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ABSTRACT

Motivation: One of the major bottlenecks with ab initio protein
folding is an effective conformation sampling algorithm that can
generate native-like conformations quickly. The popular fragment
assembly method generates conformations by restricting the local
conformations of a protein to short structural fragments in the PDB.
This method may limit conformations to a subspace to which the
native fold does not belong because (i) a protein with really new
fold may contain some structural fragments not in the PDB and
(ii) the discrete nature of fragments may prevent them from building a
native-like fold. Previously we have developed a conditional random
fields (CRF) method for fragment-free protein folding that can sample
conformations in a continuous space and demonstrated that this
CRF method compares favorably to the popular fragment assembly
method. However, the CRF method is still limited by its capability of
generating conformations compatible with a sequence.
Results: We present a new fragment-free approach to protein
folding using a recently invented probabilistic graphical model
conditional neural fields (CNF). This new CNF method is much more
powerful than CRF in modeling the sophisticated protein sequence-
structure relationship and thus, enables us to generate native-like
conformations more easily. We show that when coupled with a simple
energy function and replica exchange Monte Carlo simulation, our
CNF method can generate decoys much better than CRF on a
variety of test proteins including the CASP8 free-modeling targets. In
particular, our CNF method can predict a correct fold for T0496_D1,
one of the two CASP8 targets with truly new fold. Our predicted
model for T0496 is significantly better than all the CASP8 models.
Contact: jinboxu@gmail.com

1 INTRODUCTION
Despite significant progress in recent years, ab initio protein folding
is still one of the most challenging problems in computational
structural biology. Fragment-based ab initio protein folding (Bowie
and Eisenberg, 1994; Claessens et al., 1989; Jones and Thirup, 1986;
Levitt, 1992; Simon et al., 1991; Sippl, 1993; Unger et al., 1989;
Wendoloski and Salemme, 1992) and lattice-models (Kihara et al.,
2001; Xia et al., 2000; Zhang et al., 2003) has been extensively
studied. These two popular methods and their combination for
protein modeling have achieved great success in critical assessment
of structure prediction (CASP) competitions (Moult, 2005; Moult
et al., 2003, 2005, 2007). For example, the widely-used fragment
assembly program Rosetta (Misura et al., 2006; Simons et al.,
1997) is one of the most successful ab initio protein folding
programs. The TASSER program (Zhang and Skolnick, 2005) and its
derivative Zhang-Server (Wu et al., 2007) have achieved outstanding
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performance in both CASP7 and CASP8 by combining lattice model
and threading-generated fragments and distance restraints.

Although fragment-based ab initio protein folding demonstrates
encouraging performance, several important issues remain with this
method. First, there is no guarantee that the local conformations of a
protein can be accurately covered by short structural fragments in the
PDB since a protein with new fold is likely to be composed of some
structural motifs that rarely occur in the PDB (Andras Fiser, CASP8
talk). Second, the conformation space defined by a fragment library
is discrete in nature. This discrete nature may exclude the native fold
from the conformational search space since even a slight change in
backbone angles, especially in the middle region of a protein, can
result in a totally different fold. To resolve these two limitations,
this article will propose a fragment-free folding method that can
efficiently explore protein conformations in a continuous space.

In literature there are quite a few fragment-free methods for
ab initio. protein folding. For example, Joe et al. described
an iterative folding method (DeBartolo et al., 2009), which
folds a protein by mimicking folding pathway and explores the
conformation space by directly sampling the backbone angles using
a trimer library. Shakhnovich group also described a method that
can directly sample backbone angles using a trimer library (Chen
et al., 2007; Yang et al., 2007). Faraggi et al. (2009) first predict
the backbone angles of a protein using a machine learning method
and then explore protein conformation search space using a genetic
algorithm, based upon the predicted backbone angles. Recently,
Hamelryck et al. have developed two hidden Markov models
(HMMs) (i.e. FB5-HMM and Torus-HMM) (Boomsma et al., 2008;
Hamelryck et al., 2006) for fragment-free conformation sampling.
Using a Torus-HMM model, they can generate local conformations
as accurately as the fragment assembly method (Boomsma et al.,
2008). However, these HMM models have not been applied to real-
world ab initio folding yet. Recently, we have proposed a protein
conformation sampling algorithm based on conditional random
fields (CRF) (Zhao et al., 2008, 2009) and directional statistics. The
CRF model is a generalization of the HMM models and much more
powerful than HMM. Our CRF model can accurately describe the
complex sequence-angle relationship and estimate the probability
distribution of (virtual) backbone angles directly from sequence
information and predicted secondary structure. We have shown that
by using the CRF models, we can sample protein conformations with
much better quality than FB5-HMM (Zhao et al., 2008). We have
also shown that by coupling our CRF model with a simple energy
function, our method compares favorably with fragment assembly
in the CASP8 blind prediction (Zhao et al., 2009).

This article presents a new probabilistic graphical model
conditional neural fields (CNFs) for ab initio protein folding. CNF
is recently invented by our group for the modeling of sequential
data. See Peng et al. (2009) for a detailed exposition. CNF is
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similar to but much more powerful than CRF in that CNF can
naturally model the non-linear relationship between input and
output while CRF cannot do so. Thus, CNF can model better
the sophisticated relationship between backbone angles, sequence
profile and predicted secondary structure, estimate the probability
distribution of backbone angles more accurately and sample protein
conformations more efficiently. In addition, this work also differs
from our previous CRF method (Zhao et al., 2008, 2009) in that
(i) instead of using a simulated annealing (SA) method for folding
simulation, we developed a replica exchange Monte Carlo (REMC)
method for folding simulation. The REMC method enables us to
minimize energy function to a lower level and thus possibly produce
better decoys. (ii) Our previous CRF method uses the position-
specific frequency matrix (PSFM) generated by PSI-BLAST as
the input. This work will use the position-specific scoring matrix
(PSSM) generated by PSI-BLAST as the input of our CNF model.
It has been proved that PSSM contains more information than PSFM
for structure prediction such as secondary-structure prediction. We
did not use PSSM with CRF because CRF cannot easily take PSSM
as input. In contrast, we can easily feed PSSM into our CNF model.
We will show that our new method is much more effective than our
previous method and can dramatically improve sampling efficiency
and we can generate much better decoys than before on a variety of
test proteins.

2 METHODS

2.1 Continuous representation of conformations
In our previous work (Zhao et al., 2008, 2009), we used a simplified
representation of a protein model and demonstrated that even with such a
representation, we can achieve good folding performance. In this simplified
representation only the main-chain and Cβ atoms are considered. This work
will continue to use such a simplified representation. That is, we assume that
the distance between two adjacent Cα atoms is constant and represent the
Cα-trace of a protein using a set of pseudo backbone angles (θ, τ). Given a
residue at position i, its θ is defined as the pseudo bond angle formed by the
Cα atoms at positions i−1, i and i+1; τ is a pseudo dihedral angle around
virtual bond between i−1 and i and can be calculated from the Cα atoms at
positions i−2, i−1, i and i+1. Therefore, given the first three Cα positions
and sub-sequential (θ, τ) angles, we can build the Cα trace of a protein.
Using the Cα trace, we then can build the coordinates for the main chain and
Cβ atoms using a method similar to BBQ (Gront et al., 2007). To employ
the KMB hydrogen-bonding energy (Morozov et al., 2004) for β-containing
proteins, we also build the backbone hydrogen atoms using a quick and dirty
method (Branden and Tooze, 1999).

The preferred conformations of a residue in the protein backbone can be
described as a probabilistic distribution of (θ, τ). Each (θ, τ) corresponds
to a unit vector in the three-dimensional space (i.e. a point on a unit sphere
surface). We can use the five-parameter Fisher–Bingham (FB5) distribution
to model the probability distributions over unit vectors (Kent, 1982). FB5
is the analog on the unit sphere of the bivariate normal distribution with
an unconstrained covariance matrix. The probability density function of the
FB5 distribution is given by

f (u)= 1

c
(
κ,β

) exp
(
κγ1 ·u+β

((
γ2 ·u)2 −(

γ3 ·u)2
))

,

where u is a unit vector variable and c(κ,β) is a normalizing constant. The
parameters κ and β determine the concentration of the distribution and the
ellipticity of the contours of equal probability, respectively. The higher κ and
β are, the more concentrated and elliptical the distribution is, respectively.
The three vectors γ1, γ2 and γ3 are the mean direction, the major and minor
axes, respectively. The latter two vectors determine the orientation of the

equal probability contours on the sphere, while the first vector determines
the common center of the contours.

We cluster all the (θ, τ) angles in a set of ∼3000 non-redundant proteins
with high-resolution X-ray structures into 100 groups. Then we calculate
the FB5 distribution of each group using KentEstimator (Hamelryck et al.,
2006). See Zhao et al. (2008) for a detailed description of how we calculate
the FB5 distributions. Once we have the distribution of (θ, τ) at one residue,
we can sample the real-valued (θ, τ) angles by probability and thus, explore
protein conformations in a continuous space.

2.2 A second-order CNF model of conformation space
Previously we developed a CRF method for protein conformation sampling
(Zhao et al., 2008, 2009). This CRF method uses a linear combination of
input features (i.e. PSI-BLAST sequence profile and predicted secondary
structure) to estimate the probability distribution of backbone angles. This
kind of linear parameterization implicitly assumes that all the features
are linearly independent, which contradicts with the fact that some input
features are highly correlated. For example, the predicted secondary structure
is correlated with sequence profiles since the former is usually predicted
from the latter using tools such as PSIPRED (Jones, 1999). To model the
correlation between predicted secondary structure and sequence profiles,
an easy way is to explicitly enumerate all the possible combinations of
secondary-structure type and amino acid identity in the linear CRF model. In
fact, we can always combine some basic features to form a complex feature.
However, explicitly defining complex features may introduce a number of
serious issues. First, it will result in a combinatorial explosion in the number
of complex features, and hence, in the model complexity. It is challenging
to train a model with a huge number of parameters without overfitting.
Second, explicit enumeration may miss some important complex features.
For example, the CRF model presented in Zhao et al. (2008, 2009) does
not accurately model the correlation among sequence information at several
adjacent positions. Finally, explicit enumeration of complex features may
also introduce a large number of unnecessary features, which will increase
the running time of probability estimation.

Instead of explicitly enumerating all the possible non-linear combinations
of the basic sequence and structure features, we can use a better graphical
model to implicitly account for the non-linear relationship between sequence
and structure. Very recently, we have developed a new probabilistic graphical
model CNF (Peng et al., 2009), which can implicitly model non-linear
relationship between input and output. As shown in Figure 1, CNF consists
of at least three layers: one or more hidden layers, input (i.e. sequence
profile and secondary structure) and output (i.e. backbone angles) while
CRF consists of only two layers: input and output. The relationship between
the backbone angles and the hidden layer is still linear. However, the
hidden layer uses some gate functions to non-linearly transform the input
features into complex features. Here we use Gθ(x)=(

1
/(

1+exp
(−θT x

)))
as the gate function where θ is the parameter vector and x a feature vector.
CNF can also be viewed as the seamless integration of CRF and neural
networks (NN). The neurons in the hidden layer will automatically extract
non-linear relationship among input features. Therefore, without explicit
enumeration, CNF can directly model non-linear relationship between input
and output. The training of a CNF model is similar to that of a CRF, but
more complicated.

We have tested this CNF model for protein secondary-structure (SS)
prediction from sequence profiles. Table 1 compares the performance of
various machine learning methods for SS prediction. The results are averaged
on a 7-fold cross-validation on the CB513 data set, except that SPINE uses
10-fold cross-validation. As shown in Table 1, by using only one hidden layer
to model non-linear relationship between output and input, CNF achieves
almost 10% relative improvement over CRF. CNF also outperforms other
methods including SVMpro (Hua and Sun, 2001), SVMpsi (Kim and Park,
2003), YASSPP (Karypis, 2006), PSIPRED (Jones, 1999), SPINE (Dor and
Zhou, 2007) and TreeCRFpsi (Dietterich et al., 2004). The linear CRF is the
worst since it does not model non-linear relationship between secondary
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Fig. 1. A first-order CNF model consists of three layers: input, output and
hidden layer. A second-order model is similar but not shown for the purpose
of simplicity. In contrast, a CRF model consists of only input and output.

Table 1. Secondary-structure prediction accuracy

Methods Q3 (%) Methods Q3 (%)

CRF 72.3 CNF 80.1
TreeCRFpsi 77.6 YASSPP 77.8
SVMpro 73.5 PSIPRED 76.0
SVMpsi 76.6 SPINE 76.8

Bold in this table indicates the best performance.

structure and sequence profile. This result indicates that we can indeed
benefit from modeling non-linear sequence-structure relationship. We expect
that using CNF, we are able to more accurately model sequence–angle
relationship and thus, to sample conformations more efficiently.

In the context of CNF, the PSI-BLAST sequence profile (i.e. PSSM)
and predicted secondary structure are viewed as observations; the backbone
angles and their FB5 distributions are treated as hidden states or labels. Let
H denote the 100 groups (i.e. states or labels) generated from clustering of
the backbone angles. Each group is described by an FB5 distribution. Given
a protein with solved structure, we calculate its backbone angles at each
position and determine one of the 100 groups (i.e. states or labels) to which
the angles at each position belong. Let S ={s1,s2,...,sN } (

si ∈H
)

denote
such a sequence of states/labels (i.e. FB5 distributions) for this protein. We
also denote the sequence profile of this protein as M and its secondary
structure as X. As shown in Figure 1, our CNF model defines the conditional
probability of S given M and X as follows:

P�

(
S |M,X

)=
exp

(∑N
i=1 F

(
S,M,X,i

))

Z
(
M,X

)

where �={
λ1,λ2,...,λp

}
is the model parameter and Z

(
M,X

)=∑
S exp

(∑N
i=1 F

(
S,M,X,i

))
is a normalization factor summing over all the

possible labels for the given M and X. F
(
S,M,X,i

)
consists of two edge

feature functions and one label feature function at position i. It is given by

F(S,M,X,i)=e1
(
si−1,si

)+e2
(
si−1,si,si+1

)+
i+w∑

j=i−w

v
(
si−1,si,Mj,Xj

)

where e1
(
si−1,si

)
and e2

(
si−1,si,si+1

)
are the first- and second-order edge

feature functions, respectively, and v
(
si−1,si,Mj,Xj

)
is the label feature

function. The edge functions describe the interdependency between two or

three neighboring labels. CNF is different from CRF in the label feature
function. In CRF, the label feature function is defined as a linear combination
of features. In CNF, there is an extra hidden layer between the input and
output, which consists of K gate functions (see Fig. 1). The K gate functions
extract a K-dimensional implicit non-linear representation of input features.
Therefore, CNF can be viewed as a CRF with its inputs being K homogeneous
hidden feature-extractors at each position. The label feature function of CNF
is defined as follows:

v
(
si−1,si,X,M

)=
K∑

g=1

wsi−1,si,gGθg

(
f
(
X,M,i

))
.

That is, the label feature function is a linear combination of K gate functions
G. In the above definition, w is the parameter vector and f is a vector of
basic features at position i. In our current implementation, f contains 23×
9 (=207) elements, corresponding to the sequence profile and secondary-
structure information in a window of size nine centered at position i. We use
PSIPRED to predict the secondary structure of a protein from its sequence
profile. PSIPRED generates likelihood score of three secondary structure
types for each residue, which is used as the input of our CNF model.

Similar to CRF, we use the maximum likelihood method to train the
model parameters such that P�

(
S|M,X

)
is maximized. That is, we maximize

the occurring probability of a set of ∼3000 non-redundant high-resolution
protein structures. Although both the output and hidden layers contain model
parameters, all the parameters can be learned together by gradient-based
optimization. We use LBFGS (Liu and Nocedal, 1989) as the optimization
routine to search for the optimal model parameters. Since CNF contains a
hidden layer of gate functions G, the log-likelihood function is not convex
any more. Therefore, it is very likely that we can only obtain a local optimal
solution of the model parameters. To achieve a good solution, we run the
training algorithm several times and use the solution with the best objective
function as the final solution of the model. See Peng et al. (2009) for a
detailed description of training CNF.

2.3 Model parameter training
To do a fair comparison between our previous CRF model and this CNF
model, we used exactly same data to train both CRF and CNF models. That
is, we use a set of ∼3000 non-redundant proteins to train the parameters in
our CNF and CRF models. Any two proteins in the training set share no more
than 30% sequence identity and the resolution of a training protein is at least
2.0 Å. To avoid overlap between the training data and the test proteins, we
removed the following proteins from our training set: (i) the proteins sharing
at least 25% sequence identity with our test proteins; (ii) the proteins in the
same fold class as our test proteins according to the SCOP classification; and
(iii) the proteins having a TM-score (Zhang and Skolnick, 2007) at least 0.5
with our test proteins. Finally, the training data was prepared before CASP8
started. Therefore, we can use our CRF/CNF models to test the CASP8
free-modeling targets without worrying about bias.

The training set is randomly divided into five sets of same size and then
used for 5-fold cross validation. To train a CNF model, we shall determine
the number of gate functions at the hidden layer. In addition, since the CNF
model contains a very large number of model parameters, to avoid overfitting,
we shall also control the model complexity. We achieve this by regularizing
the L2-norm of the model parameters using a regularization factor. We trained
our CNF model by enumerating the number of gate functions (50, 100, 200
and 300) and different regularization factors: 25, 50, 100 and 200 to see
which one yields the best F1-value. F1-value is widely-used to measure
the prediction capability of a machine learning model. F1-value is an even
combination of precision p and recall r and defined as 2pr/(p+r). The higher
the F1-value is, the better the CNF model. Our CNF model achieves the best
F1-value (23.44%) when 200 gate functions are used with regularization
factor 50. In contrast, the best F1-value achieved by our previous CRF
method is 22.0%. The F1-value improvement achieved by CNF over CRF
seems not to be very big, partially because in total 100 labels are used in our
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models. Later we will show that CNF can do conformation sampling much
better than CRF.

2.4 Conformation sampling and resampling
Using the trained CNF model, we can sample the whole conformation of a
protein or propose a new conformation from an existing one by resampling
the local conformation of a segment. This procedure is very similar to the
conformation sampling algorithm in our CRF method (Zhao et al., 2008,
2009). That is, we can use the forward–backward algorithm to first sample
labels (i.e. angle distribution) by probability estimated from our CNF model
and then sample real-valued angles from the labels. See Zhao et al. (2008)
for a detailed description of the algorithm.

2.5 REMC simulation
The energy function we used for folding simulation consists of three items:
DOPE (a pairwise statistical potential) (Fitzgerald et al., 2007; Shen and Sali,
2006), KMBhbond (hydrogen bonding energy) (Morozov et al., 2004) and
ESP (a simplified solvent accessibility potential) (Fernandez et al., 2002).
We use the weight factors previously trained for the CRF model for these
three energy items. Therefore, the energy function is not biased towards our
CNF method. The weight factor for DOPE is always fixed to 1, so only two
weight factors shall be determined. See Zhao et al. (2009) for a detailed
description of weight determination.

Previously we employ a SA algorithm to minimize energy function, based
upon the algorithm proposed by Aarts and Korst (1991). In this work, we
employ a REMC method (Earl and Deem, 2005; Swendsen and Wang, 1986)
to minimize energy function. By using REMC, we can minimize energy
function to lower values and thus produce better decoys for most of our test
proteins. Our REMC method employs 20 replicas and the highest temperature
is set to 100. The temperature for replica i (i=1,2,...,20) is set to 5i. We have
also tested other temperature assignment, but have not seen much difference
in terms of folding performance. Each replica consists of 24 000 time
steps. At each time step a new conformation is proposed and then accepted
with probability min

{
1,exp

(−	E/Ti
)}

where 	E is the energy difference
between the new and old conformations and Ti is the temperature for this
replica. The conformations between two neighboring replicas are exchanged
every 30 time steps. Therefore, in total 800 conformation exchange events
will happen between two neighboring replicas during the whole folding
simulation. It will make our simulation process very inefficient if we yield
only the decoy with the lowest energy at the end of the folding simulation. To
generate more decoys from a single folding simulation, we output the final
decoy of each replica as long as it has an energy value within 15% of the
lowest energy we can achieve. Experimental results indicate that on average,
each folding simulation can generate ∼10 decoys.

3 RESULTS
Since in our previous work (Zhao et al., 2009), we have
demonstrated that our CRF method compares favorably with
the popular fragment-based Robetta server in the CASP8 blind
prediction, in this article we will focus on the comparison between
our CNF and CRF methods, and show that our nre method is indeed
superior over our previous method.

We test our new method using two datasets and compare it with
our previous method. These two datasets were used to evaluate
our previous method before. The first dataset consists of 22
proteins: 1aa2, 1beo, 1ctfA, 1dktA, 1enhA, 1fc2C, 1fca, 1fgp,
1jer, 1nkl, 1pgb, 1sro, 1trlA, 2croA, 2gb1A, 4icbA, T052, T056,
T059, T061, T064 and T074. These proteins have very different
secondary-structure type and their sizes range from 40 to 120
residues. Some proteins (e.g. T052, T056, T059, T061, T064 and
T074) in this dataset are very old CASP targets. Therefore, we

denote this dataset as ‘old testset’. The second dataset contains 12
CASP8 free-modeling targets: T0397_D1, T0405_D1, T0405_D2,
T0416, T0443_D1, T0443_D2, T0465, T0476, T0482, T0496_D1,
T0510_D3 and T0513_D2. These proteins are called free-modeling
targets because a structurally similar template cannot be identified
for them using a template-based method. We denote this dataset as
‘CASP8 testset’. To avoid bias, we removed all the proteins similar
to the first dataset from our training set (see Section 2.3). Since
the training set was constructed before CASP8 started, there is no
overlap between our training data and the CASP8 testset.

3.1 Performance on the old testset
As shown in Table 2, we evaluate our CNF and CRF methods in
terms of their capability of generating good decoys. We run both
methods on each test protein and generate similar number of decoys
(5000–10 000). Each decoy is compared to its native structure and
RMSD to the native is calculated for this decoy. Then we rank all the
decoys of one test protein in an ascending order by RMSD. Finally
we calculate the average RMSD of the top 1, 2, 5 and 10% decoys,
respectively. We do not compare these two methods using the best
decoys because they may be generated by chance and usually the
more decoys are generated, the better the best decoys will be. In
terms of the average RMSD of the top 5 or 10% decoys, our CNF
method outperforms the CRF method on all test proteins except
1ctfA, 1dktA, 1fc2C and 1fgp. The CNF method reduces the average
RMSD of top 10% decoys by at least 1 Å for many proteins such as
1aa2, 1beo, 1fca, 1pgb, 1sro, 2gb1A, 4icbA, T052, T056, T059, T061
and T064. Furthermore, our CNF method dramatically reduces the
average RMSD of top 10% decoys for some proteins. For example,
our CNF method reduces the average RMSD of top 10% decoys for
4icbA from 8.0 to 5.2 Å, for T056 from 11.1 to 7.2 Å and for T061
from 7.6 to 5.6 Å. Even for some test proteins (e.g. 1enhA, 1pgb and
2gb1A) on which the CRF method has already performed well, our
CNF method still improves a lot.

3.2 Performance on the CASP8 testset
To further compare our CRF and CNF methods, we also evaluate
them on the 12 CASP8 free-modeling (FM) targets, as shown
in Table 3. During the CASP8 competition, structurally similar
templates cannot be identified for these targets. Similarly, we
evaluate both methods in terms of the average RMSD of the top
1, 2, 5 and 10% decoys, respectively. Compared to CRF, our CNF
method does not significantly worsen the decoy quality of any of the
12 CASP8 targets. Instead, our CNF method outperforms the CRF
method on 10 of the 12 targets and yields slightly worse performance
on another two targets: T0397_D1 and T0482. In particular, our
CNF method reduces the average RMSD of the top 10% decoys by
at least 1 Å for the following seven targets: T0405_D1, T0405_D2,
T0416_D2, T0443_D2, T0476, T0496_D1 and T0510_D3.

Our CNF method reduces the average RMSD of top 10% decoys
for T0510_D3 from 9.1 to 6.3 Å and for T0496_D1 from 10.1 to
8.1 Å. Even for T0416_D2, a target on which our CRF method
performed well, our CNF method improves the average RMSD of
the top 10% decoys by 1 Å. We have also examined the average TM-
score/GDT-TS of the top 10% decoys, on average our CNF method
is better than the CRF method by ∼10% (data not shown due to
space limitation).
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Table 2. Performance of the CNF and CRF methods on the old testset

s/t M Best 1% 2% 5% 10%

1aa2
108 N 6.0 7.0 7.6 8.5 9.2
5α R 7.1 9.0 9.4 10.0 10.4

1beo
98 N 5.5 6.1 6.5 7.4 8.3
5α R 5.6 7.2 7.8 8.7 9.3

1ctfA
68 N 3.6 4.5 4.8 5.4 6.1
3α3β R 3.3 3.9 4.1 4.6 5.2

1dktA
72 N 4.5 5.1 5.5 6.2 6.9
4β R 4.5 5.0 5.3 5.9 6.6

1enhA
54 N 1.5 2.0 2.1 2.3 2.4
3α R 2.1 2.6 2.7 2.9 3.0

1fc2C
43 N 2.0 2.3 2.4 2.5 2.6
2α R 2.1 2.3 2.3 2.4 2.4

1fca
55 N 3.2 3.9 4.2 4.6 5.0
4β R 5.0 5.6 5.8 6.2 6.4

1fgp
67 N 6.4 7.5 8.0 8.6 9.1
6β R 6.6 7.3 7.6 8.1 8.6

1jer
110 N 9.6 10.8 11.1 11.6 12.1
2α6β R 10.0 11.5 11.9 12.4 12.8

1nkl
78 N 1.8 2.5 2.6 2.8 3.0
5α R 2.3 2.8 2.9 3.2 3.4

1pgb
56 N 1.4 1.9 2.0 2.3 2.6
1α4β R 2.2 3.0 3.2 3.5 3.7

1sro
76 N 4.2 5.2 5.9 6.7 7.4
6β R 5.1 6.4 6.9 7.7 8.4

1trlA
62 N 3.2 3.6 3.7 3.9 4.1
6α R 3.9 4.2 4.4 4.5 4.7

2croA
65 N 1.8 2.2 2.3 2.4 2.5
5α R 2.2 2.5 2.6 2.7 2.8

2gb1A
56 N 1.7 1.9 2.0 2.3 2.6
1α4β R 1.9 3.1 3.3 3.6 3.8

4icbA
76 N 4.1 4.8 4.9 5.1 5.2
4α R 5.3 6.1 6.5 7.3 8.0

T052
98 N 7.6 8.1 8.5 9.1 9.6
8β R 8.6 9.6 10.0 10.7 11.3

T056
114 N 4.1 4.9 5.3 6.1 7.2
6α R 7.9 9.4 9.7 10.3 11.1

T059
71 N 5.7 6.9 7.3 7.7 8.1
7β R 6.9 8.4 8.7 9.2 9.6

T061
76 N 2.8 3.4 3.7 4.6 5.6
4α R 5.9 6.6 6.8 7.2 7.6

T064
103 N 6.5 7.0 7.2 7.5 7.9
8α R 5.9 7.1 7.5 8.2 8.9

T074
98 N 3.7 5.0 5.4 5.9 6.3
4α R 5.0 6.0 6.4 6.7 6.9

Column ‘s/t’ lists the size and secondary-structure content of the test proteins. Column
‘M’ indicates methods. ‘N’ and ‘R’ represent the CNF and CRF methods, respectively.
Column ‘x%’ lists the average RMSD (Å) of the decoys among the top x% of the
generated decoys. Column ‘best’ lists the RMSD of the best decoys.

We have also examined the relationship between RMSD and
energy. Due to space limitation, here we only visualize the
RMSD-energy relationship for several typical targets: T0397_D1,
T0416_D2, T0476, T0482, T0496_D1 and T0510_D3, as shown in
Figure 2. Note that in the figure, we normalize the energy of a decoy
by the mean and SD calculated from the energies of all the decoys of
one target. By energy normalization, we can clearly see the energy
difference between the decoys generated by the CNF/CRF methods.
Figure 2 clearly demonstrates that our CNF method can generate

(a) T0397_D1 (b) T0416_D2 

(c) T0476 (d) T0482 

(e) T0496_D1 (f) T0510_D3 

Fig. 2. The relationship between RMSD (y-axis) and energy (x-axis) for
(a) T0397_D1, (b) T0416_D2, (c) T0476, (d) T0482, (e) T0496_D1 and (f)
T0510_D3. The red and blue colors represent the CRF and CNF methods,
respectively. See text for the energy normalization methods.

decoys with much lower energy than the CRF method. However,
decoys with lower energy might not have better quality if the
correlation between RMSD and energy is very weak. For example,
our CNF method can generate decoys for T0397_D1 and T0482 with
much lower energy, but cannot improve decoy quality for them. To
improve the decoy quality for T0397_D1 and T0482, we have to
improve the energy function. In contrast, the correlation between
RMSD and energy is positive for T0416_D2, T0476, T0496_D1
and T0510_D3. Therefore, we can improve decoys quality for these
four targets by generating decoys with lower energy.

Our CNF method dramatically improves the decoy quality on
T0416_D2 over the CRF method, as shown in Figure 2b. The
underlying reason is that our CNF method can estimate the backbone
angle probability more accurately. Around half of the decoys
generated by the CRF method for T0416_D2 are the mirror images of
the other half. These mirror images are introduced by the non-native-
like backbone angles around residue #31, as shown in Figure 3. We
calculated the marginal probability of the 100 angle states at these
residues and found out the native-like angle states have much higher
marginal probability in the CNF model than in the CRF model. Thus,
our CNF method can sample native-like angles at these residues
more frequently than the CRF method and avoid generating a large
number of mirror images. In addition to the CNF sampling method,
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Fig. 3. Two typical mirror images generated by the CRF method for
T0416_D2. The decoys in blue and gold represent the lower and upper
regions in Figure 2b, respectively.

Table 3. Performance of our CNF and CRF methods on the CASP8 testset

s/t M Best 1% 2% 5% 10%

T0397_D1
70 N 6.4 8.2 8.5 9.0 9.4
7β R 7.0 8.0 8.3 8.9 9.4

T0405_D1
80 N 5.0 5.4 5.5 5.7 5.9
4α R 5.7 6.6 6.8 7.1 7.4

T0405_D2
112 N 7.1 9.0 9.5 10.1 10.5
3α6β R 8.5 10.1 10.5 11.0 11.5

T0416_D2
57 N 1.4 1.9 2.1 2.3 2.6
4α R 1.6 2.6 2.8 3.3 3.6

T0443_D1
86 N 4.8 6.0 6.4 7.2 7.9
6α R 5.6 7.1 7.7 8.3 8.7

T0443_D2
114 N 9.3 10.6 10.9 11.5 11.9
2α8β R 10.4 11.9 12.3 12.9 13.4

T0465
157 N 11.0 11.8 12.2 12.9 13.5
5α8β R 10.2 12.2 12.7 13.4 13.9

T0476
108 N 5.3 6.3 6.8 7.4 8.0
4α6β R 5.9 7.8 8.2 8.7 9.3

T0482
120 N 10.7 11.9 12.2 12.8 13.2
3α5β R 8.8 10.9 11.5 12.3 13.0

T0496_D1
110 N 5.7 6.2 6.6 7.3 8.1
3α6β R 6.3 8.2 8.7 9.5 10.1

T0510_D3
44 N 3.0 4.0 4.5 5.3 6.3
1α3β R 4.7 7.2 7.7 8.6 9.1

T0513_D2
77 N 7.5 8.4 8.7 9.1 9.5
2α4β R 8.0 9.3 9.6 10.0 10.4

Column ‘s/t’ lists the size and secondary-structure content of the test proteins. Column
‘M’ indicates methods. ‘N’ and ‘R’ represent the CNF and CRF methods, respectively.
Column ‘x%’ lists the average RMSD (Å) of the decoys among the top x% of the
generated decoys. Column ‘best’ lists the RMSD of the best decoys.

our energy function also helps improve the occurring frequency of
native-like angles at these residues.

Table 4. Clustering result of the 12 CASP8 free-modeling targets

Target
First cluster Best cluster

GDT CASP8 Internal GDT CASP8 Internal
rank rank (%) rank rank (%)

T0397_D1 25.7 12/60 50.6 28.6 28/262 18.8
T0405_D1 39.2 6/63 41.6 48.4 14/285 6.5
T0405_D2 27.0 10/62 72.3 34.6 19/280 5.1
T0416_D2 69.3 1/53 5.4 76.8 1/242 3.5
T0443_D1 46.9 3/64 38.2 49.2 6/253 19.7
T0443_D2 24.8 26/59 35.3 27.9 73/252 12.1
T0465 31.3 12/65 12.6 31.3 34/286 12.6
T0476 34.2 4/66 17.5 35.6 15/287 10.0
T0482 34.2 34/65 4.3 34.2 132/279 4.3
T0496_D1 30.5 1/59 30.3 49.1 1/266 0.4
T0510_D3 47.7 1/54 15.7 51.7 2/244 3.3
T0513_D2 57.7 5/50 3.8 57.7 17/225 3.8

Column ‘GDT’ lists the GDT-TS of the first and best cluster centroids. Column ‘CASP8
rank’ lists the rank of the #1 cluster centroid or the best cluster centroid among the first
CASP8 server models or all the CASP8 server models, respectively. Column ‘Internal
rank’ lists the percentile ranking (%) of a cluster centroid among all the decoys we
generated for the target.

3.3 Comparison with CASP8 models
In order to compare our method with the CASP8 results, we use
MaxCluster1 to cluster the decoys of the 12 CASP8 FM targets. We
ran MaxCluster so that for a given target, the first cluster contains
∼30% of all the decoys and the top five clusters in total cover
∼70% of the decoys. We examine only the top five clusters because
CASP8 evaluated at most five models for a FM target. As shown in
Table 4, we list the GDT-TS of a cluster centroid, its rank among
the CASP8 models and its percentile ranking among all the decoys
we generated. As shown in this table, our method did pretty well on
T0405_D1, T0416_D2, T0443_D1, T0476, T0496_D1, T0510_D3
and T0513_D2; reasonably well on T0397_D1, T0405_D2 and
T0465; and badly on T0443_D2 and T0482. Roughly speaking, our
method can do well on mainly-alpha or small beta proteins, but not
well on large beta proteins. This is expected since our CNF method
can model well local sequence-structure relationship, but cannot
model long-range hydrogen bonding.

Note that we generated decoys using domain definition we
decided during the CASP8 season. Therefore, our domain definition
may not be consistent with the CASP8 official definition. In this
case, we calculate the GDT-TS of a model using the native structure
common to our domain definition and CASP8 definition. The GDT-
TS of a model is calculated using the TM-score program and may
be slightly different from the CASP8 official GDT-TS.

3.4 Specific examples
In CASP8, we did prediction using the CRF method for T0476,
T0496_D1 and T0510_D3, but not for T0416_D2 because our CRF
method was not ready at the beginning of CASP8. The server
model generated by our CRF method for T0510_D3 is among the

1http://www.sbg.bio.ic.ac.uk/∼maxcluster/index.html.
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(a) T0416_D2 (b) T0476 

(c) T0496_D1 (d) T0510_D3 

Fig. 4. Ranking of our CNF predictions for (a) T0416_D2, (b) T0476, (c)
T0496_D1 and (d) T0510_D3 (x-axis is percentile ranking and y-axis GDT-
TS). Our first and best cluster centroids are plotted in black and magenta lines,
respectively. The #1 models submitted by the CASP8 server are ordered by
their GDT-TS and their percentile ranking is displayed as a cyan curve, so
are the best models from each server but as a green curve.

best CASP8 server models.2 Our CNF method further improves
predictions for these four targets over the CRF method.

3.4.1 1 T0416_D2 The first and best cluster centroids have GDT-
TS 69.3 and 76.8, respectively. As shown in Figure 4a, the best
cluster centroid is better than all the CASP8 server models. In fact
the best cluster centroid is also better than all the CASP8 human
models (data not shown). The best cluster centroid also has a small
RMSD 2.7 Å.

3.4.2 T0476 The first and best cluster centroids have GDT-TS
34.2 and 35.6, respectively. Our first and best cluster centroids for
T0476 are ranked No. 4 out of 66 and No. 15 out of 287 CASP8
server models, respectively. The best human model for T0476 has
GDT-TS 48.3 and RMSD 7.8 Å. Our best cluster centroid also has
RMSD 7.8 Å.

3.4.3 T0496_D1 According to Grishin group, T0496_D1 is one
of the only two CASP8 targets representing new folds (Shi et al.,
2009). Our first and best cluster centroids have GDT-TS 30.5 and
49.1, respectively. As shown in Figure 4c, the best cluster centroid
is significantly better than all the CASP8 server models. In fact the
best cluster centroid is also significantly better than all the CASP8
human models. The best CASP8 model has GDT-TS only 33.96. The
smallest RMSD among the CASP8 models with 100% coverage is
11.34 Å. Our best cluster centroid has a pretty good RMSD 6.2 Å
considering that this target has more than 100 residues. In summary,
our CNF method can predict an almost correct fold for this target.

2CASP8 results are available at http://predictioncenter.org/casp8/results.cgi.

3.4.4 T0510_D3 The first and best cluster centroids have GDT-
TS 47.7 and 51.7, respectively. The best cluster centroid has RMSD
6.9 Å. As shown in Figure 4d, our first cluster centroid is better than
all the #1 models submitted by the CASP8 servers. If all the 321
CASP8 models are considered, our first cluster centroid is worse
than only three of them3 and our best centroid is ranked No. 2.

4 CONCLUSION
This article has presented a new fragment-free approach to protein
ab initio folding by using a recently-invented probabilistic graphical
model CNF. Our fragment-free approach can overcome some
limitations of the popular fragment assembly method. That is, this
new method can sample protein conformations in a continuous space
while the fragment-based methods cannot do so. This CNF method
is also better than our previous CRF method in that (i) this method
can easily model non-linear relationship between protein sequence
and structure; and (ii) we can also minimize energy function to
lower values. Experimental results indicate that our CNF method
clearly outperforms the CRF method on most of the test proteins.
Previously, we have compared our CRF method with the popular
fragment-based Robetta server in the CASP8 blind prediction and
shown that our CRF method is on average better than Robetta
on mainly-alpha or small beta proteins (Zhao et al., 2009). This
article further confirms our advantage on mainly-alpha or small
beta proteins. Since CNF is better than CRF in modeling non-linear
sequence-structure relationship, we are going to incorporate more
information (such as amino acid physical–chemical property profile)
to our model so that we can improve sampling efficiency further.
We will also extend our CNF method so that long-range hydrogen
bonding can also be modeled.
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