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Abstract

Little is known about stage-specific gene regulation in Plasmodium parasites, in particular
the liver stage of development. We have previously described in the Plasmodium berghei
rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual lumi-
nescence system, we now confirm the stage specificity of this promoter region also in vivo.
Furthermore, by substitution and deletion analyses we have extended our in vitro character-
ization of important elements within the promoter region. Importantly, the dual luminescence
system allows analyzing promoter constructs avoiding mouse-consuming cloning proce-
dures of transgenic parasites. This makes extensive mutation and deletion studies a rea-
sonable approach also in the malaria mouse model. Stage-specific expression constructs
and parasite lines are extremely valuable tools for research on Plasmodium liver stage biol-
ogy. Such reporter lines offer a promising opportunity for assessment of liver stage drugs,
characterization of genetically attenuated parasites and liver stage-specific vaccines both in
vivo and in vitro, and may be key for the generation of inducible systems.

Introduction

Throughout its life cycle, the Plasmodium parasite requires adaptation during the various
stages in mosquito and human hosts. The parasite’s regulation of gene expression during all
life stages remains incompletely understood, with few transcription factors and stage-specific
promoters characterized [1-5]. The liver stage is particularly neglected in this respect despite
identification of various liver stage-specifically expressed genes [6-10]. Sporozoites in the liver
stage, and merozoites in the blood stage must exploit extremely different host cell types for suc-
cessful growth and multiplication. Several studies have suggested the existence of stage-specific
expressed genes, regulating processes potentially unique to the liver. The specific function of
most of these liver stage-specific genes, however, remains unknown. More importantly, there is
still a major lack of understanding on how gene expression is regulated in pre-erythrocytic
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stages. In this context, liver stage-specific genes may be key for identifying and/or validating
targets for attenuated vaccines, and liver-stage anti-malarial drugs. Therefore, the development
of tools that enable studying and manipulating liver stage-specific gene regulation continues to
hold promising potential in the field.

In search of a better understanding of gene regulation and protein expression at the liver
stage, our lab previously identified and characterized a 989bp liver stage-specific promoter re-
gion PB103464.00.0 (PBANKA_100300) [11]. More recently this gene and its gene product
have been described by others,. They were also given the name LISP2 for liver-specific protein
2, and shown to belong to the Plasmodium 6-Cys family [10, 12]. In these studies, lisp2 was
confirmed to be liver stage-specific, and proven to be key for late liver stage development [12],
confirming our previous findings [11]. Henceforth, in our present work, we refer to the
PB103464.00.0 promoter we previously characterized, as the lisp2 promoter.

To enable quantification of promoter activity, we made use of a dual luciferase reporter
system with Renilla luciferase expressed under the control of the constitutive eflo promoter,
and firefly luciferase expressed under the control of the 989 bp liver stage-specific lisp2 pro-
moter region. A major advantage of bioluminescence reporters is the possibility to measure
real time kinetics of cell movement, gene expression patterns, transcriptional promoter activi-
ties, protein-protein interactions, protein conformational changes, and cell signaling, among
other biomolecular activities in living animals [13]. At the same time, bioluminescence imag-
ing is also a valuable tool to study host-pathogen interactions [14]. In Plasmodium research,
the introduction of bioluminescence into rodent models has enabled characterization of
P. berghei and P. yoelii development in blood [15-18], and pre-erythrocytic stages [19-24],
including evaluation of the effects of irradiation and anti-malarial prophylaxis on liver-stage
parasite development.

Bioluminescent reporters are of a non-invasive nature and offer the possibility of spatio-
temporal analyses within the same organism. Previously, however, a drawback associated with
bioluminescence as opposed to fluorescence, was the limited versatility of reporters in terms of
light-emitting spectra. Recent advances now enable multiplexing approaches to measure multi-
ple parameters in the same sample. Key developments include the possibility of combining lu-
ciferases with non-overlapping spectra and/or substrate requirements such as firefly and
Renilla (with peak luminescence at 562nm and 480nm respectively, and D-luciferin and coele-
nerazine substrate requirements respectively). Mutation studies have led to variants with great-
er spectral diversity and stability for each reporter. These include, for instance, red-shifted
variants of Renilla luciferase [25], and green and red-shifted variants of Firefly luciferase [26].
The dual bioluminescence reporter system in our study allowed us to measure two parameters
simultaneously in the same sample, namely infection rate via the activity of a constitutive pro-
moter, and liver stage-specific promoter activity. Since our transfection plasmid contains both,
Renilla and Firefly luciferase-coding sequences, it is not necessary to clone the newly generated
parasite population. Cloning by limiting dilution needs many mice and since our approach
avoids this, it was reasonable to generate numerous deletions and mutations of the lisp2 pro-
moter region as performed in this study. In general, multiplex approaches have previously
proven to be valuable tools to maximize readouts while minimizing time, costs, and animal use
in in vivo studies [27-32].

While our previous work led to successful characterization of the promoter region in vitro,
we show here a characterization of its activity in vivo, and evaluate its potential for studying
liver-stage specific targets in live rodent models. In addition, we further characterized the pro-
moter region, particularly in the elements that define stage-specificity. Although this particular
promoter region does not necessarily encompass the entire gene promoter activity, we have ex-
plored this liver stage-specific promoter region and characterized it in detail. We present it
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here as a promising tool for liver-stage research enabling stage-specific protein expression,
modification, and attenuation.

Materials and Methods
Experimental animals

Female BALB/c mice, 4-6 weeks old, weighing 20 to 30g at the time of infection were used. An-
imals were kept at an S2 facility. All studies in which animals were involved, were performed in
accordance with the regulations created and approved by the Animal Research Ethics Commit-
tee of the Canton Bern, Switzerland (Permit Number: 81/11 and 105/10), and the University of
Bern Animal Care and Use Committee, Switzerland. All measurements were performed under
isofluorane anesthesia, and all efforts were made to minimize suffering.

Generation of transgenic P. berghei parasites

Transgenic P. berghei parasites PbFLyjspoRLef1o > PDFLef1oRLef10s PFLijspa(-775)RLef1as
PbFLjispa(-318)RLef1ar and PbFLjjg0("525)RLef1 o have been described previously [11]. All new
parasite strains were generated using similar plasmids and methods. pFLijsp>-ama1RLef1o
and pFLisp2-orub1RLef1 o Were generated by substitution of the 5’UTR of the lisp2 (-318/+1)
promoter region with the 5UTR of the stage-specific AMA1 gene (PBANKA_091500), or
the 5’UTR of constitutively-expressed a-tubulin (PBANKA_041770) respectively, fused to
the remainder of the promoter. The 5’UTR of AMALI and o-tubulin was determined by ana-
lyzing the corresponding EST found in the PlasmoDB database and by comparison with the
P. falciparum homologs. The 5’UTR of the a-Tubulin gene was amplified with primers F1:
5’ - CGCCTAGGATACATTATTTAAATAAATGAAATTGAGAGTATTAT-3’ and R1: 5/ -
CGCCTAGGTTTACTTGTATATTATAAAATAAACAATTGTTTTTA-3’ , while the 5UTR

of the AMA1 gene was amplified using primers F2: 5 ~-CGCCTAGGCGTACATCTACG
CATTGTTATTTAGC-3" and R2: 5/ - CGCCTAGGTTTT TATATCGTTTTATTTTAT
TAATATTTTTAATTTAC-3’ . These were then cloned into the dual luciferase pFL-989/-
318RLefla plasmid, via enzymes Avrll and BamH]I, and transfected into P. berghei to gener-
ate the parasite lines PbFLjjsp>-ama1RLef1o and PbFLijgp0-orub1 RLef1 -

RNA isolation and gRT-PCR

Total RNA was isolated from infected hepatocyte cultures using the NucleoSpin RNA kit
(Macherey & Nagel), according to manufacturer’s instructions. To examine gene expression
on the RNA level, cDNA was synthesized. The starting material was ~1pg RNA dissolved in
RNAse-free water; 3ul of 50uM random primer solution, and 1ul 10uM dNTPs to a final vol-
ume of 12ul complemented with distilled water. The mixture was heated for 5min at 65°C and
then cooled on ice for 2 minutes. To the mixture, 4ul of 5x First Strand Buffer for reverse tran-
scriptase, 10mM DTT, 1.5ul of distilled water and 100 U Reverse Transcriptase SuperScript II
were added. cDNA synthesis was carried out for 50min at 42°C. To inactivate the reverse tran-
scriptase, the mixture was heated to 72°C for 15min. Samples were afterwards stored at -20°C.
To detect genomic DNA contamination, samples without reverse transcriptase were run in
parallel in all experiments.

To quantify the amount of mRNA of LISP2 during the liver stage, quantitative real-time
PCR was performed using the SYBR ROX Master Mix Kit (5 PRIME). For LISP2 profiling,
forward primer 5 AACAGCAATATATCGTCACCAAG 3’ and reverse primer 5/ TGCAAAGG
TAATTATTAGAAATCGT 3’ were used. Normalization was performed using the P. berghei 18S
ribosomal RNA using forward primer 5 GGATGTATTCGCTTTATTTAATGCTT 3’ and
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reverse primer 5’ CACGCGTGCAGCCTAGTAT 3’ . In a reaction volume of 20ul, 10pmol prim-
ers and 25ng of cDNA were added. All assays were run in duplicate. PCR cycles for the Rotor-
Gene RG-3000 (Corbett Research) were 1x 30s 95°C; 1x 2min 95°C; 15s 95°C, 20s 50°C, and
20s 68°C for 35x; and 1x 2min 95°C. Changes at the level of RNA expression were calculated
using the Rotor-Gene software 6.0.

Parasite growth and sporozoite isolation

4-5 week-old Balb/c mice were injected with blood stage transgenic parasites. At day 3-4 post-
infection upon first observation of gametocyte exflagellation in the blood, the infected mice
were used to feed Anopheles stephensi female mosquitoes. 10-11 days following the blood-
meal, 15-20 mosquitoes were dissected and the midguts isolated to evaluate oocyst formation
and luciferase expression. At day 16-26 post-blood meal, salivary gland sporozoites were iso-
lated in order to perform in vitro and in vivo infections as described below, as well as luciferase
expression assays.

Hepatocyte culture and in vitro infection assays

Human hepatoma HepG2, Hepal-6 and Huh7 cells (European Collection of Cell Culture)
were maintained in complete MEM (cMEM) containing Earle’s Salts Medium, complete
DMEM medium, or RPMI 1640 respectively, supplemented with 10% heat-inactivated foetal
calf serum (FCS), 1% L-Glutamine, 1% penicillin/streptomycin. Cells were kept at 37°C in a 5%
CO, cell incubator and were split every 4 days by treatment with acutase. 5x10* cells were seed-
ed into 24-well plates. Sporozoites were prepared from dissected salivary glands, incubated in
complete MEM, DMEM or RPMI 1640 containing Amphotericin B (2.5ug/ml), and added

to 24 well-plates containing monolayers of HepG2, Hepal-6 or Huh?7 cells respectively.
Following washing, the cells were incubated with AT-medium at 37°C and 5% CO, for the
indicated times.

Mouse infection assays

BALB/c mice were infected with PbFLj;s,>RLef1 0r PbFLsy, parasites either by intravenous in-
jection of salivary gland sporozoites, or by infectious mosquito bites. In the case of intravenous
injections, salivary gland sporozoites were counted in a Neubauer chamber, and either 10%, 10°
or 10° were re-suspended in 200yl of 1x PBS, and injected into each mouse via tail vein injec-
tion. To perform mosquito bite infections, mice were anaesthetized using Ketamine/Xylazine,
and placed on a feeding cage containing 30 mosquitoes, for no more than 10 minutes.

Assessment of luciferase activity

In vitro dual-luciferase assays. To visualize liver stage luciferase expression in the trans-
genic P. berghei lines, infected Huh?7 cells were processed following manufacturer’s instructions
at 7, 24, 30, 40, 48, 54, and 65 hours post infection. Briefly, the culture medium was removed,
wells were washed once with 1x PBS, and lysed for 15min at 30°C with 100pl of 1x Passive
Lysis Buffer (PLB) obtained from the Dual-Luciferase Reporter (DLRTM) Assay System (Pro-
mega). After centrifuging the samples for 30s at 12,000g, 20pl of the Huh7 cell lysate was trans-
ferred to a black 96-well plate (Greiner bio-one) for immediate measurement, or stored at
-20°C until use. 100yl of luciferase assay reagent II (LAR-II) was added for measurement of
firefly luciferase activity using the In Vivo Imaging System IVIS Lumina II, (Caliper Life Sci-
ences). Following a 10s exposure, 100pl of Stop&Glo were added to the wells, to quantify
renilla luciferase activity. In vitro measurements were done using a height of 7.5cm (FOV-B),
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a medium binning factor [8], and 10-20s exposure times. The quantitation of luciferase activity
was performed using the Living Image 4.1 software (Caliper Life sciences) to obtain RLU val-
ues. The mean RLU value of control samples was subtracted from the mean RLU value of every
infected time point. The ratio of the firefly and Renilla luciferase RLUs was indicative of the ac-
tivity of the promoter of interest.

Real time in vivo bioluminescence imaging of liver and blood stage development. Lucif-
erase activity in vivo was determined via full body imaging of mice using the IVIS Lumina II
imager. Infected Balb/c mice were anaesthetized using the isofluorane anaesthesia system
(XGI-8, Xenogen, Caliper Life Sciences). Measurements were performed in mice infected
with PbFLyjpoRLef1 s PDFLef1, and PbRLegy o, at 24, 36, 40, 42, 44, 48, 56, 65, 72, and 90h post-
infection. For final firefly quantitation, anaesthetized mice were injected with 150l of RediJect
D-Luciferin (30mg/ml; Perkin Elmer) intraperitoneally. Mice were kept anaesthetized during
the measurements, performed within 6 to 12 minutes after injection of the substrate. Following
quenching of the firefly signal, renilla quantitation was performed. RediJect Coelenterazine-h
bioluminescent substrate (Perkin Elmer) was injected intravenously into the tail vein (100ul/
mouse), and measurements were performed immediately given the high quenching rate of the
luminescent signal. Bioluminescence imaging was acquired with a 10cm FOV (C), medium
binning factor, and an exposure time of 3 to 5 minutes. Quantitative analysis of biolumines-
cence was performed by measuring the luminescence signal intensity using the Living Image
4.4 software, expressing values in ‘photons’ for both luciferases to establish baseline relative lu-
minescence ratios (FL/RL). Luciferase activity in individual organs (heart, liver, spleen, lungs,
and adipose tissue) was visualized in organs dissected 48 and 68h after sporozoite injection or
mosquito bite to confirm stage-specific activity.

Results and Discussion
Lisp2 promoter region activity during in vitro liver-stage development

Quantitative analysis of liver stage development and promoter activity in vivo and in vitro is
difficult due to the low numbers of infected host hepatocytes. Luciferase assays have proven to
be an extremely useful tool, advantageous in terms of time requirements per experiment, and
quantitation accuracy [20, 24]. The Dual-Luciferase Assay (DLA) system enabled us to perform
simultaneous monitoring of expression of the two luciferase proteins renilla and firefly, due to
their divergent bioluminescent emission wavelengths. A major advantage of multi-reporter
bioluminescence in general, and the DLA system in particular, is that it enables quantification
and comparison of levels of expression of each reporter protein independently in the same
sample, thus reducing experimental error. Previous studies using the DLA system have empha-
sized, among its advantages, high efficiency, accuracy, reproducibility and high reflection of
promoter activity [33].

In the DLA system we employed to analyze lisp2 promoter activity, expression of firefly lu-
ciferase was under the control of the liver stage-specific promoter, while renilla luciferase was
under the control of the constitutive efla promoter. Luminescence of firefly and renilla lucifer-
ases in cell lysates was determined by two methods, a) micro-plate reader (Fig 1A), and b) IVIS
Lumina IT system (Fig 1B and 1C). The ratios of firefly to renilla luminescence (FL/RL) of ly-
sates corresponding to Huh7, HepG2 and Hepal-6 cells infected with PbFLy;,,RL ., parasites
were initially determined by micro-plate reader. A similar FL/RL ratio through the time course
of infection was detected in all cell types, as measured from 12 to 65 hours post-infection (Fig
1A). The FL/RL curve revealed no or only very little firefly luminescence by 24hpi. The devel-
opment of liver trophozoite into schizont stages occurs between 24 and 36hpi; a strong increase
in firefly luminescence values was observed from 36hpi onwards, with a maximum intensity
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Fig 1. Assessment of the lisp2 promoter activity in vitro. (A) HepG2, Hepa1-6 and Huh7 cells were
infected with transgenic PbFL;spoRLet14 SPOrozoites and lysed at various time points post-infection (12h, 24h,
36h, 48h, 54h, 65h). lisp2 activity respective to ef1a (FL/RL ratio) at all time points is depicted. Images from
IFAs of the corresponding developmental stages for each time point show P.berghei mCherry-expressing
parasites (red), GFP-transfected HepG2cells (green) and DAPI labeling the host and parasite nuclei (blue).
(B) Dual-luminescence assays (DLA) and visualization of infected Huh7 cells using the IVIS Lumina Il
system. Results for indicated time points are shown for lisp2 (firefly) or ef1a (renilla) promoter activities.
Negative controls correspond to uninfected Huh7 cell lysates. All experiments were carried out in triplicate;
error bars correspond to standard deviations. (C) Graphical illustration of the experiment in (B). The FL/RL
ratio was calculated and presented over hour post-infection. (D) The transcription profile of LISP2 during the
liver stage was determined by gRT-PCR. Total RNA from infected HepG2 cells was isolated at the indicated
time points, and then a quantitative real-time PCR analysis was performed. The transcription profile was
calculated based on the P. berghei 18SrRNA control expression, and is indicated in AACT.

doi:10.1371/journal.pone.0123473.g001

detected at 54hpi after which firefly luminescence fell again. At 65hpi, corresponding to mero-
zoite generation and merosome formation preceding blood stage infection, detection of firefly
was low. Together it appears that expression of lisp2 is restricted to the highly proliferating
schizont stage. Although FL/RL values remained conserved across the various cell types
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(Fig 1A), suggesting little host-cell influence in promoter activity, individual luminescence val-
ues and luminescence kinetics varied significantly between cell lines (S1 Fig) indicating that in-
fection success and/or parasite maturation in the different cell lines varied considerably.

Luminescence kinetics of infected Huh7 cell lysates measured by the IVIS Lumina II system
at various time points (Fig 1B and 1C) largely confirmed the results obtained with the micro-
plate reader. Parallel measurements for firefly luminescence under the control of the lisp2
promoter region (Fig 1B, left image), and renilla luminescence under the control of the consti-
tutive eflo. promoter (Fig 1B right image) were performed. Firefly luminescence was detected
only in the late liver stages (40, 48, and 54 hpi), while renilla luminescence was detected as
early as 7h post-infection, and the calculated FL/RL ratio (Fig 1C) was very consistent with the
results identified by microplate reader (Fig 1A). Interestingly, at 65h post infection, corre-
sponding to merosome formation, neither firefly nor renilla luminescence were detected. Obvi-
ously, in terms of sensitivity the use of a microplate reader has a clear advantage.

To show whether luciferase activity reflects LISP2 activity at the mRNA level, the transcrip-
tional profile of LISP2 was studied via quantitative real-time PCR analysis using the constitu-
tively transcribed P. berghei 18SrRNA as control. As expected, we observe that the LISP2
mRNA profile reaches a maximum during schizogony, and decreases during merosome forma-
tion (Fig 1D).

Analysis of lisp2 promoter activity in vivo

Having confirmed the liver stage-specific activity of the lisp2 promoter in vitro, we next in-
tended to test it in vivo. Balb/c mice were infected either by intravenous (i.v.) injection of spo-
rozoites, or mosquito bites with the double luminescent P. berghei strain PbFLj;p>RLeg0.[11].
Luciferase activity in the infected mice was visualized using the IVIS system from 24 to 70 hpi.
It is important to note that in Fig 2A, representative images of the separate firefly and renilla lu-
ciferase measurements of the same mouse are shown. Average FL/RL luminescence values for
both intravenous and mosquito bite injections of nine mice are summarized in Fig 2B. A major
strength of the dual luciferase approach is that each image is internally controlled. Firefly lucif-
erase activity (Fig 2A, upper panel) was consistently detected from 42hpi onwards, reaching a
maximum at 44hpi, followed by a gradual decrease until 56hpi, and no detectable signal at
70hpi when the liver stage is completed and the blood stage infection has already started (as vi-
sualized by constitutive renilla luciferase activity that allows detection of parasites at any given
stage in the same mouse) (Fig 2A, lower panel). The peak of firefly luciferase is about 12 hours
earlier in vivo than it is in vitro (Fig 1), which reflects the well known fact that parasite develop-
ment in vitro is delayed compared to the development in vivo. Considering this, the calculated
ratio of FL/RL in vivo (Fig 2B) confirms nicely our in vitro observations with a relatively late
start of firefly luciferase expression, a fast peak and a rapid drop to undetectable levels, and
complete inactivity during the blood stage. Similar FL/RL ratios were observed when mice were
infected with PbFLj;s5,RLef, transgenic parasites by mosquito bites instead of intravenous spo-
rozoite injections (Fig 2B). In contrast to the transient and strictly stage-specific firefly activity,
renilla luminescence showed a linear increase from 24 to 56h post-infection, followed by a de-
crease at 65h (data not shown). This was expected as at this time point, liver stage is finished
and merozoites first need to establish in red blood cells before the eflo: promoter becomes ac-
tive again and parasitemia reaches a minimum detectable threshold level. At 70h, renilla lumi-
nescence was detected throughout the body of the mouse, with strongest signals arising from
regions corresponding to the lungs, adipose tissue and spleen, potentially due to sequestration
in these organs. The observed renilla activity during blood stage development coincides with
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Fig 2. Assessment of the lisp2 promoter activity by in vivo bioluminescence. Balb/c mice infected by
intravenous (i.v.) injection with PbFL,ispoRLet14 Sporozoites. (A) lisp2 and ef1a promoter activities were
measured by whole body luminescence at the indicated time-points (hours post-infection; hpi). Note that
representative pictures of various time points after infection of a single mouse per experiment are shown in A
and C. B) ROI measurements for the abdominal area of all mice (n = 9) were recorded as photons per second
(photons/s/cmz) for renilla and firefly. Ratios of PbFL¢4 to PbRLgt14 Were set as normalization value 1 at all
time points. Relative luminescence ratios (FL/RL) for all time points are shown. Experiments were repeated 4
times (error bars show SD). (C) Control Balb/c mouse infected by intravenous injection with FLg¢14
sporozoites. Bioluminescent measurement of a single mouse at various time points depicted. For a better
orientation, a schematic representation of the developmental stage at each time point is shown.

doi:10.1371/journal.pone.0123473.g002

an increase in parasite burden (analyzed by stained blood smears) if followed for extended peri-
ods (S2 Fig).

Finally, in order to validate that the increased ratio of firefly over renilla luciferase was inde-
pendent of the luminescent nature of firefly luciferase itself, control animals were infected with
a PbFL.s, single luminescent parasite strain. Luminescence levels during liver-stage develop-
ment of these parasites are shown in Fig 2C. We found an increase in firefly luciferase activity
similar to the renilla luciferase activity detected in PbFLj;p>RLefy, -infected mice (Fig 2A, lower
panel) supporting the suitability of the dual-luciferase assay for in vivo experiments without an
adverse effect of substrate used for this study.

The need for renilla luciferase substrate analog testing and optimal enzyme-substrate pairing
for dual luciferase studies in vivo has been consistently emphasized in studies making use of the
dual (or triple) bioluminescence system. Bioluminescent reporter proteins, like firefly, Renilla,
or Gaussia luciferases display differences in terms of reporter sensitivity, signal-to-noise ratio,
quantitative correlation between signal strength and target numbers, anatomic resolution, and
kinetics [34, 35], as well as dependence on the properties of biological tissues being imaged, and
substrate delivery methods. Most studies using single bioluminescence reporters emphasize the
need to optimize substrate choice and delivery methods in light of the proposed objectives of
the study [17, 34-41]. In the case of multi-reporter and multi-component bioluminescent
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imaging used for comparative quantitation or normalization, optimization of the above features
is key. In our study, we have optimized both the administration method and substrate choice.
Results on optimization of the DL system for use during Plasmodium infection of mice are in-
cluded in S1 Table. Various substrates for measuring firefly luciferase activity were used, and lit-
tle variation was found in terms of signal stability, signal duration, and low signal-to-noise ratio.
Similarly, little variation was found regardless of the method of administration. Conversely,
Renilla has been reported in most in vivo studies, to present considerable hindrances. Specifical-
ly, studies using dual bioluminescence have reported the primary challenge to be the relatively
short duration of the renilla luciferase signal [42]. The extremely high noise in the intestinal
tract resulting from i.p. or failed intravenous injections and the short duration of the renilla sig-
nal requiring immediate imaging, were challenges we faced before achieving direct comparison
of the promoter activities. In terms of substrate pairing, the 3 substrates evaluated in our study,
namely the Promega second generation substrates EnduRen and Viviren, and the RediJect coe-
lenterazine-h, have all been optimized to counter the above challenges in terms of tissue pene-
tration, noise signals, and duration; for our study, we found RediJect coelenterazine-h to
provide the greater balance in terms of efficiency, accuracy and cost, for measuring promoter ac-
tivity. We thus emphasize the need for optimization in future studies involving the use of a dual
or multiplex luciferase assays. Various anesthetics were tested to observe their effects on firefly
and renilla luminescence values and FL/RL ratios, given previous observations of detrimental ef-
fects of different anaesthetics on substrates including luciferin, but not coelenterazine [43-46].
We hypothesize that the lower FL/RL ratios detected in vivo compared to in vitro may in fact be,
to some extent, the effect of anesthetics on inhibition of firefly luciferase. We envisage that ongo-
ing improvements in bioluminescence techniques will improve Plasmodium research during the
liver stage. These include the generation of red-shifted renilla luciferase which overcome current
issues with tissue penetration, as well as the development of electron multiplying and intensified
CCD cameras, that enable acquisition times of millisecond durations eliminating the need to
use anesthetics which are also hepato-toxic in repeated doses [35]. Despite the above limitations,
the dual luciferase system has enabled us to prove again the stage-specificity of the promoter,
and the possibility for its use in further in vivo studies characterizing Plasmodium liver stage
vaccine targets and candidate proteins, as well as further examination of biological events.

Identification of firefly and renilla signals in organ extracts

A known limitation to bioluminescence imaging studies in vivo, is the reduced detection sensi-
tivity of signals within deep tissues [47, 48]. To confirm both the liver-stage specific activity of
the lisp2 promoter region, and its increased activity during mid- and late- liver stages found by
in vitro and in vivo analyses, we performed cell extracts of individual organs for determination
of luciferase activity in mice infected with PbFLy;,,RLef, parasites. Following imaging with the
IVIS Lumina system of the live mouse, we proceeded to euthanize 3 infected mice at 24, 36, 48,
65 and 72h post-infection, to obtain extracts from the liver and the spleen (Fig 3A and 3B). As
control for unspecific luciferase activity, we euthanized naive mice at each time point and used
them to normalize the values obtained from infected mice. Fig 3A confirms that firefly luciferase
is strictly liver stage-specific as no signal was obtained in the spleen. The peak of firefly luciferase
activity was at 48 hpi similar to what has been determined in the infected living animal. Renilla
luciferase activity was also detected in both organs with the expected kinetics: until 48 hpi a line-
ar increase in enzyme activity was detected followed by a sharp drop at 65 hpi and at the same
time a strong increase in renilla activity in spleen extracts confirming that the switch from liver
to blood stage has occurred. Moreover, the switch from liver to blood stages of infection can be
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mice. (B) Luminescence ratios (FL/RL) of liver extracts at various time points post-infection as a measure of lisp2 to ef1a activity ratios.

doi:10.1371/journal.pone.0123473.9003

clearly observed from the lower luminescence values of renilla (RL.f) at 65 and 72hpi in the
liver, but increasing renilla luminescence in the spleen at the same time points.

Characterization of the lisp2 promoter region by deletion analyses

Having determined liver stage-specificity of the lisp2 promoter region in vivo and in vitro, we
aimed to further characterize regulatory sequence elements in the promoter region. To extend
our previous studies [11], various lengths of promoter regions were sub-cloned in the dual lu-
ciferase plasmid upstream of the firefly luciferase-encoding DNA sequence (Fig 4A) and trans-
fected in P. berghei parasites similar to what has been described earlier [11]. After infection of
HepG2 cells, the ratio of firefly to renilla luciferase expression was determined for all promoter
region lengths at 48 hpi. The ratio of firefly/renilla (FL/RL) activity of the original promoter
(-989/+1) in PbFLjjsp,RLe1 parasites was set as 100% reference. Two constructs, (-775/+1 and
-318/+1), have already been tested [11] and gave very similar results in the current study, con-
firming the robustness and reliability of this assay. Interestingly, truncating the promoter to
-828/+1 did not significantly affect luciferase expression whereas any further deletion signifi-
cantly reduced luciferase expression and thus indicates reduced promoter activity. It is impor-
tant to note that the construct -594/+1 still allowed a strong expression whereas the regions
-428/+1 and -318/+1 completely lost liver stage specific promoter activity, strongly suggesting
an essential transcription enhancer element in the region between -594 and -428. Interestingly,
in this region neither a typical enhancer binding site nor a typical ApiAP2 site have been iden-
tified (S3 Fig) strongly suggesting that other liver stage specific enhancer sites must exist.

Since the transcription start site (TSS) was localized at position -318 it was not surprising
that with the -318/+1 construct no luciferase activity was detected, suggesting no promoter ac-
tivity; also the constructs -989/-318 and -775/-318 were not active anymore confirming that
the 5’ untranslated region (5" UTR) is essential for gene expression.

Next we tested all different parasite strains for luciferase activity in different life cycle stages
to see whether deletion of parts of the upstream region has an influence of stage specificity of
the promoter (Fig 4B). Apart from the liver stage at 48 hpi, the blood stage and the mosquito
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of promoter activity. HepG2 cells were infected with transgenic P. berghei sporozoites and analyzed at 48h
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standard deviations of three separate experiments (Unpaired student t-tests for each transgenic line to
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parasite).

doi:10.1371/journal.pone.0123473.9g004
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stage (oocyst-infected midguts) were analyzed. For an easier comparison in all different life
cycle stages we calculated the FL/RL ratio observed in PbFLef; ,RLefi o, and set this value to
100%. With this approach we could also directly compare the liver stage specific promoter and
the eflo. promoter, and we found that during the liver stage at 48 hpi the -989/+1 construct
was about twice as strong as the already strong elfo promoter. It is also remarkable that most
constructs remained either liver stage specific or were silent in all stages. Only two constructs
(-594/+1 and -428/+1) showed a clear and reproducible activity in oocysts. The fact that -428/
+1 allowed some activity in oocysts but in none of the other stages suggests that it contains
some oocyst-specific regulatory elements.

Together, it can be concluded that the most important regulatory element must be localized
between -594 and -428 bp in terms of expression and of stage specificity. We hypothesize that
additional regulatory elements might be localized in the more upstream regions -828 to -594,
as indeed we identified various typical CAAT and TATA boxes in this region (S3 Fig). Never-
theless, it is important to note that to our knowledge, CAAT-binding regulatory elements have
not been described so far for Plasmodium parasites, and their effect on specific promoters
remains hypothetical.

Substitution of the 5’UTR of the lisp2 promoter region

Deletion of the entire 5UTR is not the best method to define regulatory regions because the
putative upstream-localized enhancer binding sites are shifted towards the start codon. To ex-
clude the possibility that deletion analyses may have induced potential structural effects due to
alteration of 5’UTR size and distance to the promoter, we decided to perform various substitu-
tion analyses to observe the effect of the 5’UTR in defining stage specificity. To determine
whether the 5’UTR region is involved in regulation of expression, we searched for alternative
5’'UTRs of similar length to the lisp2 promoter 5’UTR (i.e. 318bp). By retaining the distance to
the promoter, we intended to exclude potential structural effects influencing the promoter re-
gion. The 313bp 5’UTR of the alpha-tubulin 1 gene (PBANKA_041770), and the 322bp 5’UTR
of the stage-specific antigen expressed apical membrane 1 (AMA1, PBANKA_091500), were
selected by analyzing PlasmoDB ESTs and comparison with P. falciparum homolog mRNAs.
The 5’UTR of the lisp2 (-318/+1) promoter region was replaced by either the AMA1 or the
alpha-tubulin 5’UTRs, fused to the remainder of the promoter, and cloned into the dual lucifer-
ase gene (Fig 5A). The resulting plasmids were transfected into P. berghei resulting in the
PbFLiispr-oTub1 RLef1ar and PbFLjgpr- ama1RLef1 o transgenic parasites. For consistency, and to
establish a control for FL/RL determinations at all life stages, the ratio of FL/RL activity
of PbFL.f o RLef1 o, parasites expressing both renilla and firefly under the control of the constitu-
tive promoter, were set to 100%. Substitution of the lisp2 5’UTR with the 5’UTR of the
o-tubulin and AMA1 genes resulted in markedly altered firefly luciferase expression (Fig 5B).
PbFLijspr-orubRLef1o, parasites showed low firefly luciferase activity in the oocyst and
sporozoite stages (2.5% and 8% respectively, compared to the constitutive promoter), as did
PbFLjisp2-ama1RLef1 o Parasites in the sporozoite stage (7.5%, compared to the constitutive pro-
moter). Interestingly, both parasite strains did not show any firefly luminescence during the
blood stage. However, during the liver stage development at 48 hpi, PbFLj;sp>-orubRLef10
showed a strong increase in luciferase activity (to 500% instead of 200% of the original promot-
er), which again increased almost by 2-fold towards merozoite formation (54 hpi) at the end of
the hepatic phase. PbFLjjsp>-ana1RLes1o. showed an activity comparable to the original promot-
er at 48 hpi but in contrast to the original promoter showed an increased activity at 54 hpi. The
exchange of the 5’UTR could have transcriptional, as well as post-transcriptional effects, for in-
stance through stabilizing effects on the mRNA, or increased translation rates. Further studies
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doi:10.1371/journal.pone.0123473.g005

are needed to clarify this. Although such analyses are beyond the scope of this study, determi-
nation of the basis of the increased protein expression are particularly interesting as the ob-
served effect was very impressive. Together, swapping the 5UTR has a profound effect on
luciferase expression but it remains to be determined whether this effect is at a transcriptional
or rather at a post-transcriptional level.

Our data suggest that the liver stage-specific promoter region of lisp2 can be used for various
purposes. It offers the opportunity to drive expression of dominant-negative proteins to study
protein function during the late liver stage and, perhaps even more importantly, to express par-
asite toxins to generate parasite vaccine strains attenuated during the late liver stage. In fact, re-
cent studies have suggested that immunizations with genetically attenuated parasites that are
attenuated in late liver stages, result in increased protection against challenge with fully virulent
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Plasmodium parasites and are thus more suitable for immunization [49]. Importantly, we pre-
viously generated a double-attenuated Plasmodium parasite, in which a bacterial pore-forming
protein (perfringolysin) was expressed under the lisp2 promoter, successfully leading to protec-
tion [50]. In conclusion, the lisp2 promoter should greatly aid in our understanding of pre-
erythrocytic Plasmodium biology as well as allowing attenuation of parasites at a very defined
time point of liver stage development, thus facilitating the generation of live attenuated vaccine
strains. Furthermore, the promoter holds the potential of being used as part of an inducible sys-
tem to study the Plasmodium liver stage.

Supporting Information

S1 Fig. Cell line measurement differences for in vitro imaging. PbFLj;,,RLf, sporozoites
were used to infect HepG2, Hepal-6 and Huh?7 cells. 40 hours post-infection cells were lysed
by passive Lysis 5x buffer and mechanical disruption, and luminescence measured using the
Dual Luciferase reporter assay system. The (A) renilla and (B) firefly luminescence expressed
as RLUs, of each cell line is shown. Although the ratio between substrates is maintained, the
absolute luminescence values for each substrate differ significantly between the different

cell lines.

(TIFF)

S2 Fig. Relative parasitemia and renilla bioluminescence values during blood-stage infec-
tion. Mice were infected with PbFLj;p>RLef1, parasites but only eflo promoter activity as
shown by renilla luminescence was assessed during blood stage development. It coincides with
increased parasite burden (measured by Wright’s stain) over the course of 170h (7 days) fol-
lowing intravenous injection of sporozoites.

(TIFF)

S3 Fig. Identified enhancer binding elements in the lisp2 promoter region. The transcrip-
tion start site (T'SS) was identified 318 bp upstream of the start codon. Putative CAAT,
TATAA as well as TATAA like boxes within the promoter region are indicated. In addition,
the sporozoite-specific enhancer binding element CATGCCAN [51] and two ApiAP2 binding
elements have been identified. The motifs shown as D1 and D2, are putative sites predicted
based on in silico analyses using the motifs identified for the P. falciparum ortholog [11]. Evalu-
ated deletions are also included in the diagram as arrows and significant decrease in promoter
activity by the deletion are indicated (**P<0.01; *** P<0.001).

(TIFF)

S1 Table. Optimization of the dual bioluminescence system for in vivo imaging of Plasmo-
dium liver stages. The dual luciferase bioluminescence system for P. berghei imaging in the
liver required optimal pairing of each specific luciferase and a set of substrates; identification of
factors involved in signal quenching or enhancement; identification of the optimal route of ad-
ministration; animal physiological factors that must remain constant for optimal imaging; and
potential extrinsic factors influencing imaging and ultimately signal detection.
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