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The human brain is a highly complex organ with remarkable energy demands.
Although it represents only 2% of the total body weight, it accounts for 20%
of all oxygen consumption, reflecting its high rate of metabolic activity.
Mitochondria have a crucial role in the supply of energy to the brain.
Consequently, their deterioration can have important detrimental consequences
on the function and plasticity of neurons, and is thought to have a pivotal role in
ageing and in the pathogenesis of several neurological disorders. Owing to their
inherent physiological functions, mitochondria are subjected to particularly high
levels of stress and have evolved specific molecular quality-control mechanisms
to maintain the mitochondrial components. Here, we review some of the most
recent advances in the understanding of mitochondrial stress-control pathways,
with a particular focus on how defects in such pathways might contribute to
neurodegenerative disease.

Mitochondria are energy-converting organelles
that are present in the cells of virtually
all eukaryotic organisms. These cellular
powerhouses use oxygen to harness energy
through the oxidative phosphorylation
(OXPHOS) process. To achieve this, high-energy
electrons derived from the oxidation of food
molecules are transferred along the respiratory
chain (RC) to four multisubunit protein
complexes embedded in the inner
mitochondrial membrane, releasing energy that

is used to pump protons across this membrane.
The established proton gradient and resulting
mitochondrial membrane potential (Dcm) are
then used by adenosine triphosphate (ATP)
synthetase to generate ATP, which provides
the cell with the majority of its energy
requirements. This process of energy
production was developed by bacteria
approximately two billion years ago, before the
appearance of eukaryotic cells. According to the
endosymbiotic theory, mitochondria were once
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aerobic bacteria that united with the ancestor of
the eukaryotic cell in a mutually advantageous
relationship, and this led to an evolutionary
explosion from which multicellular organisms
evolved (Ref. 1).

Interestingly, mitochondria exist as an
intracellular network, and constantly merge
through fusion and divide through fission.
Fusion consists of the joining of separate
mitochondria and is mainly controlled by
GTPases. In mammals, mitofusins (MFN1 and
MFN2) mediate the fusion of the outer membrane
of two mitochondria, followed by the joining of
their inner membranes mediated by OPA1 (optic
atrophy 1) (Fig. 2). By contrast, DNM1L
(dynamin-1 like protein; DRP1) and FIS1 (fission
1 homologue) are key components of the fission
machinery, which in cooperation, lead the
splitting of the mitochondrial tubule. These two
opposing processes are finely balanced, thus
maintaining steady state physiological conditions,
and have important roles in mitochondrial
function and development, as well as in
programmed cell death (for a review, see Ref. 2).

Although the majority of the estimated 1500
proteins present in the mitochondrion (Ref. 3)
are encoded by the nuclear genome,
mitochondria have their own DNA within the
matrix, which encodes a small set of
mitochondrial proteins – 13 subunits of the RC
complexes – as well as rRNAs and tRNAs. In
mammalian cells, mitochondrial DNA
(mtDNA) is a circular molecule that is present
in several copies and is organised into bacterial
nucleoid-like structures. These structures
contain several proteins that are involved in
mtDNA maintenance and replication, as well as
in its transcription and translation (Ref. 4). The
physical proximity of the nucleoids to the RC
makes mtDNA particularly vulnerable to
damage by reactive oxygen species (ROS),
which are unavoidable OXPHOS products.
Accordingly, mitochondria have quality-control
systems in place to maintain their function, and
they selectively respond to oxidative stress
through mechanisms acting at the molecular,
organellar and cellular levels (Figs 1 and 2). At
the molecular level, the first line of protection is

The core quality-control pathways in mitochondria
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Figure 1. Core quality-control pathways in mitochondria. Low levels of damaged proteins in mitochondria are
cleared at the molecular level by intraorganellar proteases and chaperones such as OMI/HTRA2 and TRAP1 (top
left). Enhanced levels of damage probably overwhelm the capacity of the molecular quality-control machinery
(middle left), leading to the proposed segregation of damaged mitochondrial components by the fusion/fission
machinery.Thisenablesthephysicalseparationofhealthy (green)anddamaged(orange)daughtermitochondria.
Damagedmitochondriaare then recycledusing thecellularautophagypathyways. If the levelsofdamageexceed
the capacity of both molecular and organellar quality-control pathways (top right), mitochondria can rupture,
leading to the release of apoptosis-promoting factors and cell death.
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Molecular determinants of mitochondrial quality-control networks
Expert Reviews in Molecular Medicine © Cambridge University Press 2010
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Figure 2. Molecular determinants of mitochondrial quality-control networks. Mitochondria are dynamic
organelles that are continuously remodelled by fusion and fission events. Fusion requires the joining of both the
inner and outer mitochondrial membranes of two mitochondria. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) carry
out the initial joining of the outer membrane fusion, whereas OPA1 mediates the fusion of the inner membrane.
Mitochondrial fission is mediated by DRP1 and FIS1; DRP1 oligomerizes into 8–12 subunit chains and is
recruited to mitochondria via the adaptor FIS1. This recruitment allows the full oligomerisation of DRP1 into spiral
chains that wrap around the mitochondria and, by constriction, causes mitochondrial fission. In this figure, fission
is shown as a means to selectively eliminate damaged mitochondrial components by packing them in one of the
fission products, and it has been proposed to involve the asymmetrical segregation of OPA1 (Ref. 5). In this
context, fission produces metabolically different daughter units that may either maintain (red) or lose (grey) an
intact membrane potential. Depolarised mitochondria are targeted to degradation by autophagy (mitophagy)
through a mechanism that is still poorly defined. Here, we illustrate two possibilities: (1) the presence of proteins
associated with mitochondrial membranes, such as the mammalian BNIP3L/NIX (Ref. 109, 110), and the yeast
proteins Uth1p (Ref. 111) and Aup1 (Ref. 112), which are involved in the direct entrapment of mitochondria by
autophagosomes; (2) the activity of E3 ligases, such as LISTERIN (Ref. 113), MULAN (Ref. 114) and Parkin
(Refs 28, 115), which might regulate the conjugation of monoubiquitin (Ub) or polyubiquitin chains to an exposed
mitochondrial protein, thereby targeting the organelle to autophagic degradation. p62 and NBR1 are autophagic
receptors that bind both Ub and ATG8/LC3 on the phagophore (Ref. 116), which might constitute the
mechanistic link between mitochondrial ubiquitylation and mitophagy. The mTOR signalling pathway acts as a
major positive modulator of mitochondrial metabolism and biogenesis. We propose that the inhibition of mTORC1
upon mitochondrial damage caused by loss of ATP and consequential activation of AMPK, might be crucial to
ensure an enhancement of the autophagic degradation of defective mitochondria. Abbreviations: AMPK, AMP-
activated protein kinase; Aup1p, yeast mitochondrial protein phosphatase homologue; BNIP3L/NIX, BCL2/
adenovirus E1B 19 kDa protein-interacting protein 3-like; LC3, light chain 3 protein; LKB1, serine/threonine-
protein kinase 11; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; NBR1, next to BRCA1
gene 1 protein; OM, outer membrane; OPA1, optic atrophy 1; Uth1p, yeast outer mitochondrial membrane protein.
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provided by molecular chaperones and
endogenous proteases, which respectively detect
and eliminate abnormally folded and aggregated
proteins generated by ROS. Oxidative damage
to mitochondria is also counteracted at the
organelle level by components of the fusion
and fission machinery, which ensure the
maintenance of a functional population of
organelles (Ref. 5). This occurs through the
alteration of mitochondrial network dynamics
and leads to the segregation of defective
mitochondria, which are eventually removed via
autophagy (mitophagy). Significantly, a major
consequence of mitochondrial damage is loss of
ATP, which results in a decrease in the ratio of
ATP to AMP. This, in turn, can lead to the
activation of a cellular signal-transduction
pathway where the AMP-activated protein
kinase (AMPK) acts as a master sensor of
intracellular energy status (Ref. 6) and reduces
the activity of the mammalian target of
rapamycin complex 1 (mTORC1). mTORC1 is a
major positive modulator of mitochondrial
metabolism and biogenesis (reviewed in Ref. 7).
It is supposed that an mTORC1-dependent
decrease in mitochondrial biogenesis could
indirectly promote the autophagic segregation of
defective mitochondria by ensuring that
mitochondrial dynamics processes are used for
the clearance of dysfunctional mitochondria, as
opposed to their biogenesis (Fig. 2).

Ultimately, if mitochondrial damage is too
severe and overwhelms the cellular networks
of protective mechanisms, dysfunctional
organelles break open, releasing a series of
apoptotic factors that ultimately cause cell
death (reviewed in Ref. 8). This removal of cells
with severely injured mitochondria has been
suggested to be another layer of protection that
acts at the level of the organism (Ref. 9).
Nevertheless, the demise of postmitotic cells
such as neurons can result in irreparable
damage to the organism.

The chronic and selective loss of neuronal cells is
indeed a typical feature of most neurodegenerative
diseases and results in the progressive
impairment of function in the central (CNS) and/
or peripheral nervous system (PNS). Although
they affect different neuronal cell populations,
neurodegenerative diseases share remarkable
common traits, e.g., enhanced neuronal cell
death, defects in axonal transport and the
accumulation of dysfunctional mitochondria.

In addition to their primary role in cellular
metabolism, mitochondria are active players in
Ca2+ homeostasis. Under conditions of cellular
Ca2+ overload, in association with oxidative
stress, mitochondrial Ca2+ uptake leads to the
collapse of Dcm, which sensitises cells to
apoptosis. In this regard, it is noteworthy that
alterations of mitochondrial Ca2+-regulating
proteins (Bcl-2 family members and uncoupling
proteins) are implicated in age-related neuronal
pathologies (Ref. 10).

Thehigh densityof mitochondriawithin neurons
could provide a rationale for the sensitivity of the
CNS to energy deficits due to mitochondrial
dysfunction. Nevertheless, it is still debated
whether mitochondrial impairment and
oxidative damage are aetiological factors, or are
solely the consequences of neurodegeneration.
In this review, we provide a synopsis of
the current advances in the knowledge of
mitochondrial quality-control systems, with
particular emphasis on how disturbances in the
molecular components of such systems might
contribute to neurological diseases.

Mitochondrial dysfunction and
Parkinson disease

Mitochondrial dysfunction has long been
associated with the onset of neurodegenerative
states, including the selective loss of
dopaminergic neurons in Parkinson disease
(PD). PD is the most common neurodegenerative
movement disorder, and it affects 1% of the
population above the age of 60. The critical loss
of pigmented neurons in the substantia nigra
underlies the motor impairment, which is the
most common clinical feature of the disease.
However, neuronal loss in regions of the brain
controlling autonomic functions, cognition and
mood is also implicated. Neurons that
degenerate in PD often contain intracellular
inclusions of a-synuclein (SNCA), which is a
major component of the so-called Lewy bodies
(Ref. 11).

Despite the fact that the majority of PD cases
occur sporadically as a result of unknown
causes, reduced levels of mitochondrial
complex I activity are generally associated with
the disease (Refs 12, 13, 14). Additionally, the
toxins rotenone and MPTP cause an acute and
irreversible parkinsonian syndrome that might
involve the specific inhibition of complex I
(Refs 15, 16). This suggests that one of the main
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causes of neuron loss and motor impairment in
PD is toxin-induced mitochondrial stress in
dopaminergic neurons (reviewed in Ref. 17).

Although classically considered to be a
nongenetic disorder because of the large
number of sporadic cases, genetic analyses of
the small proportion of familial PD cases have
led to significant insights into its pathogenesis.

Mutations in SNCA (a-synuclein) and LRRK2
(leucine-rich repeat kinase 2) genes mediate
autosomal-dominant forms of PD, whereas
mutations in PARK2 [Parkinson disease
(autosomal recessive, juvenile) 2; parkin], PARK7
[Parkinson disease (autosomal recessive, early
onset) 7; DJ-1] and PINK1 (PTEN-induced
putative kinase 1) cause the disease in an
autosomal-recessive manner. Mutations in
HTRA2, which encodes the mitochondrial serine
protease (HtrA2 serine peptidase; OMI) have also
been described in families affected by PD (see
Ref. 18 for a review). However, the importance of
HTRA2 mutations in the development of PD has
been questioned by independent studies,
indicating that the role of this protease in the
development of PD is still controversial.

Interestingly,themajorcommonfunctionaleffects
of the proteins encoded by these genes relate to
mitochondria: PINK1 is a kinase regulated by a
canonical N-terminal mitochondrial-targeting
sequence (Ref. 19); DJ-1 is a molecular chaperone
that has been proposed to be localised to the
mitochondria upon oxidative stress (Refs 20, 21,
22) and stabilise complex I (Ref. 23); Parkin and
PINK1 seem to be involved in the regulation of
mitochondrial dynamics, morphology and
turnover (Refs 24, 25, 26, 27, 28); and finally
HTRA2/OMI and PINK1 have been shown to be
components of the same mitochondrial stress-
sensing pathway (Ref. 29). Given the fact that a-
synuclein and LRRK2 are partially localised to
mitochondria (Refs 30, 31), the majority of genes
associated with PD so far implicate, either directly
or indirectly, the involvement of mitochondria in
the pathogenesis of this disease (Table 1).
Molecular dissection of the contribution of these
gene products to mitochondrial function is
currently underway and is likely to be
important for a better understanding of PD
(reviewed in Ref. 32).

Any given mitochondrion is not a discrete,
autonomous organelle (Ref. 2); in fact, the entire
mitochondrial population within a cell is in
constant flux driven by a series of fusion and

fission events. The dynamic nature of the
mitochondrion population not only determines
mitochondrial morphology and copy number
(Ref. 33), but it also provides additional
protection against mitochondrial damage (Fig. 2).
Recently, it was proposed that PINK1 and Parkin
regulate mitochondrial dynamics through
interaction with the fusion–fission machinery
(Refs 24, 25, 26). However, it is also conceivable
that these proteins affect mitochondrial dynamics
indirectly by perturbing calcium and ROS
homeostasis (Refs 27, 34). Several groups
reported that loss of Pink1 or parkin in Drosophila
leads to significant mitochondrial enlargement,
suggesting a defect in mitochondrial fission
(Refs 35, 36). Interestingly, the phenotypes of
Pink1 or Parkin mutant flies are very similar, and
although Pink1 is unable to rescue the defects
caused by the lack of parkin, overexpression of
parkin rescues the mitochondrial pathology
induced by the loss of Pink1. By contrast, PINK1-
deficient mammalian cells show fragmented and
truncated mitochondria; nevertheless, the
molecular interaction between Parkin and PINK1
is conserved in mammalian cells (Refs 37, 38, 39).

Parkin acts as an E3 ubiquitin ligase, and it is
mostly localised to the cytosol. However, it has
been shown in vitro that Parkin is recruited to the
mitochondria upon loss of Dcm, leading to a
selective autophagic engulfment and elimination
of dysfunctional organelles (Ref. 28) (Fig. 3).
According to Chung and colleagues, this
recruitment is dependent on the direct
phosphorylation of Parkin on Thr175 by PINK1
(Ref. 40), whose kinase domain faces the cytosol
(Ref. 41). Considering that downregulation of
PINK1 causes loss of mitochondrial membrane
potential in several mammalian systems (Refs 19,
37, 42), it seems plausible to propose a role for
PINK1 in flagging dysfunctional mitochondria
for degradation. The mitochondrial pathology in
PINK1-deficient animals might be caused by an
insufficient recruitment of Parkin followed by an
impairment of mitochondrial turnover (Ref. 43).
However, given that Parkin is capable of
rescuing mitochondrial dysfunction caused by
the loss of PINK1, it is unclear whether a direct
molecular interaction between PINK1 and Parkin
is essential for efficient removal of damaged
mitochondria.

PINK1 and Parkin seem to share the
same genetic pathway, which probably involves
the mitochondrial quality-control machinery.
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Additionally, two intermembrane space (IMS)
proteins involved in mitochondrial quality
control are substrates of PINK1: the chaperone
TRAP1/ Hsp75 (Ref. 44) and the serine protease
HTRA2/OMI (Ref. 29). Under stress conditions,
these proteins interact with PINK1 (Fig. 3) and
are subsequently activated to prevent the
accumulation of misfolded proteins. Given the
proposed role of toxins such as rotenone and
MPTP in acute parkinsonian syndrome, it is
attractive to argue that defects in proteins
involved in mitochondrial-stress pathways
could increase the susceptibility towards

neurodegeneration in individuals exposed to
environmental toxins.

In addition to mitochondrial dysfunction,
protein aggregation also has a major role in PD
pathogenesis. However, it remains to be
determined whether there is a convergence
between mitochondrial dysfunction and protein
aggregation. a-synuclein is a fibrillar aggregation-
prone protein that is a main component of Lewy
bodies and is believed to contribute to PD by
toxic gain-of-function effects. Although this
protein is mostly cytosolic, mitochondrial
abnormalities were observed in several transgenic

Role of the major PD-associated genes in mitochondrial dysfunction
Expert Reviews in Molecular Medicine © Cambridge University Press 2010
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Figure 3. Role of the major PD-associated genes in mitochondrial dysfunction. (See next page for legend.)
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mouse models that either lack or overexpress wild-
type ormutanta-synuclein (Refs45, 46), suggesting
that it has a physiological role in the mitochondria
(Ref.47),where itmightinteractwithmitochondrial
proteins. Recent work has shown that loss of PINK1
leads to an increase of a-synuclein aggregation
(Ref. 48), whereas overexpression of PINK1 was
able to suppress a-synuclein-induced phenotypes
in Drosophila (Ref. 49). Moreover, the chaperone
DJ-1 has been shown to redistribute to
mitochondria upon oxidative stress (Refs 20,
21,22) and to prevent the aggregation and toxicity
of a-synuclein in an oxidation-dependent manner
(Refs 41, 50, 51).

Whether or not DJ-1 recruitment is regulated in
the same manner as Parkin remains to be
determined. However, it has already been
demonstrated that Parkin, PINK1 and DJ-1 form
a functional ubiquitin E3 ligase complex that
promotes ubiquitylation and degradation of
unfolded or misfolded proteins (Ref. 52). This
complex might thus be the missing link between
mitochondrial function and protein aggregation.

Finally, PINK1, DJ-1 and Parkin seem to interact
in vivo with LRRK2, another PD-associated
protein (Refs 53, 54). LRRK2 is a serine/threonine
kinase responsible for the phosphorylation of

actin crosslinkers, moesin (MSN), ezin (EZR) and
radixin (RDX) (Ref. 55), as well as the eukaryotic
initiation factor 4E (eIF4E)-binding protein
(4E-BP), which is a negative regulator of
eIF4E-mediated protein translation and a key
mediator of various stress responses. 4E-BP
activity is also regulated by the TOR signalling
pathway. Activated TOR hyperphosphorylates 4E-
BP, inhibiting it and promoting 5’-cap-dependent
translation. A switch from cap-dependent to cap-
independent initiation of translation seems to be a
key event in mediating the survival response to
various physiological stresses (Ref. 56). In support
of this, Whitworth and colleagues recently
showed that loss of Drosophila Lrrk2 as well as
treatment with rapamycin, an inhibitor of TOR,
lead to the activation of 4E-BP, and this suppresses
Pink1 and parkin mutant phenotypes in flies.
Taken together, and with the caveat that some of
these observations await confirmation, it is
attractive to suggest that LRRK2 might have a role
in the regulation of mitochondrial homeostasis by
controlling signalling pathways involved in
protein translation.

As described here, the most recent work has
emphasised the central importance of
mitochondrial dysfunction in PD. Nevertheless,

Figure 3. Role of the major PD-associated genes in mitochondrial dysfunction. (See previous page for
figure.) Many genes associated with Parkinson disease (PD) implicate a role for mitochondria in the
pathogenesis of the disease. The serine protease HTRA2–OMI is synthesised as an inactive precursor
containing a mitochondrial-targeting sequence (MTS). In response to the activation of the MEKK3–p38
stress-kinase-signalling pathway, HTRA2/OMI is phosphorylated by p38 in a PINK1-dependent manner and
imported into the intermembrane space (IMS), where it has been reported to bind to the Bcl-2-family-related
protein Hax-1 (Ref. 117). Despite the fact that this interaction is controversial (Ref. 118), it has been
suggested to promote the proteolytic processing of HTRA2/OMI by the mitochondrial protease PARL.
Active HTRA2/OMI is thought to be involved in the degradation of misfolded proteins present in the IMS
(Ref. 119) and to prevent the oligomerisation of the activated form of BAX on the outer membrane (OM), thus
avoiding apoptosis (Ref. 117). Under oxidative stress conditions, PINK1 also interacts with the mitochondrial
molecular chaperone TRAP1. Once phosphorylated, TRAP1 inhibits oxidative-stress-induced cytochrome c
(Cyt C) release, prevents misfolding and promotes the correct assembly of mitochondrial proteins. DJ-1 is a
cytosolic oxidative-stress-regulated chaperone, which redistributes from the cytosol to the mitochondria
upon oxidation of specific cysteine residues. In the cytoplasm, DJ-1 prevents the aggregation and toxicity of
a-synuclein (a-syn); in mitochondria, it has been suggested to protect respiratory complex I (cI) from
oxidative-stress-mediated inactivation (Ref. 23). Another protein involved in the mitochondrial stress
response is Parkin, a cytosolic E3-ubiquitin ligase, which is selectively recruited to uncoupled or
dysfunctional mitochondria, targeting them for autophagy (Ref. 28). A model is illustrated whereby PINK1,
acting upstream of Parkin, might regulate mitochondrial function by sensing mitochondrial damage,
recruiting Parkin and inducing mitophagy. Abbreviations: ADP, adenosine diphosphate; ATP, adenosine-5

′
-

triphosphate; cII, complex II; cIII, complex III; cIV, complex IV, cV, complex V; HAX-1, HCLS1-associated
protein X-1; HTRA2, high-temperature requirement A2; IM, mitochondrial inner membrane; MEKK3,
mitogen-activated protein kinase kinase kinase 3; PINK1, PTEN-induced putative kinase 1; PD, Parkinson
disease; PDZ domain, post-synaptic density protein (PSD95), Drosophila discs large tumour suppressor
(DlgA) and zonula occludens-1 protein (zo-1) domain; TRAP1, TNF-receptor associated protein; Dcm,
mitochondrial membrane potential.
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we still need to consider several questions: is this
mitochondrial pathway also relevant to sporadic
forms of PD? How can we exploit our knowledge
of mitochondrial involvement in PD to develop
better therapies? We believe that new insights
from future studies will provide us with
neuroprotective therapies that could make a
difference in the treatment of PD.

Mitochondrial dysfunction in Alzheimer
disease

Alzheimer disease (AD) is a progressive and
irreversible pathology that affects millions of
people worldwide, and it represents the most
common form of dementia among elderly
people. AD has been attracting increasing
attention from both the scientific community
and governments because of its increasing social
impact and costs. By the year 2050, 50% of
people 85 years and older will be afflicted with
AD (Ref. 57), making this disease a health priority.

ADcanbeclassifiedintosporadicADandfamilial
AD (FAD). Only a small fraction (approximately
10%) of AD cases are familial (Ref. 58), and show
autosomal-dominant transmission within affected
families. Sporadic AD accounts for the majority of
cases, with ageing being the most relevant known
risk factor. In addition to age and family history,
an increased risk of developing the disorder –
both early and late-onset AD – is associated with
apoE14 (Ref. 59), one of three allelic variants of
the human APOE gene. More recently, variants of
clusterin (CLU) and phosphatidylinositol-binding
clathrin assembly protein (PICALM) proteins
have also been associated with AD (Ref. 60). A
characteristic feature of all forms of AD is
progressive neuronal cell death in brain regions
displaying high plasticity, which is caused by the
accumulation of intraneuronal neurofibrillary
tangles (NFTs) and extracellular b-amyloid
plaques. NFTs consist of abnormally
phosphorylated tau protein, which is polymerised
into paired helical filaments (PHFs); amyloid
plaques are composed of b-amyloid peptide
(Ab1–42), which polymerises into insoluble fibrils
with high b-sheet content.

TheAb-aggregationprocesshasbeenconsidered
for years to be the most relevant phenomenon
implicated in the aetiology of AD. However,
mounting evidence is now highlighting the role
of mitochondrial impairment in the pathology of
AD, and the two events are reciprocally related.
In particular, the finding that Ab species

accumulate intracellularly in the mitochondria
(Ref. 61), and the fact that this occurs before their
extracellular accumulation, has changed the
focus of potential therapies against this
pathology. These findings provide a direct link
between Ab and the pathological dysfunctions of
the mitochondria found in AD, such as deficits in
tricarboxylic acid (TCA) cycle and/or complex IV.
Although the molecular origin of the
intramitochondrial Ab is still unknown, the in
vivo and in vitro consequences of these deposits
in the cell have, in part, been elucidated. The
presence of b-amyloid aggregates in the
organelle has been shown to impair the
enzymatic activity of cytochrome c oxidase and
inhibit the activity of mitochondrial amyloid-b-
binding alcohol dehydrogenase (ABAD) (Fig. 4).
The selective decrease in complex IV observed in
the brains of AD patients (Refs 62, 63) could be
responsible for an imbalance in the electron
transport chain (ETC) energy-extracting
mechanism, which, in turn, would compromise
the general metabolism of the neurons.

The process of Ab aggregation is accompanied
by the generation of ROS and lipid peroxidation.
At the mitochondrial level, such neurotoxic
actions affect the components of the OXPHOS
by depletion of ATP levels (Ref. 64), and they
exert a secondary effect on the mitochondrial
ATPase. This, in turn, results in the altered
regulation of the calcium elevations in which
the ATPase is implicitly involved (Ref. 65).
Furthermore, the toxicity of Ab peptides –
which is associated with their oligomeric state,
rather than their fibrillar insoluble state (see
Ref. 66 for a review) – causes a rapid increase
of intracellular calcium that eventually leads to
cell death. A pivotal role in cell death
commitment is played by the opening of the
mitochondrial permeability transition pore
(mPTP), which determines the collapse of Dcm

and the subsequent release of IMS proapoptotic
factors. The molecular basis for this pathogenic
mechanism was provided by the work of Du
and colleagues (Ref. 67) in both transgenic
mouse models and human AD brains, where
the Ab peptide has been shown to interact with
cyclophilin D (CYPD; CypD), a mitochondrial
matrix protein involved in mPTP formation
(Fig. 4).

Several cell models document the accumulation
of the full-length amyloid precursor protein
(APP) in the outer mitochondrial membrane as
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Figure 4. Mitochondrial dysfunction in AD. Degenerating neurons in brain areas affected by Alzheimerdisease (AD)
(e.g. hippocampus and cerebral cortex) present typical intracellular neurofibrillary tangles (NFTs) and extracellular
accumulation of b-amyloid plaques. Ab is produced from the metabolism of amyloid precursor protein (APP)
through sequential cleavage by b- and g-secretases, and it is prone to form toxic oligomeric structures both
inside and outside the cell. APP and Ab can affect mitochondrial function by different mechanisms. APP is
targeted to mitochondria, where it forms complexes with the translocases of the outer and inner membranes
(TOM and TIM), which drive the import of mitochondrial proteins in cooperation with molecular chaperones.
However, the presence of an acidic domain within APP might be responsible for preventing its translocation into
mitochondria. As a consequence, the import of mitochondrial proteins, such as respiratory chain subunits, is
reduced, and this event is associated with increased free radical generation and reduced activity of the electron-
transport chain. Other aspects of amyloid metabolism involve mitochondria: intramitochondrial Ab has been
shown to interact with amyloid-b-binding alcohol dehydrogenase (ABAD) and to produce reactive oxygen species
(ROS). Ab also interacts with cytochrome c oxidase, thus decreasing the activity of complex IV (cIV). Furthermore,
presequence peptidase PreP and HTRA2/OMI serine protease have been shown to degrade Ab oligomers, thus
providing a mechanism to detoxify this metabolite. Intramitochondrial Ab directly interacts with cyclophilin D
(CypD), a component of the mitochondrial permeability transition pore (mPTP), which is located in the
mitochondrial matrix. This interaction makes the channel more sensitive to Ca2+ and stimulates mPTP opening,
thus raising the permeability of the mitochondrial inner membrane (IM) and eventually disrupting the mitochondrial
outer membrane (OM). As a result, deregulation of the mPTP opening determines a functional disorder that
triggers cell death. Abbreviations: AD, Alzheimer disease; ATP, adenosine-5′-triphosphate; cI, complex I; cII,
complex II; cIII, complex III; cV, complex V; HTRA2, HtrA2 serine peptidase;Dcm, mitochondrial membrane potential.
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another molecular event that is responsible for
mitochondrial dysfunction, owing to its
translocational arrest (Ref. 68). Although several
aspects of the pathogenesis of AD remain
unsolved, the turnover and degradation of APP
and Ab in the mitochondrial compartment
appear to be two fundamental processes whose
dysregulation might lead to dramatic
consequences on the functioning of the
organelle, and ultimately, of the cell as a whole.

In transgenic mice, elimination of the aberrant
forms of these proteins can reverse the
neurological deficits without affecting the
number of neurons (Refs 69, 70, 71). From a
therapeutic perspective, these findings suggest
that some neurological defects that are
associated with AD might be caused by
neuronal dysfunction rather than the loss of
neurons. Drugs aimed at enhancing the
removal of abnormal Ab assemblies might help
to inhibit their toxic action on mitochondria
and, by extension, neurons. At present, several
studies are attempting to identify in vitro and
in vivo modulators that influence Ab

aggregation, as well as tau in the NFTs. A
potential role for HTRA2/OMI protease in the
clearance of Ab oligomers from within the
mitochondria has been recently indicated
(Ref. 72). A similar function in degradation of
mitochondrial Ab has been suggested for the
mitochondrial matrix metallopeptidase PreP
(prolyl endopeptidase, PREP), an organellar
functional analogue of the human insulin-
degrading enzyme (IDE) (Ref. 73) (Fig. 4).

The mitochondrial dysfunction found in AD
has also been related to mechanisms that are
independent of Ab. The majority of hereditary
AD cases (autosomal dominant) carry
mutations in the presenilin genes PSEN1 and
PSEN2, the subcomponent of g-secretase that is
responsible for APP cleavage to produce Ab

peptide. Specifically, mutations in PSEN1 have
been shown to destabilise mitochondrial
functions through two possible mechanisms by:
(1) perturbing endoplasmic reticulum (ER)
calcium handling, which in turn promotes
excessive mitochondrial Ca2+ uptake and
apoptosis (Ref. 74); and (2) impairing the
axonal transport of the organelle, which
affects the normal synaptic activity of neurons
(Ref. 75).

Altogether, these studies have attributed the
causes of AD to two inter-related pathogenic

events: aggregation of misfolded proteins, and
mitochondrial dysfunction; however, their inter-
relationship needs further investigation. Despite
the broad agreement that both processes are
likely to have pivotal roles in AD progression,
there is insuficient evidence supporting the
notion that mitochondrial alterations are a
primary cause of this disease. Instead, we
favour the notion that mitochondrial
dysfunction is a secondary event in the disease
process, which nevertheless might be a key
determinant of neurodegeneration in AD.

Although mitochondrial dysfunction and
aberrant protein degradation are clearly related
to AD, many questions remain unanswered. A
major problem inherent to AD is the absence of
early diagnostic tests, which is due in part to
the lack of reliable predisease biomarkers.
Several new approaches designed to target the
formation of b-amyloid aggregates are under
investigation in clinical trials, with the aim of
slowing or halting the progression of AD
(refer to the Alzheimer’s association page in
the Further Reading section below). However,
synapse loss in the neocortex and hippocampus
is a well-documented structural feature of the
brain lesion in AD, and it is reported to be an
early event in AD (Refs 76, 77). For that reason,
it would be useful to look for markers of
synaptic loss, such as synaptophysin (Refs 78,
79). Future studies should also investigate
the molecular aspects of mitochondria in
neurons of animal models of AD. It would be
interesting to study the effects of specific
manipulations of mitochondrial functions in
these cells, to determine whether the
mitochondrial damage in AD can be reversed
by stimulating autophagy and/or mitochondrial
biogenesis.

Huntington disease and mitochondrial
dysfunction

Huntington’s disease (HD) is a fatal, dominantly
inherited neurodegenerative disorder
characterised by chorea, involuntary movements,
and cognitive impairments. Symptoms result
from the selective loss of long-projection neurons
known as medium spiny neurons. These
neuronal cells release g-aminobutyric acid
(GABA) in the striatal brain regions that control
movement, memory and emotions. HD is slowly
progressive, and patients survive for about 15–20
years from disease onset (for reviews, see Refs 80,
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11). Tremendous progress has been made since the
discoveryof theHTTgenein1993.HDiscausedbya
genetic mutation that results in an expanded
polyglutamine-encoding repeat within exon 1 of
the HTT gene (Ref. 81).

The HTT gene product, Huntingtin (HTT, Htt),
is an extremely large protein of 350 kDa, which is
ubiquitously expressed in the brain and
peripheral tissues. It has been reported to act as
a scaffold protein that regulates signalling
pathways, and vesicle and organelle trafficking.
Although Htt is mostly cytoplasmic, it is also
found at lower concentrations in multiple
subcellular compartments, such as the plasma
membrane, nucleus, endoplasmic reticulum,
Golgi and mitochondria.

A polyglutamine stretch of less than 35 in the N-
terminus of Htt is normal and does not cause
disease. However, an abnormal stretch of 36-39
glutamine residues results in incomplete
penetrance of the disease, and 40 or more
results in HD with full penetrance (see Ref. 82
for a review).

Strong evidence suggests that mitochondrial
impairment has a key role in HD pathogenesis
(Ref. 83). Mutant Htt (mtHTT, mtHtt) might
cause its neurotoxicity by evoking defects in
mitochondria, which in turn lead to a
bioenergetic failure, HD-linked neuronal
dysfunction and cell death. Indeed, postmortem
brain samples of HD patients exhibit reduced
activity of mitochondrial respiratory complexes
II, III and IV (Ref. 84); and humans exposed
to 3-nitropropionic acid (3-NP), a selective
inhibitor of succinate dehydrogenase and
complex II, exhibit motor dysfunction similar to
that observed in HD patients (Ref. 85).

Moreover, several harmful effects of mtHtt on
mitochondria have been reported, including:
reduced ATP levels in synaptic terminals
(Ref. 86); mitochondria depolarisation at lower
Ca2+ loads (Ref. 87); increased sensitivity to
Ca2+ overload and N-methyl-D-aspartic acid
(NMDA) receptor-mediated neuronal apoptosis
(Ref. 88); and a reduced threshold for mPTP
opening and cytochrome c release (Ref. 89).
Although the bioenergetic deficits in HD are
well known, mtHtt can also adversely affect
mitochondria by modifying gene transcription.
For instance, mtHtt binds to the tumour
suppressor p53 and increases its levels, which,
in turn, results in transcriptional activation of
its proapoptotic mitochondrial targets Bax and

Puma, causing mitochondrial damage. Since the
loss of p53 prevents mtHtt-mediated
neurodegeneration in Drosophila (Ref. 90), we
can easily assume that altered p53
transcriptional activity results in mitochondrial
dysfunction and neuronal loss.

PPARGC1A [PGC-1a, peroxisome proliferator-
activated receptor (PPAR)-g coactivator 1a] is
another gene whose expression seems to be
regulated by mtHtt. By interacting with the
promoter and interfering with CREB-dependent
PPARGC1A gene expression, mtHtt represses
the transcription of this gene (Ref. 91).
PGC-1a is a nuclear co-activator that has a
major role in mitochondrial biogenesis;
therefore, inhibition of PGC-1a expression
limits the ability of the vulnerable
neurons to adequately respond to energy
demands in HD.

Although the transcriptional deregulation of
mtHtt is of great relevance, it cannot fully
explain all the mitochondrial defects observed
in HD. Recent studies indicate that impaired
mitochondrial trafficking along axons and
dendrites might also have an important role in
the disease pathology (see Ref. 30 for a review).
Mitochondria are dynamically transported
along lengthy neuronal processes to provide
energy to nerve terminals and maintain the
normal neuronal function. ATP-dependent
motor proteins regulate such mitochondrial
movement: kinesins mediate anterograde
transport (away from the cell body), and
dynein-dynactin regulates retrograde transport
(toward the cell body) (Ref. 92). Wild-type Htt
seems to regulate the trafficking of endocytic
vesicles by binding to Htt-associated protein 1
(HAP1) (see Ref. 30 for a review). This protein
complex might act as a docking platform that
interacts with the molecular motor dynein–
dynactin and kinesin, and it is known to
regulate microtubule-mediated BDNF (brain-
derived neurotrophic factor) vesicle and
mitochondrial transport (Refs 93, 94).
Furthermore, phosphorylation of Htt seems to
act as a molecular switch for bidirectional
transport in neurons (Ref. 95) (Fig. 5).

Whereas wild-type Htt promotes axonal BDNF
vesicle trafficking, mtHtt disrupts the formation
of trafficking complexes and impairs vesicle
transport (Ref. 93). Abnormal interaction of
mtHtt with motor proteins seems to be the
main cause of the trafficking defects; however,
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mtHtt aggregates might also contribute by acting
as a physical roadblock (Refs 2, 86), or by
sequestering wild-type Htt and components of
the trafficking machinery (Ref. 96).

Neuronal function is particularly dependent on
the intracellular trafficking of organelles and
molecules. Defective mitochondrial transport

ultimately impairs neuronal transmission and
results in synaptic damage and selective
neuronal loss. In addition to blocking
mitochondrial movement, it has been reported
that mtHtt induces an imbalance in
mitochondrial fission and fusion (Fig. 2).
According to Monteiro and colleagues (Ref. 97),

Role of Htt protein in mitochondrial trafficking and dynamics
Expert Reviews in Molecular Medicine © Cambridge University Press 2010
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Figure 5. Role of Htt protein in mitochondrial trafficking and dynamics. Mitochondrial movement in neurons
is highly diverse and complex. Normal Htt protein regulates anterograde (away from the cell body) and retrograde
(towards the cell body) transport of mitochondria by interacting with several trafficking mediators. Htt stimulates
trafficking by binding to HAP1, which in turn, leads to interaction with the motor proteins dynein–dynactin and
kinesin. Phosphorylation of Htt acts as a molecular switch for anterograde versus retrograde mitochondrial
transport. When Htt is phosphorylated, kinesin-1 is recruited and promotes anterograde transport;
conversely, when Htt is unphosphorylated, kinesin-1 detaches from the motor complex and induces a
switch to retrograde transport (Ref. 95). In addition to migration and movement, mitochondria undergo
cycles of fusion and fission. The key mitochondrial fission regulator is dynamin-related protein 1 (DRP1).
Similarly to dynamin, DRP1 seems to act as a mechano-enzyme to constrict and divide mitochondria. Given
that Htt interacts with dynamin, one can speculate that Htt might regulate fission by interacting with DRP1.
Abbreviations: HAP1, Htt-associated protein 1; Htt, Huntingtin protein; P, phosphate.
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Table 1. Genes involved in major mitochondria-associated neurodegenerative
diseases

Gene Disease Chromosome
location

Subcellular
localisation
of protein

Molecular
function

Ref.

PINK1 PD 1p36.12 Mitochondria
(OM)

Serine/
threonine-protein
kinase

120, 19, 44

PARK2 PD 6q25.2-q27 Cytosol E3 protein-
ubiquitin ligase

28

PARK7 PD 1p36.33-p36.12 Cytosol Molecular redox-
sensitive
chaperone

50, 51

SNCA PD 3q22 Cytosol Unknown

LRRK2 PD 12q12 Mitochondria
(OM)

Serine/threonine
protein kinase

53, 54

TRAP1 PD 16p13.3 Mitochondria
(IMS)

Molecular
chaperone

44

HTRA2 PD, AD 2p13.1 Cytosol,
mitochondria
(IMS and
matrix)

Serine protease 29, 72

OPA1 PD 3q28-q29 Mitochondria
(IMS)

Dynamin-related
GTPase required
for mitochondrial
fusion

24, 25

PARL PD 3q27.3 Mitochondria
(IM)

Mitochondrial
intramembrane-
cleaving
protease

117

APP AD 21q21.2|21q21.3 Plasma
membrane;
mitochondria
(OM)

Precursor
molecule for
amyloid beta (Ab)
generation;
regulator of
synapse
formation and
neural plasticity

61, 64, 69, 70

PPID AD 4q31.3 Mitochondria
(matrix space)

Molecular
chaperone;
component of
the mitochondrial
permeability
transition pore

67

PREP AD 6q22 Mitochondria
(matrix space)

Presequence
protease

73

(continued on next page)
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the increase in cytotoxicity induced by mtHtt is
probably mediated by an alteration in
mitochondrial dynamics, which results in
increased mitochondrial fragmentation. Given
that mtHtt interacts with dynamin (Ref. 98) and
its distribution pattern in the mitochondria has
striking similarities to DRP1 (Ref. 87), it is
possible that DRP1 could also form a complex
with Htt. Thus, one can hypothesise that
normal Htt might regulate fission events by
interacting with DRP1, whereas mtHtt might
alter the assembly and function of these
complexes, which ultimately leads to imbalances
in mitochondrial dynamics. Naturally, further
investigation is needed to test this idea.

As described earlier in this review,
mitochondrial fragmentation is a common
stress response that allows the segregation and
elimination of dysfunctional mitochondria by
autophagy. Interestingly, autophagy is a major
degradation route for mtHtt, and the
pharmacological induction of autophagy seems
to be of therapeutic value to neurodegenerative
disease caused by aggregate-prone proteins

such as HD (Refs 85, 99). Based on this, one
might speculate that the induction of
autophagy is responsible not only for the
clearance of the mutant protein, but also for
removal of the dysfunctional mitochondria
present in the HD-associated neurons.

Clinical implications
Ageing is the most important risk factor for
common neurodegenerative disorders. In the
CNS, the physiological process of ageing has
been associated with an elevated mutation load
in mtDNA, defects in mitochondrial respiration
and increased oxidative damage. Indeed, this
mitochondrial loss of function seems to be a
consequence of the cellular deterioration that
occurs with age, which compromises
mitochondrial biogenesis and turnover.
Interestingly, it has been suggested that
induction of mitochondrial biogenesis through
pharmacological (bezafibrate) or metabolic
modulation of the PPAR–PGC-1a pathway
could represent an effective therapeutical
approach for mitochondrial disorders (Ref. 100).

Table 1. Genes involved in major mitochondria-associated neurodegenerative
diseases (continued)

Gene Disease Chromosome
location

Subcellular
localisation
of protein

Molecular
function

Ref.

HTT HD 4p16.3 Cytosol,
plasma
membrane,
nucleus, ER,
Golgi,
mitochondria

Scaffold protein
regulating vesicle
and organelle
trafficking

96

PPARGC1A HD 4p15.1 Nucleus Transcriptional
coactivator

91

DNM1L HD 12p11.21 Cytosol,
mitochondrial
surface

Mitochondrial
GTPase required
for mitochondrial
fission

98

Abbreviations: AD, Alzheimer’s disease; DNM1L, dynamin-1 like protein (DRP1); HD, Huntington disease;
HTRA2, HtrA2 serine peptidase (OMI); HTT Huntingtin (Htt); IM, inner membrane; IMS, Inner membrane space;
LRRK2, leucine-rich repeat kinase 2; OM, outer membrane; OPA1, optic atrophy protein 1, autosomal dominant;
PARK2, Parkinson disease autosomal recessive, juvenile 2 (parkin); PARK7, Parkinson disease autosomal
recessive, early onset 7 (DJ-1); PARL, presenilin-associated rhomboid-like protein; PD, Parkinson’s disease;
PINK1, PTEN-induced putative kinase 1; PPARGC1A, peroxisome proliferator-activated receptor gamma,
coactivator 1 alpha (PGC-1); PPID, peptidylprolyl isomerase D (cyclophilin D; CYPD); PREP, prolyl
endopeptidase (PreP); SNCA, a-synuclein; TRAP1, TNF-receptor-associated protein 1 (Hsp75).
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Therapeutic options currently available for
patients affected by neurodegenerative diseases
are extremely limited. Although characterised
by specific attributes and pathological
hallmarks, most neurodegenerative diseases
have features of mitochondrial dysfunction,
which converge in metabolic alterations that
ultimately lead to neuronal cell death and affect
the brain physiology. Consequently, possible
therapies could be aimed at restoring the
normal function of these organelles. With
regards to AD, recent data suggest that
cognitive decline is correlated with selective
abnormalities in TCA cycle enzymes of
mitochondria (Ref. 101). So far, treatments
designed to overcome these defects, by
administration of glucose and insulin, have
improved memory in AD patients (Ref. 102);
however, the benefits are transient. Interesting
new data are emerging for long-term benefits to
AD patients from studies on Dimebon, an
antihistamine drug. In contrast to the
conventional drugs for AD therapy, which
operate through cholinesterase inhibition or
NMDA-receptor antagonism, Dimebon is a
compound that seems to work through a novel
mechanism by improving mitochondrial
function in the brain. Moreover, Dimebon has
been shown to be a promising therapeutic
candidate in inhibiting brain cell death in both
AD and HD preclinical models (Ref. 103).

Enhancing cellular defence mechanisms against
different kinds of stress could be an attractive
therapeutic strategy for neurodegenerative
diseases. In particular, induction of expression of
molecular chaperones might reduce the
formation of misfolded proteins and toxic
aggregates. Geldanamycin, a natural substance
that modulates Hsp90 function, was previously
shown to induce a heat-shock response through
the activation of heat shock factor 1 (HSF1); it
also reduces polyQ aggregation in mammalian
cells (Ref. 104) and suppresses a-synuclein
neurotoxicity in flies (Ref. 105). Geldanamycin
derivatives are now being considered for the
development of a potential drug treatment for
neurodegenerative diseases that involve protein
aggregation.

Recently, Whitworth and colleagues showed
that the drug Rapamycin, which is used in some
transplant patients to prevent immune rejection,
protects cells against the damaging effects of
two of the mutant genes that cause inherited

forms of PD (Ref. 53). This is an interesting
observation if one considers that the current
pharmacological interventions for PD are
designed to replace or mimic the effects of
dopamine, rather than actually change the
course of the condition.

Research in progress and outstanding
research questions

Recent work has highlighted the importance of
protein translational switches during times of
cellular and environmental stress, and the role
of 4E-BP in this process. Upon dietary
restriction, a translational switch to nuclear-
encoded mitochondrial genes occurs in a 4E-
BP-dependent manner (Ref. 106). This suggests
an important role for enhanced mitochondrial
function in conditions of cellular stress. It
remains to be determined whether a 4E-BP-
dependent rescue of mitochondrial dysfunction
in models of PD is mechanistically linked to the
translational activation of nuclear encoded
mitochondrial genes. It has recently been
shown that inhibition of cap-dependent
translation via 4E-BP rescues phenotypes
related to parkinsonism (Ref. 53). In addition,
the oxidation-sensitive PD protein DJ-1 binds to
mRNAs of several mitochondrial genes,
including 4E-BP, which are released under
conditions of oxidative stress (Ref. 107). These
observations suggest that cellular responses to
oxidative stress might involve a general switch
in protein translation that leads to the selective
upregulation of mitochondrial proteins. The
molecular dissection of pathways controlling
expression of mitochondrial genes is
proceeding in earnest and is likely to lead to a
better understanding of novel mitochondria-
protection mechanisms. Such understanding
will hopefully lead to a better knowledge of the
disease processes involving mitochondrial
dysfunction, as well as more efficient treatment
avenues.

Finally, one other potential route for treatment
of neurodegenerative disease is the drug
Metformin, which is already in common use for
the treatment of type 2 diabetes, particularly in
overweight and obese people. Metformin is also
frequently used for research with the AMP
analogue AICAR as an AMPK agonist. AMPK
activation is one of the mechanisms by which
mTOR can be suppressed, and studies that
implicate AMPK in the regulation of mTOR
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showed that pharmacological activation of AMPK
by AICAR causes a dramatic reduction of 4E-BP
phosphorylation (Ref. 108). Given that both
diabetes and PD are reported to have a
deregulation of the mTOR pathway, and that
Metformin is one of the most prescribed drugs
in the world, it would be interesting to see
whether patients receiving the drug have a
reduced risk of developing PD.
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Further reading, resources and contacts

Books
Lane, N. (2005) Power, Sex, Suicide: Mitochondria and the Meaning of Life. OUP, Oxford
A provocative book full of interesting concepts, including links between ageing and neurodegenerative

disease.

Gibson G.E., Ratan R.R. and Flint Beal M. eds (2008) Mitochondria and Oxidative Stress in Neurodegenerative
Disorders. Annals of the New York Academy of Sciences

A combination of basic and clinical research to give the reader the most current information on aspects of
mitochondrial function linked to age-related neurodegenerative diseases and their treatment.

Websites
A useful network of research, support and care in Alzheimer disease provided by a leading voluntary health

organisation. It includes in the ‘Clinical Studies’ section an accurate description of the Phase III
interventional trials currently in use:

http://www.alz.org

A database of Drosophila melanogaster nuclear genes encoding mitochondrial proteins can be found at:

http://www2.ba.itb.cnr.it/MitoDrome

The Whitehead Institute Video Gallery has lectures from researchers at the Whitehead Institute. It includes
several interesting lectures by Susan Lindquist on protein misfolding and neurodegenerative diseases as
well as David Sabatini on growth control pathways:

www.wi.mit.edu/news/video_gallery

(continued on next page)
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Further reading, resources and contacts (continued)

The Encyclopedia of Neuroscience explores a wide variety of topics related to different areas of neuroscience. It
is a very useful tool, well written and easily accessible:

www.sciencedirect.com/science/referenceworks/9780080450469

The Allen Mouse Brain Atlas is an interactive, genome-wide image database of gene expression. It also includes
information regarding the cortex of the human brain:

www.mouse.brain-map.org

Features associated with this article

Figures
Figure 1. Core quality-control pathways in mitochondria.
Figure 2. Molecular determinants of mitochondrial quality-control networks.
Figure 3. Role of the major PD-associated genes in mitochondrial dysfunction.
Figure 4. Mitochondrial dysfunction in AD.
Figure 5. Role of Htt protein in mitochondrial trafficking and dynamics.

Table
Table 1. Genes involved in major mitochondria-associated neurodegenerative diseases.
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