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Abstract

High resolution tests for genetic variation reveal that individuals may simultaneously host more 

than one distinct strain of Mycobacterium tuberculosis. Previous studies find that this 

phenomenon, which we will refer to as “mixed infection”, may affect the outcomes of treatment 

for infected individuals and may influence the impact of population-level interventions against 

tuberculosis. In areas where the incidence of TB is high, mixed infections have been found in 

nearly 20% of patients; these studies may underestimate the actual prevalence of mixed infection 

given that tests may not be sufficiently sensitive for detecting minority strains. Specific reasons for 

failing to detect mixed infections would include low initial numbers of minority strain cells in 

sputum, stochastic growth in culture and the physical division of initial samples into parts 

(typically only one of which is genotyped). In this paper, we develop a mathematical framework 

that models the study designs aimed to detect mixed infections. Using both a deterministic and a 

stochastic approach, we obtain posterior estimates of the prevalence of mixed infection. We find 

that the posterior estimate of the prevalence of mixed infection may be substantially higher than 

the fraction of cases in which it is detected. We characterize this bias in terms of the sensitivity of 

the genotyping method and the relative growth rates and initial population sizes of the different 

strains collected in sputum.
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1. Introduction

Tools for the genetic analysis of Mycobacterium tuberculosis, the causative agent of human 

tuberculosis (TB), have fundamentally altered our understanding of the natural history of 

this pathogen. The ability to distinguish isolates has shown that individuals can be re-
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infected with M. tuberculosis, and this poses clear challenges for vaccine development since 

even natural infection at best provides partial immunity. Furthermore, the advent of high 

resolution tests for genetic variation has revealed that individuals may simultaneously harbor 

infections with more than one distinct strain of M. tuberculosis (Warren et al., 1999; Sola et 

al., 2003; Kremer et al., 1999; van Embden et al., 1993; Imaeda, 1985). This phenomenon, 

which we will refer to as “mixed infection”, has been linked with poor treatment outcome 

when the co-infecting strains differ with respect to drug susceptibility (van Rie et al., 2005; 

Hingley-Wilson et al., 2013) and is predicted to influence the impact of population-level 

interventions against tuberculosis (Cohen et al., 2008; Rodrigues et al., 2007; Colijn et al., 

2009; Sergeev et al., 2011; Mills et al., 2013).

Accurate estimates of the frequency with which mixed infections occur are therefore critical 

to understand how mixed infections impact both the natural history and the dynamics and 

control of this infection. However, the detection of mixed infections is challenging (Hingley-

Wilson et al., 2013), even with tools that have high sensitivity for detecting minority strains 

and adequate resolution to discriminate between closely related (but genetically distinct) 

pathogens. As discussed in detail in a recent review (Cohen et al., 2012), there are many 

opportunities to fail to detect a mixed infection that is actually present in a host, because a 

minority strain might not be harvested in the collected clinical specimen, might be lost 

during the process of specimen transport and handling, and might fail to be detected by the 

particular genotyping method employed.

Despite these clear opportunities to miss the detection of true mixed infections, among the 

several dozen studies available, it has been found that mixed infections were often detected 

in as many as 10–20% (Cohen et al., 2012; Hanekom et al., 2013; Huang et al., 2010; 

Navarro et al., 2011) of cases in areas where the incidence of TB is high (Cohen et al., 

2012). Since we believe that this statistic may underestimate the prevalence of mixed 

infections, we have developed a mathematical model to understand the potential sources of 

bias in estimates of the prevalence of mixed infection and to provide bounds for reasonable 

uncertainty as to the actual prevalence of mixed infections given the observed prevalence 

and knowledge of the laboratory protocol employed to detect mixed infections.

2. Methods

Although the designs of previous studies for detecting mixed strains have differed in 

important ways (Cohen et al., 2012), for the purposes of this analysis, we have generalized 

the study design to include several steps common to nearly all of these investigations:

1. Specimen collection from the patient (samples of 0.25 mL).

2. Specimen growth in culture.

3. Sampling of bacterial isolates from culture and extraction of mycobacterial 

DNA.

4. Analysis of mycobacterial DNA (see Fig. 1).

Here we focus our analysis on bias that might arise in the detection of mixed infections 

related to steps 2–4 above. That is, we do not consider the bias that might result from failing 
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to collect a minority strain from an individual, and instead we focus here on the bias that 

arises from failing to detect a minority strain after it has actually been collected from a 

patient. This is not meant to indicate that we think failing to collect a minority strain from a 

patient does not contribute to the underestimation of the prevalence of mixed infection. 

Rather, this approach allows us to provide estimates on the bias that is associated with the 

laboratory procedures that are distal to specimen collection. We comment further on this 

issue in the discussion. The probability that mixed infection is detected can be decomposed 

as

ℙ(detect) = ℙ(detect ∣ mixed infection present)ℙ(mixed infection present) . (1)

We define the prevalence of mixed infection to be the fraction of individuals with TB disease 

that are simultaneously infected by more than one distinct strain. Here we define strains by 

their ability to be discriminated from each other by the particular genotyping test used. Our 

aim is to estimate the prevalence of mixed TB infection in a population, ρ ≔ ℙ(mixed 

infection present), from a set of data consisting of measurements aiming to detect mixed 

infection in individuals. To do this, we characterize m ≔ ℙ(detection∣mixed infection 

present) by modelling laboratory handling and subsequent growth of bacilli in culture. We 

use a stochastic model of specimen handling and growth where cell numbers are small, and a 

deterministic model otherwise. The model inputs are the distributions of the numbers of cells 

in the samples, and the growth rates of minority- and majority-type bacilli. We apply a 

Bayesian approach to find the posterior distribution of ρ, the prevalence of mixed infection, 

given data from genotyping analysis of mycobacterial DNA collected after division of 

sputum and subsequent solid culture.

Specimen handling: The mathematical framework developed in this section is based on three 

assumptions regarding the handling protocol and the specimen – i.e. the sputum sample – 

from an individual:

1. Each specimen contains at least one strain of M. tuberculosis, and may contain 

more (but we only model detection of two at most). The strain with more bacilli 

in the specimen is called the majority strain, and the other the minority strain.

2. Each specimen is handled similar to any other and in two phases: sub-division 

and growth. Sub-division consists of dividing the sputum sample into d groups 

(only one of which is then cultured). Growth refers to the culture of one of the 

portions of the sputum sample, over a fixed time T.

3. In both sub-division and growth, the majority and minority strains are assumed to 

behave independently.

We use X and Y to indicate the number of minority and majority strain cells, respectively; if 

X and Y are indexed, the index specifies the time. For example, X0 is the initial number of 

minority strain cells and YT is the number of majority strain cells at time T, after sub-

division and growth.
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2.1. The minority strain

When the sample is collected, we assume that it contains X0 minority strain cells. During 

sub-division, to select a portion 1/d of the sample, each cell is chosen with probability 1/d or 

rejected with probability 1 – 1/d. Therefore the total number of bacteria after sub-division 

follows the binomial distribution Bin(X0, 1/d). Growth is modelled with a birth-only process 

with birth rate λX over a time T. We choose a birth-only process because the death rate is 

believed to be negligible in comparison to the birth rate in culture, and because it is 

preferable to minimize the complexity of the model. Birth processes are characterized by a 

negative binomial distribution (Bailey, 1964, p. 87); in this case, as the process starts with 

Bin(X0, 1/d) cells from the sub-division phase, it follows that the distribution of XT is 

NegBin(Bin(X0, 1/d), 2−λXT). Using the law of total probability, the explicit distribution for 

the number of minority cells after time T is found to be

ℙ(XT = k ∣ X0) = ∑
i = 1

min(X0, k)
k − 1
i − 1

X0
i

1
d

i d − 1
d

X0 − i

pX
i (1 − pX)k − i, (2)

where pX = 2 −λXT, with λX being the growth rate and T the growth time; we refer to the 

supplement for the derivation. Eq. (2) can be rather impractical because it presents 

computational challenges due to the size of the binomial coefficients. For this reason, we 

found an asymptotic approximation:

ℙ(XT = k ∣ X0) ≈ C(1 − pX)k(k − 1)
l(X0 − 1)

for k ∞, (3)

where l and C are constant with respect to k. Interestingly l is also independent from λX, X0, 

and T, hence it is specific to the handling protocol (see Supplement for details).

2.2. The majority strain

The majority strain is sub-divided and cultured along with the minority strain; following the 

same reasoning as in Section 2.1, the distribution of YT is found to be

ℙ(YT = k ∣ Y0) = ∑
i = 1

min(Y0, k)
k − 1
i − 1

Y0
i

1
d

i d − 1
d

Y0 − i

pY
i (1 − pY)k − i, (4)

where pY = 2−λYT and λY is the growth rate of the majority strain. As in the previous 

section, Eq. (4) is impractical, but here because Y0 is assumed to be large (Core Curriculum 

for Disease Control; Palaci et al., 2007) – O(1000) – it is possible to use the Weak Law of 

Large Numbers to approximate the distribution (4) with a normal distribution (see the 

Supplement for details):

ℙ(YT = k ∣ Y0) ≈ 𝒩(k; μ, σ2), (5)

where
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μ =
Y0
6 2

λYT
and σ2 =

Y0
d 2

λYT
(2

λYT
− 1) +

Y0d(d − 1)

d2 4
λYT

.

We use Eqs. (3) and (5) to calculate the distributions of XT and YT numerically in the next 

sections.

2.3. The conditional prevalence of mixed infection

After the phases of sub-division and growth in culture, genotyping is performed on DNA 

extracted from mycobacterial cells. In this paper we assume that the genotyping test 

performed is mycobacterial interspersed repetitive unit-variable number tandem repeat 

(MIRU-VNTR) typing (Supply et al., 2001). MIRU-VNTR typing is a convenient 

methodology to detect mixed infections, as multiple alleles at multiple loci are usually 

interpreted as the presence of mixed infection (Supply, 2005). Clearly, in order to detect a 

minority strain by MIRU-VNTR or any other method, the minority strain must be present in 

sufficient numbers. We define the threshold f as the minimum value of the proportion XT/YT 

at which the minority strain, thus mixed infection, is detectable by MIRU-VNTR typing. It is 

convenient to introduce the new random variable D (for detection) which is defined by

D = 1 XT ∕ YT > f and D = 0 XT ∕ YT < f . (6)

where D is a Bernoulli random variable that is used to model the positive or the negative 

result of the test for mixed infection for each sputum sample.

Up to this point, we have analysed the dynamics of a single sample. To estimate the 

prevalence of mixed infection, we need to link our model to the outcome of a study aimed to 

detect mixed infection. Suppose there are n individual patients in the study and each of their 

sputum samples is sub-divided and cultured, and then tested for mixed infection. Let the 

outcome be denoted Dj, for j = 1..n. The total number of detected mixed infection is 

SD ≔ ∑ j = 1
n D j. Because the Djs are Bernoulli, it follows that

ℙ(SD = k ∣ X0, Y0) = Binomial(k; n, ℙ(D = 1 ∣ X0, Y0)), (7)

where we recall that ℙ(D = 1 ∣ X0, Y0) = ℙ(XT ∕ YT > f ∣ X0, Y0).

2.4. Distributions of X0 and Y0

Eq. (7) is the distribution of the total number of detected mixed infections in n individuals, 

in a study that satisfies the initial assumptions outlined at the start of Section 2. To perform 

computations and statistical inference it is necessary to derive a distribution of SD that is not 

conditional on X0 and Y0. We have chosen particular distributions for these inputs, but the 

overall arguments we make about the effects of stochastic growth and low starting cell 

numbers are not specific to these particular choices.

The number of majority type cells Y0 is relatively large (Core Curriculum for Disease 

Control; Palaci et al., 2007) in the samples, with the order of magnitude 103. Because Y0 is a 
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discrete random variable we choose a discretized gamma distribution. The shape and scale 

parameters are also chosen to provide a reasonable expected value and variance: recall that 

the sputum sample is 0.25 mL and the concentration is 5000–10,000 per mL (Core 

Curriculum for Disease Control):

ℙ(Y0) = CDFGamma(70, 25)(k) − CDFGamma(70, 25)(k − 1), (8)

where CDF stands for the Cumulative Distribution Function.

The number of minority strain cells in the sample (X0) is likely to be variable. It will depend 

on many factors, including the dynamics of bacterial populations in the host, the time of 

reinfection and the distribution of cell types over different TB lesions. These factors may be 

elucidated in the future in studies using DEP frequency or single cell technologies, but at the 

moment there is very little information available to inform us as to the numbers of cells 

present in sputum samples from diverse infections.

When a minority strain is present, we do not have empirical information about the numbers 

of minority cells likely to be found in the sputum. We choose a class of distributions 

parametrized by their expectation Emin, for the probability ℙ(X0 = k ∣ X0 ≥ 1) of finding k 

minority cells in the sample given that the host has two or more strains. The numbers of 

minority and majority cells in sputum will depend on a complex series of growth limitations 

imposed by the host during the course of infection, the relative timing of infection, the extent 

of in-host competition between the strains, the time that has elapsed before the patient comes 

to clinical attention and the non-random sampling of the in-host population in sputum. The 

inoculum for each strain of TB is likely to consist of a relatively small number of bacilli 

(Balasubramanian et al., 1994), and each strain presumably undergoes a period of 

exponential growth at some stage. So it is likely that a substantial difference in the 

robustness of the two strains in the host would lead to the less robust strain either being out-

competed or being present in vanishingly small fractions in the host; a minority strain would 

either be “drowned out” in the exponential phase, or would suffer losses through the 

complex course of infection if it were not sufficiently robust. Such hosts would never be 

detected as mixed infections. For these reasons, to maintain high enough cell numbers to 

comprise ≈ 1% of a sputum sample, any minority strain will likely need to be a fairly strong 

in-host competitor. Conversely, when more than 2–5% of a sputum sample are minority 

strain bacilli, they are highly likely to be detected (and this will happen only for highly 

robust strains that achieve a very strong balance of cell numbers in the host). The problem of 

bias is most relevant when a minority strain is a robust enough competitor to rise to high 

enough levels that there is any change of detection, but not so high that detection is 

effectively certain. Accordingly, we investigate the range of Emin in which minority strains 

comprise between 0 and 2% of the population of bacilli in the sputum i.e. Emin ≤ 40.

Furthermore it must be taken into account that the prevalence of mixed infection 

corresponds to the probability ℙ(X0 ≥ 1) of mixed infection present in the sample, that we 

called ρ. Note that ρ is fundamental for this study, as it is the parameter to be estimated. We 

use a Poisson distribution for X0, parametrized by Emin:
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ℙ(X0 = k) =
1 − ρ if k = 0

ρ ⋅
(Emin − 1)k − 1

(k − 1)! e
−Emin + 1

if k ≥ 1
. (9)

2.5. Posterior distribution of the prevalence of mixed infection

In this section we use the Bayesian inference to derive the distribution for the real prevalence 

of mixed infection, ρ, and we present an estimate of such prevalence. At first it is necessary 

to evaluate the probability ℙ(D = 1). The law of total probability can eliminate the condition 

on X0 and Y0 of ℙ(D = 1 ∣ X0, Y0) in Eq. (7) using ℙ(X0) and ℙ(Y0) from Eqs. (8) and (9) 

respectively. Note that because the distribution of X0 is linear in ρ, the distribution of XT and 

the probability ℙ(D = 1) are also linear in ρ; this fact reflects the initial decomposition in Eq. 

(1). It follows that

ℙ(D = 1) = ℙ(XT ∕ YT > f ) = mρ, (10)

where the slope m represents the probability ℙ(detect∣mixed infection present) in (1); it 

depends on the parameters λX, λY, Emin and T and is calculated numerically using the law 

of total probability (we refer to the Supplement for further details). Because D has a 

Bernoulli distribution with probability mρ, the distribution of SD is binomial; therefore the 

probability of detecting nmix mixed infection in a study involving n patients is a binomial 

with nmix successes over n trials and with success probability mρ.

In Bayesian notation, the binomial distribution of SD is the likelihood. We set an 

uninformative Beta prior distribution because it is a conjugate prior for the binomial (we 

refer to the Supplement for further details). This lead to the following posterior:

ℙ(ρ ∣ SD) = (mρ)
nmix(1 − mρ)

n − nmix

ℬm(nmix + 1, n − nmix + 1) , (11)

where ℬm(nmix + 1, n − nmix + 1) = ∫ 0
mu

nmix(1 − u)
n − nmixdu is the incomplete beta function. 

Fig. 2 shows the posterior distribution of ρ for a range of values of Emin.

It is important to note that by the Law of Large Numbers, in the limit n, nmix→∞, (1/

n)SD→mρ. Because we observe SD = nmix mixed infection, this implies that mρ ≈ nmix/n, 

thus

ρ 1
m

nmix
n as n, nmix ∞ . (12)

Alternatively, taking the expectation of the posterior distribution in Eq. (11) and noting that 

the variance vanishes in the limit yield the same result. Eq. (12) provides a simple estimate 

for the real prevalence of mixed infection and it suggests that m gives a numerical value of 

the bias coefficient. Figs. 4 and 5 show the details of its behaviour and sensitivity analysis.
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2.6. Deterministic approximation

If the number of initial bacteria is large for both minority and majority strains (for instance if 

the initial sample is large), the model can be simplified, removing most of its stochasticity. 

In this case we consider continuous approximations of the variables X0 and Y0:

Y0 = 𝒩(μY, σY
2 ), (13)

X0 = (1 − ρ)𝒳[0, 1) + ρ𝒩(Emin, Emin)𝒳[1, + ∞) . (14)

Eqs. (13) and (14) can be considered as limit distributions of (8) and (9) respectively 

because the Gamma and Poisson distributions converge to a normal when the mean is large. 

In the deterministic approximation, sub-division and growth are not stochastic, yielding

XT = 2
λXT

d X0, (15)

YT = 2
λYT

d Y0 . (16)

Therefore the slope m can be expressed explicitly with the following expression:

m = ℙ(XT > f YT) = ℙ 2
λXt

d X0 − f 2
λYt

d Y0 > 0

× evaluated substituting ρ = 1 in Eq . (14)

The substitution ρ = 1 follows from the fact that ℙ(XT > f YT) is linear with respect to ρ, as 

in Eq. (10). The expression inside the brackets is a linear combination of two normal random 

variables and therefore is a new normal with known cumulative density function. Therefore

m = 1
2 1 − erf

f 2
(λY − λX)t

μY − Emin

2Emin + f 22
2(λY − λX)t + 1

σY
2

. (17)

This quantifies the bias in measurements of the prevalence of mixed infection, and how that 

bias depends on the relative growth rates of minority and majority type cells in culture.

Parameters: The parameters and random variables are given in Tables 1 and 2 respectively.
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3. Results

We computed and analysed the posterior distribution of the prevalence of mixed infection 

assuming that we observe nmix/n = 15% mixed infection in a study of n=500 patients. This 

baseline estimate of 15% represents a value of mixed infection that is in the range observed 

in other studies in high TB incidence areas in sub-Saharan Africa (Cohen et al., 2012; 

Hanekom et al., 2013). Fig. 2 displays a number of different posterior distributions of ρ 
related to the average number of minority type cells per sputum sample Emin. In particular, 

the smaller the Emin is, the larger the expectation of ρ is. This is because numerous 

opportunities for false negatives arise when the initial population of the minority strain is 

small or when its growth rate is relatively low. Our posterior estimate accounts for these 

possible sources of bias, and therefore the estimated mixed infection prevalence may be 

much higher than the observed 15%. When hosts with mixed infection consistently have a 

good representation of minority types in their sputum, there are fewer false negatives, m is 

higher, and the posterior estimate of ρ is closer to the fraction of cases in whom we detect 

mixed infection (nmix/n).

We evaluated the posterior distribution of the prevalence of mixed infection in a specific 

study (Warren et al., 2004) and in Fig. 3 we presented four possible posteriors for optimistic 

and pessimistic values of Emin and the growth rates. In the most optimistic scenario the 

posterior ρ is higher that 0.19 with probability 0.9 and has mean over 0.23. On the other 

hand a more moderate choice of parameters would indicate that 0.35 < ρ < 0.65 with 

probability 0.95.

Fig. 4a shows how the estimate of the prevalence of mixed infection E[ρ] varies for different 

values of the growth rates. From Fig. 4a we conclude that E[ρ] does not depend directly on 

λX and λY but on their difference λY – λX. This is confirmed by the deterministic 

approximation and in particular by the expression in Eq. (17) for m.

Fig. 4b illustrates the estimate of the prevalence of mixed infection E[ρ] using a contour plot 

in the plane (λY – λX, Emin). Fig. 4b demonstrates that the bias in detection of mixed 

infection is related to the number of minority-type bacilli the sputum sample and the 

difference of the growth rates. It is noteworthy that there is a region of rapid change in the 

estimate - for example in Fig. 4(b), if Emin is near 20, the estimate is very sensitive to λY – 

λX when the latter is near 0.1. This implies that, in some studies, the raw estimate nmix/n 
may be uninformative. Independent estimates of Emin and λY – λX would greatly improve 

our ability to interpret such studies.

In Fig. 5 the four contour plots of the posterior estimate of mixed infection E[ρ] for four 

different values of the sensitivity threshold f are compared. In each plot the percentage of 

detected mixed infection is nmix/n = 19% as in Warren et al. (2004). We can see that as f 
increases, there is a larger area where E[ρ] > 0.8. This confirms that the higher the 

sensitivity thresholds is, the higher the chances are of non-detecting mixed infection. 

Consequently if a percentage nmix/n is detected then it is likely that the real prevalence ρ is 

much higher, even close to 1. It is important to note that even if the sensitivity threshold is 

reasonably small, see the plot where f=0.01, the raw percentage nmix/n is still not a good 
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estimate for a large portion of the parameter set. We conclude that the correction factor 1/m 
is necessary both when f is small and when f is large.

4. Discussion

We developed a mathematical framework both for assessing the conditions under which 

current methods underestimate the prevalence of mixed infections and for quantifying the 

potential magnitude of this bias. We found that the prevalence of mixed infection is biased 

by a factor m which depends on the growth rates and the population of the minority strain in 

the initial samples. With the parameters we have used, for example, if initial mixed infection 

sputum samples had on average 80 minority type cells per mL, the posterior estimate of the 

prevalence of mixed infection is 33%, compared to the direct measurement of only 15%.

Our framework combines a binomial model for the specimen sub-division with a birth model 

for bacterial growth in culture, treating the populations of the minority and majority strains 

separately. Assuming that detection occurs if and only if the ratio between the two 

populations is greater than a threshold f, we merged the two distributions using the law of 

total probability. This allowed us to obtain a posterior estimate of the prevalence of mixed 

infection, represented by the parameter ρ. We found that stochastic effects during specimen 

handling may reduce the probability of detecting mixed infections. On the other hand if the 

sample size were increased, fewer stochastic effects would interfere with the detection of 

mixed infection and the raw percentage could be a more accurate estimate.

The parameter m, and therefore the distribution of ρ, is very sensitive to variation of λY and 

λX. The growth rates and, more importantly, their difference are usually not known and have 

important consequences for our ability to observe mixed infections in culture. Targeted 

experiments to measure the growth rates could help inform the extent of bias in estimation of 

mixed infection. These experiments could be done if it were possible to resample from 

initial cultures to obtain cells of both types to measure absolute and relative growth rates in 

culture. The parameter Emin, the expected number of minority cells in the specimen given 

that the host has mixed infection, also affects the distribution of ρ and therefore the bias, as 

shown in Fig. 2. In this paper we decided to treat Emin as a parameter and not as another 

random variable. In fact we have not modelled the specimen collection, but only the 

specimen handling: Emin has to be interpreted as reflecting the numbers of minority strain 

bacilli which, if present, will arise in the sputum sample, and this is beyond the scope of this 

paper. However, the diversity of TB present in a host is potentially complex and 

heterogeneously distributed, comprising some clonal diversity (Colijn et al., 2011) in 

addition to diversity resulting from multiple infections. It is reasonable to suspect that not all 

of the diversity will be represented in sputum samples, and that this is an additional source 

of bias in detecting mixed infections.

The model presented in this paper is limited in its complexity. Here, we only consider a 

minority and a majority strain while in reality there may be more than two different strains. 

Moreover we consider only strains that potentially can be detected with genotyping, i.e. 

strains with different MIRU types. In a real situation there can be a reinfection with bacteria 

having the same MIRU type and, therefore, it is impossible to detect such mixed infections 
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with genotyping. New studies which use methods with additional sensitivity for detecting 

variation between strains, such as whole genome sequencing, will likely be increasingly 

used to understand within-host diversity (Sun et al., 2012; Chan et al., 2013; Köser et al., 

2013). However, it is important to recognize that most studies will continue to be limited by 

the examination of sputum samples, which may not represent the actual degree of strain 

heterogeneity within a host (Cohen et al., 2011). These examples suggest that mixed 

infections can be even more frequent than in the results reported here. On the other hand, our 

results also suggest that when the population size of the minority strain is large, > 3%, bias 

is minimal and the detected prevalence of mixed infection is very close to the real 

prevalence.

Mixed infection is of interest because it is informative of aspects of the epidemiology of 

tuberculosis, but it may be particularly relevant to the estimation of the prevalence and 

infectiousness of drug-resistant TB strains. Drug-sensitive and drug-resistant strains of TB 

can compete for susceptible hosts, and can re-infect hosts who already have one strain of 

TB, resulting in mixed infections. A higher estimated incidence of mixed infection could 

therefore suggest new estimates of the extent of reinfection, and of the level of transmission 

of resistant strains.

Mixed infections have been detected in nearly 15% of cases in a number of studies (Cohen 

et al., 2012; Hanekom et al., 2013), and have been considered to play an important role in 

facilitating the stable coexistence of different strains (Colijn et al., 2009), in altering 

treatment outcomes (van Rie et al., 2005) and undermining the effectiveness of TB control 

programmes (Cohen et al., 2008). In this paper we provide strong evidence that estimates of 

the prevalence of mixed infection can be considerably higher than the raw detection 

frequency. This implies that mixed infection could play an even more important role in TB 

epidemiology than raw estimates would suggest.
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AUTHOR-HIGHLIGHTS

• We develop a mathematical model for study designs aimed to detect TB 

mixed infection.

• We obtain Bayesian posterior estimates of the prevalence of mixed infection.

• The bias between the posterior estimate and the observed prevalence is 

discussed.

• The posterior estimate can be substantially higher than the raw percentage.
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Fig. 1. 
Schematic of the process of sampling, culture and genotyping.
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Fig. 2. 
Posterior density distributions of the prevalence of mixed infection ℙ(ρ ∣ SD) when both the 

growth rates for minority and majority type cells equal 1 and for different values of the 

expected number of minority cells in sputum Emin. Bearing in mind that the larger the Emin 

is, the smaller the mean of the distribution is, the values of Emin that we used are 39, 25, 18, 

14, 11, 8, 4. We considered n = 500 patients, nmix = 75 of whom are detected with mixed 

infection. A naive estimate from the data would indicate a mixed infection prevalence of 

approximately nmix/n = 15%, corresponding to ρ = 0.15. However the posterior distribution 

has mean close to 0.15 only if Emin is large (Emin > 40). The posterior distributions have a 

much higher mean as Emin decreases.
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Fig. 3. 
Posterior density distributions ℙ(ρ ∣ SD) of the prevalence of mixed infection ρ, for different 

values of the expected number of minority cells in sputum Emin, one optimistic and one 

pessimistic, and two different combinations of the growth rates of minority and majority 

type cells, λX and λY. We considered n = 186 patients, nmix = 35 of whom are detected with 

mixed infection, as in Warren et al. (2004). The values for the growth rates are in line with 

the estimations in Sarkar et al. (2012). The raw estimate from the data would indicate a 

mixed infection prevalence of approximately nmix/n = 19%, corresponding to ρ = 0.19, 

however we observe that, even in the most optimistic scenario (green dashed line) the 

posterior ρ is higher that is 0.19 with probability 0.9 and has mean over 0.23. (For 

interpretation of the references to colour in this figure caption, the reader is referred to the 

web version of this paper.)
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Fig. 4. 
We calculated E[ρ], the expected prevalence of mixed infection, in a study with nmix = 75 

individuals detected with mixed infection among n = 500 patients. In (a) for fixed values of 

the average number of minority type cells in sputum, Emin = 25, and of the sensitivity 

threshold f = 0.01 we can see a numerical evidence that E[ρ] depends on the difference of 

the growth rates λY – λX and not on the two growth rates independently; this is confirmed 

by the deterministic approximation, Eq. (17). In panel (b) how E[ρ] varies taking into 

account the difference λY – λX on the x-axis and the parameter Emin on the y-axis is shown. 

From panel (b) we note that there is a large area (bottom-right) in the parameter space where 

E[ρ] is close to 1, estimate very far from the detected 0.15. Although E[ρ] decrease rapidly 

from 0.9 to 0.6, most part of the parameter space features an expected prevalence of mixed 

infection larger than 0.3.
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Fig. 5. 
Contour lines of the expected prevalence of mixed infection E[ρ] are drawn for four different 

values of the sensitivity threshold f of the genotyping method. Every plot shows three 

elevation levels (0.3, 0.5 and 0.8) when the difference of the growth rates λy – λX spans 

between 0 and 0.2 (x-axis) and the expected number of minority strain cells in sputum Emin 

spans between 10 and 40 (y-axis). To produce each plot we simulated a study involving 500 

patients among whom 75 are detected with mixed infection. From the comparison of the 

contour plot we evince that as the threshold f increases, a greater portion of the parameter 

space features a high (> 0.8) expected prevalence of mixed infection. On the other hand, 

when f is small, E[ρ] is closer to the detected prevalence 15%. This not only confirms that a 

small sensitivity threshold allows more precise results, but also shows that even when such 

threshold is small, the raw percentage 15% should be corrected to give a good estimate of 

the real prevalence of mixed infection.
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