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Abstract: A simple flow injection FlameAAS for lead determination with an alginate-polyurethane
composite (ALG-PUC) monolithic in-valve column has been developed. The ALG-PUC mono-
lithic rod was prepared by mixing methylene diphenyl diisocyanate with polyol and sodium
alginate with the ratio of 2:1:1 by weight for a 5 min polymerization reaction. It was then put
into a column (0.8 cm i.d × 11 cm length) situated in a switching valve for the FI set up. A sin-
gle standard calibration could be obtained by plotting the loaded µg Pb2+ vs. FI response (ab-
sorbances). The loaded µg Pb2+ is calculated: µg Pb2+ = FRload × LT × CPb

2+, where the FR load
is the flow rate of the loading analyte solution (mL min−1), LT is the loading time (min), and
CPb

2+ is the Pb2+ concentration (µg mL−1). A linear calibration equation was obtained: FI response
(absorbances) = 0.0018 [µg Pb2+] + 0.0032, R2 = 0.9927 for 1–150 µg Pb2+, and RSD of less than 20%
was also obtained. Application of the developed procedure has been demonstrated in real samples.

Keywords: lead(II); monolithic column; alginate-polyurethane composite; flow injection; FlameAAS;
in-valve column

1. Introduction

Lead is a highly toxic element that can be found in the environment. For chronic
exposure, it can harm and affect humas health, for example, it can cause nephritis of
the kidney, brain damage, and central nervous system disorders [1]. Atomic absorption
spectrometry (AAS) is among one of the various methods for the determination of lead
due to its availability in laboratories and high selectivity in the detection of Pb2+ [2–4].
Other techniques employed as standard methods include, electrothermal atomic absorp-
tion, inductively coupled plasma, inductively coupled plasma/mass spectrometry, anodic
stripping voltammetry, and colorimetric employing dithizone [5]. Adsorptive stripping
voltammetry (AdSV) provides good sensitivity (ng mL−1 or lower [6–8]) and could be
used for multi-elements analysis [9–11]. ICP-MS or ICP-AES also provides similar in-
formation [12–15]. The cost of operation in addition to the cost of the instrument itself
would be relatively high, especially in less developed places. A well-trained person is
needed for its operation. A flame atomic absorption spectrometer (FlameAAS) is com-
monly available in most laboratories. There have been a number of works applying the
flow techniques to FlameAAS to enhance performance [16–21]. In our research group, we
have employed it with polyurethane foam (PUF) for sample pretreatment because of its
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various advantages [22,23]. The use of PUF with flow injection analysis (FIA) has been
reported as modified-PUF powder for ions adsorption in online systems [20,21,24–26], but
some disadvantages such as high pressure when the system was used over a long period
of time and inconvenience when packing the material into the column were encountered.
For the modification of PUF with alginate, it has shown selectivity toward Pb2+, durability,
and reusability [27]. Advantages obtained using a monolithic PUF rod have been observed
in previous work on SDS assay [28]. Instead of using the previously reported alginate-
polyurethane composite (ALG-PUC) in powder form as a batch procedure for removal of
lead, the grafting of alginate and PUF was synthesized as a modified ALG-PUC monolithic
column situated in-valve during FI set up. It is expected that a long system running time
with low back pressure was beneficial due to the high porosity of ALG-PUC, and it was
easy to fabricate. From our previous experiences, using an in-valve column for FI setup
made the determination of Pb2+ while employing single standard calibration possible,
even without using a monolith column [29]. This work aimed to prove that the use of
a monolithic ALG-PUC in-valve column with single standard calibration approach can
enhance the performance of FlameAAS in lead determination, although with limitations
the in availability of the instrument components.

2. Results and Discussion
2.1. Synthesis of Polyurethane Foam (PUF) and Alginate-Polyurethane Composite (ALG-PUC)
and Their Characteristics

The chemical structure of PUF consists of diisocyanate groups from MDI and hydroxyl
groups from polyol [-MDI-Polyol-MDI-Polyol-]n, while the components of ALG-PUC are
the diisocyanate groups from the MDI and hydroxyl groups from polyol and alginate
[-MDI-Polyol-MDI-ALG-]n (Figure 1). The characterization of PUF and ALG-PUC was
investigated using IR spectra (see Figure S1) and SEM images (see Figure S2). Alginate
might have a role as a hydroxyl group and may bond with diisocyanate groups. In contrast
ALG-PUC is whiter and has a higher porosity than PUF (Figure S3). Alginate appears
on the binding side of the carboxylic group (-COO−) for the sorption of Pb2+ as an ion-
association, which is highly selective with Pb2+ ions when the pH is higher than 3.96 [27].
The ratio of the carboxylic group and Pb2+ ions was 2:1 [27]. Monolithic ALG-PUC could
only be used for at least 75 cycles, as the absorbance would decrease significantly after that.
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Figure 1. The estimated ALG-PUC structure.

2.2. Study of Elution Profile of Monolithic ALG-PUC Packed In-Valve-FI

The elution of a monolithic ALG-PUC column for Pb2+ was studied. An in-valve
column (0.8 cm i.d × 11 cm length) packed with monolithic ALG-PUC was situated in a
switching valve of the FI set up (see in the Section 3.1). A 10 µg mL−1 Pb2+ solution was
passed through the column for 3 min. The residual and unsorbed Pb2+ was cleaned with
water. The column was eluted with 2 mol L−1 nitric acid. The experiments for a 5 min
loading time were also performed. The obtained elution profiles are illustrated in Figure 2.
It can be seen that an eluent (2 mol L−1 nitric acid) volume of 4 mL (flow rate 5 mL min−1,
with less than 1 min) could practically quantitatively elute the loaded Pb2+. The peak
maxima were observed in the same position. This indicated that the peak height could be
used for the FI-response corresponding to absorbance due to the sorbed amount of lead.
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2.3. Effect of Nitric Acid Concentration

A 60 µg of Pb2+ was loaded into the monolithic ALG-PUC column. Elution using
different concentrations (0.1–2.5 mol L−1) of nitric acid was studied. The results are
illustrated in Figure 3. A concentration of 2 mol L−1 or above yielded the maximum elution
of Pb2+. This could be because the H+ from nitric acid would replace Pb2+ at the binding
site in the connection with carboxyl group (-COO−) of alginate [27].
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2.4. Single Standard Calibration

A series of Pb2+ solutions (2.0–10.0 µg mL−1) were passed into the column with
various loading times (2–15 min) and under the same loading flow rate (1 mL min−1) and
elution condition (2 mol L−1 nitric acid, 5 mL min−1). Linear calibration graphs based on
each loading time were obtained (plot of absorbance vs. Pb2+ concentration), as displayed
in Figure 4. It can be seen that the longer the loading time, the higher the calibration slope.

One can calculate the microgram of loaded Pb2+ by µg Pb2+ = FRload × LT × CPb
2+,

where FRload is the flow rate of loading analyte solution (mL min−1), LT is the loading time
(min), and CPb

2+ is the Pb2+ concentration (µg mL−1). It can be observed from Figure 4
that the same amount of loaded Pb2+ exhibits the same absorbance values.
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A single calibration approach was investigated. Solutions of different Pb2+ con-
centrations (0.1–10.0 µg mL−1) were percolated into the monolithic ALG-PUC packed
in-valve of the FI set up for different loading times (2–15 min) with a loading flow rate of
1 mL min−1 and with the same elution condition as before. The results are presented
in Table 1 and Figure 5. As expected, the same microgram of Pb2+ (from the calcu-
lation described previously) provided practically the same FI response (absorbances),
for example, for the condition of F, 20 µg Pb2+ obtained from either using Pb2+ 2 or
4 µg mL−1 with a loading time of 5 or 10 min, respectively, provided FI responses (ab-
sorbances) of 0.035 ± 0.004 and 0.043 ± 0.004. Similarly, for the conditions M, 60 µg
Pb2+ resulted from using either 4 or 6 µg mL−1 Pb2+ with a 10 or 15 min loading time
produced 0.118 ± 0.005 and 0.118 ± 0.004 FI responses, respectively. A single standard
calibration can be then obtained by plotting the calculated loaded µg Pb2+ vs. FI response
(absorbances), as illustrated in Figure 6, with linear calibration equation being FI response
(absorbances) = 0.0018 [µg Pb2+] + 0.0032, R2 = 0.993 for 1–150 µg Pb2+. The relative stan-
dard deviation was less than 20%. If a loading higher than 150 µg Pb2+ was applied, the
saturation of the ALG-PUC binding site was situated. With limitations of the instrumenta-
tion that was available to our lab group explained above, we needed to set up a system
using only one single injection valve and a peristatic pump. With that setup, which was
described earlier in the manuscript, the same calculated µg Pb2+ (from flow rate, loading
time, and concentration) was loaded onto the column and provided the same FI response,
leading to the validity of the single standard calibration. With the setup (only very ba-
sic components were available for our work), to result in the applicability of the single
standard calibration approach, the loading time needed to be 5 min or longer (if a time
shorter than 5 min, there would be an error due to switching the valve for flow lines, see
Table S1), while the flow rate was fixed at 1 mL min−1. Considering for loading time of
5 min for 1 µg Pb2+ (calculated), which was the last point of the calibration, a 1 mL min−1

flow rate, would result in 0.2 µg mL−1 Pb2+ of loading solution. This would reflect the
limit of quantitation. The sensitivity obtained by the setup could be improved if the system
could be composed of better-quality components: a peristatic pump and a three way valve
with automation control. The concept should further be developed for automation using a
sequential injection system. It should be noted that using the single standard approach for
a given set of conditions (fixed flow rate), if loading a sample solution with a given loading
time produced a FI response lower than the lowest point of the linear calibration, the
sample solution could be reloaded with more appropriate time to produce an FI response
within the linear range. Similarly, if loading a sample solution resulted in a higher FI
response, a shorter reloading time would provide a FI response within the linear range.
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Table 1. Correlation involving the use of single standard calibration.

Condition 1 Pb2+

(µg mL−1)

Loading
Time
(min)

Calculated
µg Pb2+

FI Response (Absorbances)

I II III Average

A 0.1 5 0.5 0.000 0.001 0.001 0.001 ± 0.000
B 0.2 5 1 0.006 0.004 0.004 0.004 ± 0.001
C 1.0 5 5 0.016 0.012 0.009 0.013 ± 0.003
D 2.0 5 10 0.020 0.022 0.015 0.019 ± 0.003
E 2.0 7 14 0.031 0.026 0.021 0.026 ± 0.004
F 2.0 10 20 0.035 0.030 0.041 0.035 ± 0.004
F 4.0 5 20 0.040 0.048 0.040 0.043 ± 0.004
G 4.0 7 28 0.057 0.053 0.058 0.056 ± 0.002
H 6.0 5 30 0.057 0.056 0.052 0.055 ± 0.002
I 8.0 5 40 0.069 0.072 0.068 0.070 ± 0.002
J 6.0 7 42 0.091 0.083 0.078 0.084 ± 0.005
K 10.0 5 50 0.099 0.093 0.092 0.095 ± 0.003
L 8.0 7 56 0.105 0.111 0.104 0.107 ± 0.003
M 4.0 15 60 0.120 0.111 0.123 0.118 ± 0.005
M 6.0 10 60 0.113 0.123 0.117 0.118 ± 0.004
N 10.0 7 70 0.138 0.121 0.127 0.129 ± 0.007
O 8.0 10 80 0.144 0.143 0.142 0.143 ± 0.001
P 6.0 15 90 0.175 0.172 0.169 0.172 ± 0.002
Q 8.0 15 120 0.224 0.201 0.220 0.215 ± 0.010
R 10.0 15 150 0.285 0.262 0.266 0.271 ± 0.010

1 Flow rate of loading at 1 mL min−1.
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2.5. Lead Assay in Samples of Aqueous Sulfuric Acid Solutions Contained in Acid Batteries

The developed method was applied to determine the amount of Pb2+ in samples of
aqueous sulfuric acid solutions contained in acid batteries. The results of the recovery
studies are represented in Table 2.

Table 2. Lead content in samples of aqueous sulfuric acid solutions contained in acid batteries.

Sample
Pb2+ (µg mL−1)

Added Found Recovery (%) Content in
Sample 1

S1
0.0 0.4 ± 0.1 -

2.0 ± 0.22.0 2.5 ± 0.1 105

S2
0.0 1.0 ± 0.1 -

5.0 ± 0.52.0 3.0 ± 0.1 100

S3
0.0 0.4 ± 0.1 -

2.0 ± 0.22.0 2.6 ± 0.1 110
1 The amount of Pb2+, µg mL−1 in three samples of aqueous sulfuric acid solutions contained in acid
batteries = Found, Pb2+, µg mL−1 (calculated from calibration graph) × dilution factor (5 times).

3. Materials and Methods
3.1. Apparatus

In this work, an atomic absorption spectrometer (PerkinElmer, AAnalyst 800, Waltham,
MA, USA) was previously used. Unfortunately, due to the accidental failure of this
FlameAAS, the change to the new one was inevitable. For this reason, an atomic absorption
spectrometer (Hitachi, ZA 3300, Tokyo, Japan) was selected and tested for the experimental
conditions before use. The instrument provided similar results. A Fourier-transform
infrared spectrometer (Thermo Scientific, Nicolet 6700, Waltham, MA, USA) and scanning
electron microscope, SEM, (JEOL, JSM-6610 LV, Tokyo, Japan) were to characterize the
synthesized monolithic ALG-PUC column. Six-port valves (Rheodyne, 7125, Berkeley, CL,
USA), a peristaltic pump (Cole-Parmer, Masterflex L/S, Vernon Hills, IL, USA) for Pump 1
and a peristaltic pump (Cole-Parmer, Masterflex L/X, Vernon Hills, IL, USA) for Pump 2
were included. A digital pH meter (METTLER TOLEDO, Greifensee, Switzerland) was for
pH adjustment.

Due to the use of a single six-port valve, the FI setup with an in-valve column for
the determination of lead using FlameAAS was designed as shown in Figure 7. Water
used as a carrier was passed through Pump 2 into the column at a flow of 5 mL min−1,
it then passed through the FlameAAS, while a standard/sample solution was passed
through Pump 1 into the six-port valve, finishing as waste (period d in Figure S4). Next,
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the Pb2+ standard or sample solution was delivered with a 1 mL min−1 flow rate to the
in-valve monolithic ALG-PUC column via Pump 1 with a certain loading time (period a in
Figure S4). Pump 2 would deliver water to wash the residual and unsorbed Pb2+ with a
flow rate of 5 mL min−1 for 1 min (period b in Figure S4). At that stage, the valve was in the
injection position. Water from Pump 1 passed the six-port valve to waste. The valve was
then changed into the loading position (period x1 in Figure S4). The eluent from Pump 2
passed into the six-port valve. After that, the valve was changed to its injection position
(period c in Figure S4), the sorbed Pb2+ was eluted from the column using 2 mol L−1 nitric
acid via Pump 2 with a 5 mL min−1 flow rate for 1 min and absorbance was detected by
the FlameAAS. The valve was changed to loading position. The eluent line was switched
to water (period x2 in Figure S4). The washing step was applied (period d was repeated).
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3.2. Reagents and Materials

All of the reagents used in this work were of analytical grade. Deionized water
made of the volume of the solutions. Working solutions of Pb2+ were prepared from
1000 µg mL−1 Pb2+ stock solution (Loba chemie, Mumbai, India).

3.3. Preparation of Monolithic ALG-PUC Rod

The mixing of methylene diphenyl diisocyanate (MDI; IRPC, Rayong, Thailand) with
polyol (polyether; IRPC, Rayong, Thailand) and sodium alginate in the ratio of 2:1:1 by
weight and polymerization was completed within 5 min to obtain a bulk product in
a 500 mL beaker. A monolithic ALG-PUC rod was obtained by pressing a plastic rod
(0.8 cm i.d × 11 cm length) into the bulk product. The obtained monolithic rod was about
0.1 g in weight (see Figure S3) and was put into an acrylic rod (0.8 cm i.d × 11 cm length)
that had ferules at the two ends with tubing connecting it into the flow system.

3.4. Sample Preparation

Each of the aqueous sulfuric acid solutions contained in acid batteries was filtrated
and pipetted 10.00 mL. After that, the adjustment to pH 4 by 10 M NaOH was applied.
Finally, deionized water was added to the treated sample to add volume up to 50.00 mL.

4. Conclusions

The grafting of alginate and PUF was synthesized as a modified alginate-polyurethane
composite (ALG-PUC) monolithic column situated in-valve of an FI set up with FlameAAS.
With the setup (only very basic components of which were available for our work), applica-
bility of the single standard calibration approach was possible. Although the sensitivity
obtained from the system was not comparable with some other relatively expensive in-
struments, it demonstrated some benefits compared to the use of conventional FlameAAS
alone, notably, that FlameAAS is commonly available in laboratories.
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Supplementary Materials: The following are available online, Figure S1: IR spectra of sodium
alginate (purple), PUF (blue) and ALG-PUC (green), Figure S2: SEM images with two different
magnifications: (a1) PUF, 1000x; (a2) PUF, 5000x; (b1) ALG-PUC, 1000x; and (b2) ALG-PUC, 5000x
(each sample was cut into a small piece, attached to carbon tape and received a sputtering coat with
gold), Figure S3: Photos of: (a) PUF; (b) ALG-PUC; and (c) monolithic ALG-PUC rod, Figure S4: Full
diagram of the work sequence, with each sample having a work loop of: a = loading time (varying
as desire); b = washing time (1 min); c = eluting time (1 min); d = cleaning time (3 min); x1 and
x2 = waiting time (0.5 min each), Table S1: Experimental results with loading time lower than 5 min.
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