomy 
or poor quality image (n=34)

Excluded images with no 
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Figure 1 The brief flowchart of data collection and analysis. (A) Gene and image data screening process. (B) Brief flowchart of radiomic 
progression. TCIA, The Cancer Imaging Archive; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; mRMR, maximum 
relevance minimum redundancy algorithm; RFE, recursive feature elimination; ROC, receiver operating characteristic; AUC, area under the 
curve.
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Survival analysis and Cox regression analysis

The RNA-seq data files utilized in this analysis originated 
from UCSC Xena (https://xenabrowser.net/datapages/). 
Data in the format of fragments per kilobase of exon model 
per million mapped fragments (FPKM) were processed 
using the Xiantao tool (https://www.xiantao.love/products) 
through the Toil process, and differential expression analysis 
between samples was performed after log2 transformation. 
Statistical significance was established at P<0.05. Genetic 
data were combined with corresponding clinical data and 
processed through the ‘survminer’ package in R software 
to obtain the threshold value of RRM2 expression, and the 
patients were classified into two expression groups (high and 
low). Kaplan-Meier analysis was employed to analyze overall 
survival (OS) in the two groups, draw a survival curve, and 
perform the log-rank test. Cox proportional hazard analyses 
(univariate and multivariate) were conducted to assess 
prognostic factors, including RRM2 gene expression levels 
and clinical characteristics such as sex and age. Hazard 
ratios (HRs) and relevant 95% confidence intervals (CIs) 
were estimated. Interactions between RRM2 expression 
and other variables included in the univariate Cox model 
were analyzed with the likelihood ratio test, and subgroup 
analyses were performed. Correlation analysis between the 
main variable RRM2 and the clinical characteristics of the 
tumors was performed using Spearman’s rank correlation 
coefficient.

Association between RRM2 and immune cell infiltration, 
immune genes, and enrichment analysis of differentially 
expressed genes

Gene expression matrices of HCC samples were uploaded 
to the CIBERSORTx database (https://cibersortx.stanford.
edu/), and immune cell infiltration was calculated for each 
sample. Differential analysis of the immune cell infiltration 
level between the RRM2 high- and low-expression groups 
was performed using the R package ‘limma’. Correlation 
analysis between RRM2 and immune genes was performed 
using Spearman’s rank correlation coefficient. The gene 
expression profiles between the high- and low-risk cohorts 
were subjected to gene set enrichment analysis (GSEA) 
utilizing the gene sets Hallmark (h.all.v7.5.1.symbols.gmt) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(c2.cp.kegg.v7.5.1.symbols.gmt). GSEA was performed with 
the R package ‘clusterprofiler’. Statistical significance was 
established at P<0.05.

Construction and evaluation of whole tumor and whole 
tumor & peritumoral models

A radiomic flowchart of this study is briefly shown in Figure 
1B. By employing 3D slicer software (v4.10.2), the tumor 
area was manually outlined to obtain the whole tumor 
area; using the simpleITK package from Python (https://
simpleitk.org/), 3 mm of automatic outward expansion 
on the basis of the whole tumor area was used to obtain 
the whole tumor and peritumoral areas. Extraction of 
radiomics features was achieved through the ‘pyradiomics’ 
package in Python and data normalization. The number 
of extracted radiomic features was 107, which included 
the following: first-order features (max, 10th percentile, 
etc.) morphological features (sphericity, elongation, etc.) 
and textural features [gray level zone matrix (GLSZM), 
neighborhood gray level difference matrix (NGTDM), gray 
level co-occurrence matrix (GLCM), and gray level run-
length matrix (GLRLM), etc.]. Stabilized features were 
entered into the ‘maximum relevance minimum redundancy 
algorithm (mRMR)’ using the R package ‘mRMRe’, which 
aims to find a subset of correlated and complementary 
features to eliminate irrelevant and redundant features. 
Recursive feature elimination (RFE) feature screening was 
then implemented with the aid of the ‘caret’ R package, 
with the goal of finding a subset of predictors to be utilized 
for developing accurate models. The 20 leading features 
were selected through the mRMR method, and the best 
feature subset was further screened by RFE.

Intraclass correlation coefficients (ICCs) were calculated 
to evaluate the consistency of extracted radiomics features 
delineated separately by two physicians. After complete 
case delineation by one physician, ten samples were 
randomly chosen utilizing the ‘random number table 
method’ for delineation by another physician, along with 
subsequent extraction of their radiomics features. ICC 
≥0.75 is generally regarded as good agreement, 0.51–0.74 as 
moderate, and lower than 0.50 as poor. Features with ICCs 
≥0.75 were included.

A logistic regression model was developed according to 
the established optimal feature subsets. Logistic regression 
was conducted on the basis of linear regression. The sigmoid 
function was compounded with the following formula:

( ) [ ] 1
1

T x
g z y x

e ω−
= =

+
 [1]

A logistic regression algorithm was fitted to the above 
filtered radiomic features using the R package ‘stats’ to build 
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a dichotomous model for predicting RRM2 gene expression.
Receiver operating characteristic (ROC) curve analysis 

was employed to assess the model performance, which 
was revealed by calculating its specificity, sensitivity, and 
area under the ROC curve (AUC). The performance of 
the model was verified by AUC values from 5-fold cross-
validation. Plotting of calibration curves and the Hosmer-
Lemeshow goodness-of-fit test were conducted to assess 
calibration of the radiomics prediction models. Finally, the 
clinical utility of radiological evaluation was determined by 
decision curve analysis (DCA).

Differential analysis of RRM2 expression between whole 
tumor and whole tumor & peritumor model groups

The whole tumor and whole tumor & peritumoral 
radiomics models output a probabilistic radiomics score (RS) 
that predicted the expression level of RRM2. Afterward, the 
image omics marker RS was compared by the Wilcoxon test 
between the groups with high and low RRM2 expression.

Construction and evaluation of a nomogram

After taking the intersection of TCIA-TCGA clinical 
samples, the cutoff value of RS was determined by the 
R package ‘survminer’, which was divided into low/high 
dichotomous variables. The associated clinical indicators 
and RS were utilized to establish univariate and multivariate 
Cox regression models. Variables were obtained by the 
minimal Akaike information criterion (AIC)-based stepwise 
selection method to construct nomograms for 1-, 2-, and 
3-year survival probabilities from Cox regression.

The predictive ability of the factors at various time points 
was depicted by plotting the time-dependent ROC curve 
of the predictive model. A calibration curve was plotted 
with the abscissa as the predicted survival, ordinate as the 
actual survival, and diagonal as the predicted probability 
equal to the actual probability; deviations from the 
diagonal illustrated greater error in prediction. DCA of the 
prediction model was conducted to assess its clinical benefit.

Statistical analysis

All data were analyzed with the aid of R software v4.0.2 and 
python software v3.6.6. Quantitative data are presented 
as the mean ± standard deviation (SD) or median and 
interquartile range, and the groups were comparatively 
analyzed through Student’s t-test or the Wilcoxon test, as 

appropriate. Categorical variables are presented as counts 
and percentages, and groups were comparatively analyzed 
using the chi-square test. Two-sided statistical tests were 
performed, and statistical significance was established at 
P<0.05. The ‘survival’ package of R software and Kaplan-
Meier analysis were utilized to conduct survival analysis 
and to generate survival curves, respectively. The ‘survival 
ROC’, ‘time ROC’, ‘RMS’, and ‘dcurves’ packages were 
used to prepare the time-dependent ROC curve, calibration 
plot, DCA, and nomogram.

Results

Baseline characteristics of patients

The number of included HCC patients was 286, of which 
196 (69%) were male and 90 (31%) were female. Baseline 
characteristics are shown in Table 1. Taking the optimal 
cutoff value of RRM2 expression level (cutoff) =2.65938, 
the individuals were classified into a high-expression group 
(n=127) and a low-expression group (n=159). High RRM2 
expression correlated considerably with tumor grade (P<0.001) 
and hepatitis activity (P=0.028). There was no notable 
variation in age, sex, pathological stage, residual tumor, 
vascular invasion, and the distribution of alpha-fetoprotein 
(AFP) between the high- and low-expression groups.

Survival analysis and Cox regression analysis

In contrast with normal tissues, markedly elevated RRM2 
gene expression was detected in tumor tissues, with a 
median difference value of 2.039 between the two groups 
(1.747–2.330, P<0.001) (Figure 2A). The median OS was 
2,486 days in the RRM2 low-expression group and 1,685 
days in the high-expression group. Kaplan-Meier curves 
revealed a strong association of high RRM2 expression with 
worse OS (P<0.001) (Figure 2B).

Univariate Cox regression analysis showed that RRM2 
gene expression, pathological stage, residual tumor, vascular 
invasion, hepatitis activity, and AFP level were prognostic 
factors for OS (Figure 2C). High RRM2 expression was a 
risk factor for OS (HR =2.083, P<0.001). In multivariate 
analysis, high RRM2 expression (HR =2.038, P=0.002), 
pathological stage G3/G4 stage (HR =2.033, P=0.002), and 
residual tumor R1/R2/RX (HR =2.106, P=0.041) were risk 
factors for OS after multivariate adjustment. However, male 
sex (HR =0.588, P=0.018) acted as a protective factor for 
OS (Figure 2C).
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Subgroup analysis and interaction testing

Subgroup analysis of the population indicated that 
increased expression of RRM2 was a risk factor for OS in 
the <60-year-old age group (HR =2.201, P=0.009) and 
≥60-year-old age group (HR =2.074, P=0.009). The data 
of the interaction test (P=0.83) showed the absence of any 

notable interaction between the expression level of RRM2 
and age; that is, the effect of RRM2 on OS was similar 
between the two age groups. Similarly, the influence of 
RRM2 expression level on OS was similar among sex, 
tumor grade, pathological stage, and with or without vascular 
invasion (Figure 3A). Correlation heatmaps showed that the 
RRM2 expression level was considerably linked to tumor grade 
(P=0.00049) and pathological stage (P=0.038) (Figure 3B).

Association between RRM2 and immune cell infiltration, 
immune genes, and enrichment analysis of differentially 
expressed genes

HCC samples were assessed concerning immune cell 
infiltration through cibersort, and the degree of M0 
macrophage infiltration was considerably elevated in the 
high RRM2 expression group in comparison to the low 
RRM2 expression group (P<0.05). The infiltration degrees 
of CD8+ T cells, M1 macrophages, and M2 macrophages 
were not significantly different between the two groups 
(P>0.05) (Figure 4A). A heatmap showed a significant 
relationship between expression of RRM2 and several 
immune genes, such as LAG3, CD276, CD86, CD48, and 
TNFSF4 (P<0.001) (Figure 4B). Differential genes between 
the two RRM2 expression groups (high and low) were 
subjected to GSEA enrichment analysis, and the first 20 
pathways were visualized. Concerning the hallmark gene 
sets, considerable enrichment of the G2M checkpoint, bile 
acid metabolism, and xenobiotic metabolism pathways, 
among others, was found (Figure 4C). For KEGG gene sets, 
differentially expressed genes were considerably enriched in 
the cytochrome P450 pathway utilized for the metabolism 
of xenobiotics, retinol metabolism, and drug metabolism 
cytochrome P450 pathway (Figure 4D).

Construction and evaluation of whole tumor and whole 
tumor & peritumoral models

Marasco et al. studied the effect of excision margins on the 
recurrence rate of patients undergoing hepatectomy and 
found that a wide margin (>1 cm) had a better prognosis 
than a narrow margin (<1 cm), because micrometastases 
may exist around the 1cm tumor (11). Therefore, we believe 
that the establishment of whole-tumor and whole-tumor 
plus peritumoral models can better predict the prognosis of 
patients and the expression of some molecular markers.

Using the mRMR algorithm for feature screening among 
107 radiomics features, the first 20 features were selected, 

Table 1 Characteristics of patients in TCGA

Variables
Total 

(n=286)

RRM2
P

Low (n=159) High (n=127)

Age (years), n [%] 0.086

<60 138 [48] 69 [43] 69 [54]

≥60 148 [52] 90 [57] 58 [46]

Sex, n [%] 0.156

Female 90 [31] 44 [28] 46 [36]

Male 196 [69] 115 [72] 81 [64]

Tumor grade, n [%] <0.001

G1/G2 176 [62] 112 [70] 64 [50]

G3/G4 110 [38] 47 [30] 63 [50]

Pathologic stage, n [%] 0.053

I/II 213 [74] 126 [79] 87 [69]

III/IV 73 [26] 33 [21] 40 [31]

Residual tumor, n [%] 0.744

R0 264 [92] 148 [93] 116 [91]

R1/R2/RX 22 [8] 11 [7] 11 [9]

Vascular invasion, n [%] 0.178

None 160 [56] 96 [60] 64 [50]

Unknown 40 [14] 18 [11] 22 [17]

Micro/macro 86 [30] 45 [28] 41 [32]

Hepatic inflammation, n [%] 0.028

None 97 [34] 63 [40] 34 [27]

Unknown 92 [32] 42 [26] 50 [39]

Mild/severe 97 [34] 54 [34] 43 [34]

AFP, n [%] 0.607

<400 153 [53] 88 [55] 65 [51]

≥400 73 [26] 41 [26] 32 [25]

Unknown 60 [21] 30 [19] 30 [24]

TCGA, The Cancer Genome Atlas; RRM2, ribonucleotide 
reductase regulatory subunit M2; AFP, alpha-fetoprotein.
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with four features being further screened out by RFE to 
construct the whole tumor model: radiomics formula = 
feature × corresponding coefficient (estimate) + intercept 
value (estimate). Specific characteristics and coefficients 
were utilized (Figure 5A). The median ICC value of features 
screened by the mRMR algorithm was 0.985, and there were 
90 (84.1% of all features) radiomics features with ICC values 
≥0.75. Four features of the whole tumor and peritumoral 
model were screened using the same method. Specific 
characteristics and coefficients were utilized (Figure 5B). The 
median ICC value of features was 0.983, with 100 radiomics 
signature ICC values ≥0.75 (93.5% of all signatures). The 
radiomics features selected by the whole tumor and whole 

tumor & peritumor models all had ICC values above 0.85.
Two logistic regression models were developed to predict 

the level of RRM2 expression, and corresponding ROC 
curves were plotted and analyzed. The results indicated that 
the AUC of the whole tumor model was 0.776 (95% CI: 
0.607–0.946); the AUC value of the 5-fold cross-validation 
was 0.763 (95% CI: 0.596–0.93) (Figure 6A,6B). The AUC 
of the whole tumor and peritumoral model was 0.803 (95% 
CI: 0.659–0.947), and its AUC value of the 5-fold cross-
validation was 0.773 (95% CI: 0.609–0.937) (Figure 6C,6D). 
Based on the calibration curves and Hosmer-Lemeshow 
goodness of fit test of both models, the predicted 
probabilities of the models for RRM2 expression were close 
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to the true values, indicating good agreement (P>0.05) 
(Figure 6E,6F). DCA showed high clinical utility for both 
models (Figure 6G,6H).

Following Delong’s test, there was no significant 
variation in the whole tumor and whole tumor & 
peritumoral radiomics models. The respective P values in 
the training set and cross-validation set were 0.801 and 
0.934. The AUC values of the whole tumor and peritumoral 

radiomics model were slightly increased in comparison to 
the whole tumor radiomics model. The latter was therefore 
chosen for subsequent analysis.

Differential analysis of RRM2 expression between whole 
tumor and whole tumor & peritumor model groups

In the whole tumor model, the probability RS to predict the 
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Figure 5 Summary of the model feature name and estimate. (A) The whole tumor model. (B) The whole tumor and peritumoral model.

RRM2 expression level varied considerably in distribution 
between the two RRM2 expression groups (P=0.004), with 
increased values in the high RRM2 expression group (Figure 
7A). In the whole tumor and peritumor model, RS varied 
considerably between the two RRM2 expression groups 
(P=0.001), also with increased RS values in the high RRM2 
expression group (Figure 7B).

Development and evaluation of the nomogram

The probability values (RS) predicted by the whole tumor 
and peritumoral model were merged after intersection 
with the full clinical dataset, resulting in information for 
35 patients. The cutoff value of RS was taken as 0.6085, 
which was divided into low/high dichotomous variables, and 
baseline features of the patients were set (Table 2).

RS, sex, and degree of vascular invasion were selected 
based on multiple Cox regression, and a nomogram was 
developed to predict 1-, 2-, and 3-year OS (Figure 8). 
A time-dependent ROC curve, calibration, and clinical 
decision curves were employed to evaluate the predictive 
performance of the nomogram (Figure 9), and the accuracies 
of the OS predictions for the 1-, 2-, and 3-year periods were 
compared using ROC curves. The nomogram that predicted 
1-, 2-, and 3-year OS rates had AUC values of 0.836, 0.757, 
and 0.729, respectively (Figure 9A). Calibration plots at 1, 
2, and 3 years showed the curves at all times to be near the 
diagonal, indicating that the error of the predictions was 
small (Figure 9B). Regarding 1- and 2-year DCA curves, 
the model showed high clinical utility in the range of 
thresholds of 0.1 vs. 0.5. The 3-year DCA curve indicated 

high clinical utility in the range of thresholds of 0.3 vs. 0.7  
(Figure 9C-9E). Thus, the prediction ability of the 
nomogram was verified.

Discussion

This research demonstrated that RRM2 expression is a 
potential marker of prognosis in HCC patients. A radiomic 
model was developed and validated for prediction of the 
probability of RRM2 expression in individuals with HCC. 
The data indicated that the model performed efficiently in 
predicting RRM2 expression and OS in HCC patients.

RRM2 performs a vital function in DNA synthesis 
and repair, maintaining the stability of nucleotides by 
converting ribonucleotides to deoxyribonucleotides. It has 
been confirmed that RRM2 is a potential biomarker in a 
variety of tumors (12-15). In HCC, studies have found that 
overexpression of RRM2 is linked to low rates of survival (16),  
and expression of RRM2 is strongly positively linked 
to infiltration of immune cells and immune checkpoint 
expression, the upregulation of RRM2 mediated by ncRNAs 
correlates with poor prognosis and tumor immune 
infiltration of HCC (17). Through Kaplan-Meier analysis, 
this research showed an association between worsening 
prognosis of individuals with HCC with elevated expression 
levels of RRM2 (P<0.01) by examining 286 TCGA samples. 
Univariate and multivariate Cox regression indicated the 
potential of increased RRM2 expression to independently 
predict poor OS in individuals with HCC. Immune 
cell infiltration levels of liver cancer samples were also 
examined, with an increased degree of M0 macrophage 
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Figure 6 Evaluation of radiomic models. (A) The ROC of the whole tumor model. (B) The cross-validation ROC of the whole tumor 
model. (C) The ROC of the whole tumor & peritumoral model. (D) The cross-validation ROC of the whole tumor and peritumoral model. 
(E) Calibration curves of the whole tumor model. (F) Calibration curves of the whole tumor and peritumoral model. (G) DCA of the whole 
tumor model. (H) DCA of the whole tumor and peritumoral model. ROC, receiver operating characteristic; AUC, area under the ROC 
curve; DCA, decision curve analysis.
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Figure 7 The expression level of RRM2 in the two models. (A) The whole tumor model. (B) The whole tumor and peritumoral model. **, 
P<0.01. RRM2, ribonucleotide reductase regulatory subunit M2.

Table 2 Characteristics of patients in TCIA-TCGA

Variables
Total 

(n=35)

RS
P

Low (n=18) High (n=17)

Age (years), n [%] 0.815

<60 12 [34] 7 [39] 5 [29]

≥60 23 [66] 11 [61] 12 [71]

Sex, n [%] 1

Female 13 [37] 7 [39] 6 [35]

Male 22 [63] 11 [61] 11 [65]

Tumor grade, n [%] 0.241

G1/G2 21 [60] 13 [72] 8 [47]

G3/G4 14 [40] 5 [28] 9 [53]

Pathologic stage, n [%] 0.909

I/II 24 [69] 13 [72] 11 [65]

III/IV 11 [31] 5 [28] 6 [53]

Residual tumor, n [%] 0.658

R0 30 [86] 16 [89] 14 [82]

R1/R2/RX 5 [14] 2 [11] 3 [18]

Vascular invasion, n [%] 1

None 25 [71] 13 [72] 12 [71]

Micro/macro/unknown 10 [29] 5 [28] 5 [29]

Hepatic inflammation, n [%] 1

None 15 [43] 8 [44] 7 [41]

Mild/severe/unknown 20 [57] 10 [56] 10 [59]

AFP, n [%] 0.815

<400 23 [66] 11 [61] 12 [71]

≥400/unknown 12 [34] 7 [39] 5 [29]

TCIA, The Cancer Imaging Archive; TCGA, The Cancer Genome 
Atlas; RS, radiomics score; AFP, alpha-fetoprotein.

infiltration in the RRM2 high-expression group vs. the 
RRM2 low-expression group (P<0.05). RRM2 was notably 
linked to the immune genes LAG3, CD276, CD86, CD48, 
and TNFSF4 (P<0.001). Therefore, noninvasive detection 
to predict the degree of RRM2 expression is helpful for 
personalized clinical decision-making.

Radiomics provides an effective and noninvasive 
method for tumor diagnosis and efficacy prediction 
through extraction of multiple imaging features. With 
the development of molecular biology and artificial 
intelligence, an increasing number of molecular markers 
can be discovered and effectively predicted by radiomics. 
Che et al. (18) integrated clinicoradiological risk factors 
and the RS using the CRR model and predicted β-arrestin1 
phosphorylation in HCC (AUC =0.898, 95% CI: 0.820–
0.977). Wu et al. (19) developed and verified a radiomics 
nomogram based on CT radiomic features in individuals 
with HCC to predict Ki-67 expression (respective AUC 
values for training and validation groups: 0.884 and 0.819). 
MR-based radiomics features were closely linked to positive 
expression of glypican 3 (GPC3), an adverse prognostic 
factor for HCC, in the work of Gu et al. (20). Furthermore, 
the combination of AFP and radiomic characteristics can 
effectively predict GPC3 expression (respective AUC values 
for the training and validation groups: 0.926 and 0.914). 
In this research, four features were screened out from 107 
imaging features to construct a whole-tumor model, and 
a whole-tumor and peritumoral model was constructed 
using the same method considering micrometastasis 
and microinfiltration of immune-associated cells of the 
surrounding area of HCC, which was used less frequently 
in previous studies (21,22). Two logistic regression models 
were built to predict the level of RRM2 expression. The 
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Figure 8 Nomogram of the prognostic model for OS in HCC. RS, radiomics score; OS, overall survival; HCC, hepatocellular carcinoma.
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calibration curves and Hosmer-Lemeshow goodness of fit 
test of the two models revealed considerable congruence 
between the prediction probability of high RRM2 expression 
and the true value (P>0.05). The DeLong test revealed 
a lack of statistical variation in the two models, with 
respective P values in the training set and cross-validation 
set of 0.801 and 0.934. The AUC value of the whole-tumor 
& peritumoral imaging model was slightly higher than that 
the whole-tumor imaging model.

In the whole-peritumoral model, the RS of the group 
with high RRM2 expression was considerably increased 
in comparison to the group with low RRM2 expression 
(P<0.01), indicating that a higher RS value suggests a 
greater difference between images and greater tumor 
heterogeneity (23). Zheng et al. retrospectively extracted 
preoperative CT radiomic features of 319 solitary HCCs, 
utilized the least absolute shrinkage and selection operator 
(LASSO) logical model to generate the RS, and found that 
RS is an independent prognostic factor for HCC through 
multivariate analysis. Moreover, a nomogram based on RS 
has good prognostic performance (24). Prognostic models 
based on radiomic features combined with clinicopathological 
features have been recognized by an increasing number of 
studies. For example, Deng et al. (25) predicted the OS of 
individuals with HCC following radical hepatectomy by 
incorporating AFP, neutrophil-to-lymphocyte ratio (NLR), 
and radiomic features into a nomogram. The AUC of the 
ROC curve for 1-, 3-, and 5-year OS prediction was 0.850, 
0.791, and 0.823 in the training cohort and 0.905, 0.884, 
and 0.911 in the validation cohort, respectively. A nomogram 
incorporating the RS and two clinical parameters [tumor 
embolus and albumin-bilirubin (ALBI) grade] was developed 
in another study evaluating CT imaging in patients with 
advanced HCC who were unresponsive to recommended 
first-line therapy and treated with programmed death 1 
(PD-1) inhibitors to predict the probability of progression 
disease (PD) after PD-1 inhibitor therapy (AUC: 
training group, 0.894; validation group, 0.883) (26). In 
this research, Variables were obtained by the minimal 
AIC-based stepwise selection method. A nomogram was 
established for prediction of patient prognosis utilizing 
RS, sex, and vascular invasion according to multivariate 
Cox regression data; AUC values for the 1-, 2-, and 3-year 
OS prediction ability of the model were 0.836, 0.757, 
and 0.729, respectively. DCA showed that this model has 
high clinical practicability. Although widespread study of 
HCC radiomics has great potential for predicting tumor 
biomarkers, therapeutic response, and prognosis, several 

obstacles remain to be addressed before radiomic analysis 
can be widely used in the clinic. To date, most studies have 
been small sample single-center retrospective studies, 
with differences in the imaging providers, platforms, and 
protocols used (27). Therefore, a radiomic model based on 
a single center may not be generalizable. The radiomics 
data used in this study were from public databases, which 
avoids single-center data bias. However, the available 
images obtained from public databases in this study were 
still limited. On the other hand, there is a lack of consistent 
standards in radiomic studies concerning image acquisition 
protocols, segmentation processes, and radiomic tools used 
for analysis, which may lead to differences in radiomic 
feature measurements (28).

There are several limitations of this study. The research 
relied on public datasets, which may vary considerably in 
image quality, potentially impacting predictive analysis. 
Additionally, the images of a limited sample size of only 35 
eligible patients in TCIA were accessed. Hence, validation 
of the predictive value through more data and clinical 
samples is needed.

Conclusions

The prognosis of individuals with HCC can be strongly 
impacted by RRM2 expression levels. CT images based on 
radiomic characteristics can predict both the expression 
profile of RRM2 and the prognosis of HCC patients.
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