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Abstract: Estimating cell type compositions for complex diseases is an important step to investigate
the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease
diagnosis and prevention. Here, we developed a computationally statistical method, referring to
Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA
sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell
RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene
expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene
expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e.,
Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to
accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and
macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.

Keywords: cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix
factorization; gene expression

1. Introduction

Accurate measurement of cell types in different tissues can often help our understanding of
disease etiology and potentially facilitate the early diagnosis and prevention for complex diseases,
especially for cancers [1–3]. For example, immune cells, such as CD8+ T cells, often proliferate in
special tissues surrounding various types of tumors, mediating the immune response against tumor
progression [4]. The traditional bulk samples are measured by the tissue-averaged gene expression
levels, resulting in overlooked cellular heterogeneity [5]. The recent advance of single-cell RNA
sequencing (scRNA-seq) technologies has allowed us to systemically characterize the heterogeneity of
diverse cell types residing in tissues [6–8]. However, scRNA-seq studies are expensive and are only
limited to a relatively small sample size [9], limiting the ability to investigate cellular heterogeneity
across multiple individuals [10]. In contrast, bulk RNA-seq studies measure gene expression profiles
for thousands of individuals [11–13]. Therefore, developing statistical methods for detecting cell type
heterogeneity of existing large-scale bulk RNA-seq data with high-resolution scRNA-seq data plays
an important role in understanding the interrelationship between cell type proportions and complex
diseases [14].

To date, over sixty computational tools have been developed for deconvolution analysis, and
these methods can be casted into two categories: reference-free and reference-based methods [15,16].
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Reference-free methods dissect the heterogeneous samples into their constituent cell types with
unsupervised schemes, i.e., without any prior reference knowledge [17,18]. For example, posted-
modified Negative Matrix Factorization (NMF) directly deconvolutes the gene expression levels of
heterogenous samples into the expected expression levels across the cell types and the corresponding
cell type proportions using the alternating least square method [19]; Convex Analysis of Mixtures
(CAM) identifies subpopulation marker genes from the original mixed gene expressions via convex
analysis [20], etc. In contrast, reference-based methods estimate cell type proportions with supervised
manner, i.e., with predefined cell type markers [21–23]. DeconRNASeq estimates mixed cell proportions
with signature matrix though quadratic programming [24]; Cell type of Disease (CoD) quantifies
disease-relevant immune cell compositions with a pre-defined list of 61 cell-surface markers based on
random forest classification methods [25], etc.

Among these deconvolution methods, both MUlti-Subject SIngle Cell deconvolution (MuSiC) [10]
and Cell-type Identification By Estimating Relative Subsets of RNA Transcripts (CIBERSORT) [26]
would be able to directly model both bulk RNA-seq data and scRNA-seq data to estimate cell
type proportions. However, both methods have several important limitations. First, they model
normalized gene expression values and effectively treat observed sequencing data as a continuous
outcome. However, the count nature of RNA-seq or scRNA-seq data display high mean-variance
dependency [27,28]. Failing to account for the mean-variance dependency of RNA-seq data is known
to lead to loss of power in sequencing data analysis [29,30]. Second, both methods treat the cell-type
specific gene expression levels which are estimated from scRNA-seq data as reference gene signatures.
However, bulk tissues display a heterogeneity of cell compositions across different individuals [10].
Failing to account for the heterogeneity of cell compositions across different individuals may lead to
distort the underlying truth biological signals. Third, no tailed methods have been developed to jointly
model both bulk RNA-seq data (mixture samples) and scRNA-seq data (cell type-specific expression).
Existing approaches often treat calculating cell type-specific gene expression levels and estimating
cell type compositions as two separate steps, despite the interconnection between these two different
types of analyses [10,26]. Failing to jointly model both types of data may lead to the sub-optimal cell
type proportion estimates. In addition, existing methods for signature matrix estimation relies on
predefined cell markers or preselected differential expression genes, which may filter out informative
genes, resulting in biased estimation of a signature matrix.

Here, we present a new computational tool, Multi-Omics Matrix Factorization (denoted as
MOMF), to jointly model bulk RNA-seq data and scRNA-seq data to detect cell type compositions
which potentially influence the survival processing effect. MOMF not only directly models raw
gene expression counts of both bulk RNA-seq data and scRNA-seq data to avoid the biased cell
composition estimations caused by normalization step, but also accounts for the heterogeneity of
cell compositions across different individuals to estimate the underlying true cell compositions in
bulk tissues. In addition, MOMF is not limited to bulk RNA-seq data and scRNA-seq data which are
from the same experiment/study, e.g., bulk RNA-seq data is from The Cancer Genome Atlas (TCGA)
database while scRNA-seq data can be from Gene Expression Omnibus (GEO) database. MOMF relies
on a nonnegative matrix factorization (NMF) framework [31], using the alternating direction method
of multipliers (ADMM) algorithm to infer the parameters in the model [32]. The overview and detailed
algorithm of MOMF are shown in Results and Materials and Methods sections, respectively. Finally,
we illustrate the benefits of MOMF with three in-depth analyses of real data applications, including
the investigation of the relationship between cell compositions and survival statutes in glioblastoma
(GBM), the relationship between cell compositions and survival statutes in colorectal cancer (CRC)
and the relationship between cell compositions and Hb1Ac level in type II diabetes (T2D). From the
results, we found that MOMF is able to accurately estimate two well-known cancer-related cell type
proportions, i.e., oligodendrocyte progenitor cells (OPCs) and macrophage cells for the survival of
GBM and CRC, respectively.
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2. Methods and Materials

2.1. Model and Algorithm

Here, we jointly model both scRNA-seq data and bulk RNA-seq data to deconvolute mixed bulk
RNA-seq data. The schematic view of the MOMF is shown in Figure 1. Specifically, we directly model
both scRNA-seq count matrix X and bulk RNA-seq count matrix Y using Poisson distribution, as well
as adding a prior distribution to account for the uncertainty of gene expression levels across different
individuals in bulk RNA-seq data for parameter estimation. In particular, the gene expression count
Yi j for i′th individual and j′th gene in bulk RNA-seq data, we consider

Yi j ∼ Poisson
(
µy

ij

)
, i = 1, 2, · · · , ny; j = 1, 2, · · · , p, (1)

where Yi j is the number of reads that measure the gene expression levels for j′th gene and i′th individual;
ny is the number of individuals; µy

ij is an unknoCng mean gene expression level for the i′th individual
and j′th gene; and p is the number of genes; Poisson(·) represents the Poisson distribution.

The gene expression count Xkj for k′th cell and j′th gene in scRNA-seq data, we consider

Xkj ∼ Poisson
(
µx

kj

)
, k = 1, 2, · · · , nx; j = 1, 2, · · · , p, (2)

where Xkj is the number of reads that measure the gene expression level for j′th gene and k′th cell; nx

is the number of cells; µx
kj is an unknown Poisson rate parameter that represents the underlying gene

expression level for the i′th cell and j′th gene; and p is the number of genes; Poisson(·) represents the
Poisson distribution.

In above models, we further decompose the unknown parameters µy
ij and µx

kj into two low-rank
matrices, i.e.,

µy
ij =

∑C

c=1
ΨicWcj + Ey

ij, i = 1, 2, · · · , ny; j = 1, 2, · · · , p, (3)

where Ψic is the cell type-specific proportion for the i′th individual and c′th cell type; C is the number
of cell types.

µx
kj =

∑C

c=1
ΛkcWcj + Ex

kj, k = 1, 2, · · · , nx; j = 1, 2, · · · , p, (4)

where Λkc is the low-dimension structure for the k′th cell and c′th cell type; C is the number of cell
type; the parameter Wcj is the element in the factor loading matrix that represents the underlying true
cell-type specific gene expression level; the factor loading matrix W is shared between bulk RNA-seq
and scRNA-seq data, allowing us to jointly model both data types and bypassing the estimation
uncertainty inevitably occur in previous deconvolution methods; Ey

ij and Ex
kj are the residual terms

that account for over-dispersion commonly observed in sequencing studies for bulk RNA-seq data and
scRNA-seq data, respectively.

To account for the uncertainty of gene expression levels W in estimation step, we first estimate a
reference gene expression panel hcj for each cell type, i.e.,

hcj =

∑
k∈Ωc Xkj∑nx
k=1 Xkj

, c = 1, 2, · · · , C; j = 1, 2, · · · , p, (5)

where Ωc is a set of the cells that belong to the cell type c. Then, we modeled the underlying true
cell-type specific mean gene expression levels as

Wcj ∼ TN
(
hcj, σ2

)
, c = 1, 2, · · · , C; j = 1, 2, · · · , p, (6)

where TN(·, ·) denotes the truncated normal distribution to guarantee that the cell type proportions are
the non-negative values; the parameter σ2 is an overall fixed parameter which is estimated from real
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data to measure the uncertainty. In above model, we are interested in estimating the parameter Ψic from
bulk RNA-seq data for downstream analyses. The task requires the development of computational
algorithms to infer the parameters. To reduce the computational burden of estimation, we used the
Alternating Direction Method of Multipliers (ADMM) algorithm which has been widely applied for
nonnegative matrix factorization problems [30] to infer the parameters.

To utilize the ADMM algorithm, we first construct the objective function

L = D
(
Y
∣∣∣µy

)
+ Tr

(
Uy(µy

−ΨW)T
)
+
ρ
2 ‖µ

y
−ΨW‖2F + Tr

(
UΨ(Ψ −Ψ+)

T
)
+

ρ
2 ‖Ψ −Ψ+‖

2
F + D

(
X
∣∣∣µx

)
+ Tr

(
Ux(µx

−ΛW)T
)
+
ρ
2 ‖µ

x
−ΛW‖2F+

Tr
(
UΛ(Λ −Λ+)

T
)
+
ρ
2 ‖Λ −Λ+‖

2
F + Tr

(
UW(W−H)T

)
+
ρ
2 ‖W−H‖2F,

(7)

where D(y
∣∣∣x) = ylog

( y
x

)
− y + x is the Kullback-Leibler (KL) divergence; Uy, Ux, UΨ, UΛ and UW are

element-wise coefficients; Ψ+ and Λ+ are the non-negative matrix for Ψ and Λ, respectively; ρ is the
penalty parameter; H is reference gene expression panel; W is underlying true gene expression panel;
Tr(·) denotes the trace of a matrix. The updating equations for the parameters are as follows:

Taking the derivative of Lwith respect to µy
ij and µx

kj, we have


µy

ij =
ρΨicWcj−Uy

ij−1+

√(
ρΨicWcj−Uy

ij−1
)2
+4ρYi j

2ρ

µx
kj =

ρΛkcWcj−Ux
kj−1+

√(
ρΛkcWcj−Ux

kj−1
)2
+4ρXkj

2ρ

(8)

Taking the derivative of Lwith respect to Ψic and Λkc, we have Ψ =
(
WWT + I

)−1(
YWT + Ψ+ + 1

ρ

(
UyWT

−UΨ
))

Λ =
(
WWT + I

)−1(
XWT + Λ+ + 1

ρ

(
UxWT

−UΛ
)) (9)

Taking the derivative of Lwith respect to W, we have

W =
(
ΨTΨ + ΛTΛ + I

)−1
(
ΨTY + ΛTX + H +

1
ρ

(
ΨTUy + ΛTUx

−UW
))

(10)

Updating Ψ+, and Λ+ with

Ψ+ = max
(
Ψ +

1
ρ

Uy, 0
)
, Λ+ = max

(
Λ +

1
ρ

Ux, 0
)

(11)

Updating the coefficients Uy, Ux, and UW with

Uy
← Uy + ρ(µy

−ΨW), Ux
← Ux + ρ(µx

−ΛW), UW
← UW + ρ(W−H) (12)

2.2. Simulation Designs

We performed benchmark experiments to examine the performance of MOMF and compared
it with existing approaches, MuSiC and CIBERSORT. The cell type proportion matrix Ψ and the
low-dimensional embedding matrix Λ were estimated from CRC data, including 590 individuals of
bulk RNA-seq data and 359 cells of scRNA-seq data (details of CRC data in Methods and Materials).
Following the model assumption, we first computed the expected gene expression levels of bulk
RNA-seq data E(Y) = ΨW and the expected gene expression levels of scRNA-seq data E(X) = ΛW,
where W was randomly generated from gamma distribution with shape parameter 2 and inverse scale
parameter 2 (i.e., R function rgamma). Then, we randomly generated Y and X from Poisson distribution
(i.e., R function rpois). We simulated 10,000 genes and varied the number of cell types C to be either 2
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(Epithelial and Macrophage), 3 (B cell, T cell and macrophage) and 5 (B cell, T cell, Epithelial, Fibroblast,
Macrophage) to examine the performance of different deconvolution methods. Finally, we utilized
Pearson correlation and mean of difference (MSE) between the estimated proportion p̂ to the ground
truth p to measure the performance of different methods.

2.3. Bulk RNA-Seq and scRNA-Seq Data for GBM

Bulk RNA-seq data of GBM were downloaded from TCGA, which were measured on 56,716
transcripts and 153 individuals. We used the Level-3 Illumina Hiseq data which have performed
quality control by TCGA workgroup. All data portals were accessed on March 2016. We filtered out the
samples that do not include the survival information or survival time that equals to zero. scRNA-seq
data (GSE67835) from brain tissue, consist of 466 cells, including astrocytes (62 cells), endothelial (20
cells), fetal quiescent (110 cells), fetal replicating (25 cells), hybrid (46 cells), microglia (16 cells), neurons
(131 cells), oligodendrocytes (38 cells) and OPC (18 cells). We selected the transcripts that are larger
than 5 and at least ten cells are expressed for each gene. Finally, we analyzed 144 individuals and 285
cells with common shared 11,120 genes for both bulk RNA-seq data and scRNA-seq data, respectively.

2.4. Bulk RNA-Seq and scRNA-Seq Data for CRC

Bulk RNA-seq data of CRC were downloaded from TCGA, measured on 56,716 transcripts and 616
individuals, including 453 Colon Adenocarcinoma (COAD) patients and 163 Rectum Adenocarcinoma
(READ) patients. We filtered out the samples that do not include the survival information or survival
time that equals to zero. Clinical information of both COAD and READ groups are described in Table 1.
We used the Level-3 Illumina Hiseq data which were performed with quality control that was done
by the TCGA workgroup. All the data portals were accessed on March 2016. Continuous variables
were summarized as mean ± standard deviation (SD), and categorized variables were described by
frequency (n) and proportion (%). Endpoint is regarded as the death in the survival analysis. We used
the log-rank test to compare the survival time of both COAD and READ groups.

scRNA-seq data (GSE81861) from CRC consist of 364 cells, including epithelial (272 cells),
fibroblasts (17 cells), endothelial (4 cells), B (17 cells), T (34 cells), mast (1 cell) and macrophage (19
cells) [33]. Finally, we analyzed 590 individuals and 359 cells with common shared 33,888 transcripts
for both bulk RNA-seq data and scRNA-seq data, respectively.

Table 1. Demographic distribution of discovery and validation study populations.

Variables COAD (N = 435) READ (N = 155) p

Age (years), mean ± SD 67.30 ± 12.97 65.33 ± 11.49 0.089
Gender, n (%) 0.680

Female 202 (46.43) 69 (44.52)
Male 233 (53.56) 86 (55.48)

Tumor stage (%) 0.166
0-I 240 (55.17) 76 (49.68)

II-IV 184 (42.30) 71 (45.81)
Unknown 11 (2.53) 8 (5.16)
Race (%) 7.25 × 10−4

White 207 (45.59) 77 (47.59)
Non-white 70 (41.08) 6 (6.5)
Unknown 158 (13.33) 71 (45.81)

Survival year (month)
Median 2532 1741 0.3

Dead, n (%) 97 (22.23) 25 (16.13)
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2.5. Bulk RNA-Seq and scRNA-Seq Data for T2D

We directly downloaded both processed T2D bulk RNA-seq and scRNA-seq data from MuSiC
study [10]. For bulk RNA-seq data, we filtered out bulk individuals that do not have Hb1Ac level
information. Based on clinical standard, Hb1Ac levels less than 6.0% is classified as normal sample
while larger than 6.5% is classified as diabetic sample. For scRNA-seq data, we used five cell types,
including the beta cell (171 cells), the delta cell (59 cells), the gamma cell (75 cells), and the ductal cell
(135 cells), for downstream deconvolution analysis. Finally, we analyzed 77 individuals and 883 cells
with common shared 14,934 transcripts for both bulk RNA-seq data and scRNA-seq data, respectively.

2.6. Software for Analyses

All calculations for the pooling of the effect estimates were performed using R program (version
3.6.1). TCGA data were downloaded by TCGAbiolinks package (version 2.13.3). The k-means clustering
algorithm was performed on inferred cell type proportions using R function kmeans (iter.max = 10,000).
Log-rank tests were performed by survival package (version 2.43.1). KM method was performed by
survminer package (version 0.4.4) to illustrate the survival curves of different clusters. We used biomaRt
package (version 2.40.1) to transfer Ensembl to gene symbol. MuSiC was performed by MuSiC R
package (version 0.1.0) with default parameter settings. CIBERSORT was performed by the webserver
tool (https://cibersort.stanford.edu/). MOMF requires the raw count gene expression matrices from
both bulk RNA-seq and scRNA-seq studies, the penalty parameter ρ of ADMM algorithm was 2 and
the number of iterations was 5000. Our method was implemented by the Rcpp as an R package.
The source code of all experiments is freely available on GitHub https://github.com/sqsun/MOMF.

3. Results

3.1. Method Overview

We present a new computational method, MOMF, to estimate the cell type proportions across
multiple individuals. An overview of MOMF is provided in Materials and Methods, and the details of
the ADMM algorithm are provided in Supplementary Text. We also illustrate the schematic of the
MOMF in Figure 1. Briefly, MOMF jointly models both bulk RNA-seq count matrix Y and scRNA-seq
count matrix X to infer the cell compositions Ψ of bulk individuals and low-rank matrix Λ of scRNA-seq
data via matrix factorization, i.e., Y = ΨW + Ey and X = ΛW + Ex, where Ey and Ex represent the
residual errors for bulk RNA-seq data and scRNA-seq data, respectively. The common shared gene
specific expression matrix W between both bulk RNA-seq data and scRNA-seq data will be inferred
from a reference signature expression level to accounting for the heterogeneity of cell compositions
across different individuals. Our model starts with scRNA-seq data measured by a few hundreds of
thousands cells and assumes that the cell type labels for the cells are known. MOMF deconvolutes the
mixture bulk RNA-seq individuals with cell type-specific expression levels to obtain the proportions of
the cell types in each individual.

Here, MOMF is able to overcome three drawbacks that MuSiC and CIBERSORT have: (1) it directly
models mean-variance dependence of raw gene expression counts, avoiding to introduce systematic
errors that may lead to spurious biological signals in downstream analysis; (2) it indirectly models the
underlying true signature gene expression levels that follows mean cell type-specific expression levels
to account for the heterogeneity of cell compositions across different individuals (i.e., Equation (6) in
Methods and Materials), and variance σ2 in Equation (6) is to account for the degree of uncertainty;
(3) it jointly models the bulk RNA-seq data and scRNA-seq data to avoid the sub-optimal cell type
proportion estimates (Methods and Materials). To demonstrate the stability of MOMF, we performed
MOMF on the same data. We found that MOMF displays high correlation with two independent runs
(i.e., R2 = 0.99) (Supplementary Figure S1). Overall, MOMF is a more flexible model to estimate the
cell type proportions of bulk RNA-seq data.

https://cibersort.stanford.edu/
https://github.com/sqsun/MOMF
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Figure 1. Overview of Multi-Omics Matrix Factorization (MOMF) framework. MOMF integrates
bulk RNA-seq data and scRNA-seq data, to deconvolute the two expression matrices by the shared
information and estimate the cell-type proportions for each individual. Specifically, MOMF jointly
models both bulk RNA-seq count matrix Y and scRNA-seq count matrix X to infer the cell compositions
Ψ of bulk RNA-seq data and low-rank matrix Λ of scRNA-seq data via matrix factorization, i.e.,
Y = ΨW + Ey and X = ΛW + Ex, where W is the common shared gene expression levels and Ey and Ex

represent the residual errors for bulk RNA-seq data and scRNA-seq data, respectively. The heatmaps
are used to illustrate the gene expression level (Y and X); cell specific expression levels (bulk RNA-seq:
Ψ; scRNA-seq: Λ); and gene specific expression levels (W). The color bar along with the heatmaps of
scRNA-seq data represents the cell types. ny is the number of individuals; nx is the number of cells; p is
the number of common shared genes; C is the number of cell types.

3.2. Normalization Distorts Raw Expression Counts

As we mentioned in the benefits of MOMF, proper normalization is a critical step that affects
the estimation of the cell type proportions in deconvolution analysis. In bulk RNA-seq analysis,
normalization has been extensively investigated [28,30,34]. In scRNA-seq data analysis, normalization
is still an intractable problem [35–37]. The most popular normalization of scRNA-seq data is the log
transformation of count per million (CPM) [38], i.e., log2

(
yi j/N j + c

)
where yi j is the gene expression

level for i′th cell and j′th gene, Ni is the read sequencing depth, and c is a pseudocount. The logarithm
transformation of CPM (logCPM) may distorts the raw gene expression counts and introduces the
zero-inflation artifacts due to the large number of zero counts [39]. For example, all the zeros remain
log2 (1 + 0) = 0, but the ones turn into value log2 (1 + 1/3000 × 106) = log2 (334) ≈ 8.4, and the counts
that 10 will have value log2 (3340) ≈ 11.7. The large, artificial gap between zero and nonzero values
makes the log-normalized data appear zero-inflated. To illustrate this phenomenon, we examined
the distribution of an example gene (ENSG00000180725) in CRC scRNA-seq data before and after the
logarithm transformation with varying normalizations (Supplementary Figure S2).

3.3. Simulations

We first evaluated the performance of different deconvolution methods on simulation studies
with ground truth. To do so, we applied three methods, MOMF, MuSiC, and CIBERSORT to simulated
datasets (Methods and Materials) and evaluated the performance of different methods based on the
Pearson correlation and difference between estimated cell type proportion and ground truth. In the
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analysis, we varied the number of cell types to be either 2, 3 or 5 to examine their influence on the
accuracy of cell compositions. The evaluation results are summarized in Figure 2, Supplementary
Figure S3 and Supplementary Figure S4.

From the results, we found that MOMF achieves the best performance across all parameter settings.
For example, with the simulated data based on three cell types (B cells, T cells and Macrophage cells),
the Pearson correlation R generated by MOMF is 0.992 and MSE is 0.040, while MuSiC (R is −0.753 and
MSE is 0.611) and CIBERSORT (R is −0.213 and MSE is 0.334) do not fare well (Figure 2). With the
small number of cell types (i.e., 2), all three methods are able to generate high Pearson correlations
(Supplementary Figure S3). However, the scatter plots show the vertical patterns due to many zeros or
ones and proportions were estimated by MuSiC and CIBERSORT. The Pearson correlation will decrease
when increasing the number of cell types (i.e., 5). For example, the Pearson correlation R generated by
MOMF is 0.618 and MSE is 0.135, while MuSiC (R is −0.368 and MSE is 0.490) and CIBERSORT (R is
−0.692 and MSE is 0.395) do not fare well (Supplementary Figure S4).
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Figure 2. Simulation results. The simulated data based three cell types, B cells, T cells, and Macrophage
cells. (A) The scatter plot of ground truth and cell type proportion estimated by MOMF; (B) The boxplot
to show the difference between ground truth and cell type proportion estimated by MOMF (C) The
scatter plot of ground truth and cell type proportion estimated by MuSiC; (D) The boxplot to show the
difference between ground truth and cell type proportion estimated by MuSiC (E) The scatter plot of
ground truth and cell type proportion estimated by CIBERSORT; (F) The boxplot to show the difference
between ground truth and cell type proportion estimated by CIBERSORT. R: Pearson correlation.

3.4. Human Glioblastoma (GBM) Data

GBM is the most common primary brain tumor in adults [40–42]. GBM is characterized by the
presence of hyperplastic blood vessels and the presence of small areas of necrotizing tissue that are
surrounded by anaplastic cells [43]. Therefore, our primarily goal here is to characterize how cell
type proportions influence the survival time of GBM. We first applied MOMF on bulk RNA-seq
data from GBM, which consist of 153 individuals and 60,486 transcripts and scRNA-seq data from
healthy human brains, which consist of nine cell types and 18,752 transcripts (details in Materials and
Methods). These cell types include astrocytes (62 cells), endothelial (20 cells), fetal quiescent (110 cells),
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fetal replicating (25 cells), hybrid (46 cells), microglia (16 cells), neurons (131 cells), oligodendrocytes
(38 cells) and OPC (18 cells) [44,45]. Following the preprocessing (Materials and Methods), for bulk
RNA-seq data, we finally performed the analyses on 144 individuals along with median survival time
(MST) 333 days; for scRNA-seq data, we finally performed the analyses on 285 cells from six different
cell types, including astrocytes (62 cells), endothelial (20 cells), microglia (16 cells), neurons (131 cells),
oligodendrocytes (38 cells) and OPC (18 cells). Finally, 11,120 transcripts commonly shared between
both bulk RNA-seq data and scRNA-seq data were performed in the experiments.

We applied three deconvolution methods, MOMF, MuSiC, and CIBERSORT on both datasets to
estimate the cell compositions across all GBM individuals. Average cell type proportions of astrocytes,
endothelial, microglia, neurons, oligodendrocytes and OPC estimated from MOMF are roughly 3.6%,
25.2%, 4.9%, 4.7%, 3.2% and 57.9%, respectively; from MuSiC are 20.3%, 32.3%, 14.6%, 28.3%, 4.5% and
0.0%, respectively; and from CIBERSORT are 31.5%, 27.4%, 12.8%, 6.6%, 8.8% and 12.4%, respectively
(Figure 3A). From the results, we found that MOMF provided higher OPCs cell type proportion (57.9%)
than MuSiC (0.0%) and CIBERSORT (12.4%). OPCs are highly associated with cellular differentiation
for oncogenic transformation in RCAS/tv-a model [41] and can be broadly arrayed in an adult brain
where they constitute the largest pool of dividing cells [46]. The second-high cell type proportion is
from endothelial cells. The cell type proportions from three methods MOMF, MuSiC, and CIBERSROT
are 25.2%, 32.3% and 27.4%, respectively. The connection between neural stem cells and the endothelial
compartment plays an important role in GBM. A significant proportion of the vascular endothelium
has a neoplastic origin with increasing endothelial cells [47,48]. The high cell type proportions of
OPCs might not be necessary to show the high performance of MOMF due to the ground truth of
cell type proportion is being unknown. To validate the cell type proportions estimated from three
different methods, we performed the association between the cell type proportion and the survival
time of its individuals as another criterion to measure the performance of different deconvolution
methods. MOMF produced statistically significant Kaplan-Meier (KM) plot with four potential
subtypes (NCL1 = 57, NCL2 = 33, NCL3 = 44, NCL4 = 10) of GMB cancer (p-value = 0.007, log-rank test)
(Figure 3B). With short median survival time, the cluster CL4 identified by MOMF has poor-prognosis
for subtype of GBM cancer. While the p-value provided by MuSiC and CIBERSORT are 0.065 (NCL1 = 60,
NCL2 = 34, NCL3 = 19, NCL4 = 31) and 0.170 (NCL1 = 52, NCL2 = 39, NCL3 = 26, NCL4 = 27), respectively
(Figure 3B), failing to identify the potential subtype of GMB cancer.
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Figure 3. Analyzing GBM bulk RNA-seq data with brain scRNA-seq data. (A) The violin plot is to
show the effect proportion of each cell type from three different deconvolution methods. We found that
the OPCs and endothelial cells are enriched by MOMF, which means that the two cell types potentially
contribute to the survival of GBM. (B) The KM plots are used to show the survival analysis for four
clusters from the TCGA bulk RNAseq data. We use log-rank test to compare the distributions of four
clusters. MOMF grouped the GBM samples into four subtypes (p-value = 0.007). The cluster CL4 is the
poor-prognosis. Number at risk in the table shows the number of survival individuals at each 250 days.
Number of censoring in the table shows censoring time of each individual. The numbers labeled in
different colors in the two tables indicate the different subtypes.

3.5. Human Colorectal Cancer (CRC) Data

We next applied MOMF on CRC RNA-seq data, which consist of gene expression measurements
from 56,716 transcripts and 616 individuals; scRNA-seq data which were measured on 364 cells from
seven subpopulations (details in Materials and Methods). These seven subpopulations include T cells
(34 cells), B cells (17 cells), epithelial cells (272 cells), fibroblast cells (17 cells), macrophage cells (19
cells), endothelial (4 cells), mast (1 cell) [33,49]. Following the preprocessing (Materials and Methods),
for bulk RNA-seq data, we analyzed 590 individuals along with a median survival time (MST) of 2,532
days; for scRNA-seq data, we finally analyzed 359 cells of five cell types, T cells (34 cells), B cells (17
cells), epithelial cells (272 cells), fibroblast cells (17 cells) and macrophage cells (19 cells). Finally, we
examined 33,888 common shared transcripts on both bulk RNA-seq data and scRNA-seq datasets.

To systematically benchmark the performance of MOMF, MuSiC and CIBERSORT, we applied them
to CRC studies to estimate the cell-type proportion of bulk RNA-seq data across all individuals. We first
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applied MOMF, MuSiC and CIBERSORT to estimate the cell type proportions of CRC bulk individuals
(Figure 4A). From the results, we found that MOMF provides a higher macrophage cell proportion
(14.9%), rather than MuSiC (2.0%) and CIBERSORT (5.1%). Tumor-associated macrophages (TAMs)
are important components of the tumor microenvironment [50]. Macrophage cells may contribute to
tumor growth and progression by promoting tumor cell proliferation and invasion, fostering tumor
angiogenesis and suppressing antitumor immune cells [51]. The second high contribution of cell type
proportion is the epithelial cell subpopulation (Figure 4A). The cell type proportions from MOMF,
MuSiC and CIBERSORT are 49.7%, 90.0% and 73.6%, respectively. Small and large intestinal epithelium
culture in vitro shows prolonged intestinal epithelial expansion with proliferation and multilineage
differentiation [52]. The high cell type proportions of macrophage cells might be not necessary to
show the high performance of MOMF due to the ground truth of cell type proportion is unknown.
To validate the cell type proportions estimated from three different methods, we further performed the
association analysis between the cell type proportion and its survival data, and the KM plot shows
median survival time, number at risk and number of censoring of clustering results from the three
methods. MOMF produced statistically significant KM plot with four potential subtypes (NCL1 = 3,
NCL2 = 90, NCL3 = 277, NCL4 = 220) of CRC (p-value = 0.0013, log-rank test) (Figure 4B). With short
median survival time, the cluster CL1 identified by MOMF has poor-prognosis for the subtype of CRC.
While the p-value generated by MuSiC and CIBERSORT are 0.31 (NCL1 = 23, NCL2 = 241, NCL3 = 228,
NCL4 = 98) and 0.098 (NCL1 = 246, NCL2 = 113, NCL3 = 27, NCL4 = 204), respectively (Figure 4B).
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Figure 4. Analyzing CRC bulk RNA-seq data with colorectal cancer scRNA-seq data. (A) The violin
plot is to show the effect proportion of each cell type from three different methods. We found that
the epithelial, T and macrophage cells are enriched by MOMF, which means that the two cell types
potentially contribute to the survival of CRC. (B) The KM plots are used to show the survival analysis
for four clusters from the TCGA bulk data. We used log-rank test to compare the distributions of four
clusters. MOMF grouped the CRC samples into four subtypes (p-value = 0.0013). The cluster CL1
shows the poor-prognosis. Number at risk in the table shows the number of survival individuals at each
1,000 days. Number of censoring in the table shows censoring time of each individual. The numbers
labeled in different colors in the two tables indicate the different subtypes.

3.6. Human Type II Diabetes (T2D) Data

We finally applied MOMF on pancreatic islet studies: the bulk RNA-seq data consist of gene
expression measurements of 32,581 transcripts and 89 individuals; the scRNA-seq data consist of 25,453
genes and 1097 cells from 14 subpopulations (details in Materials and Methods). The 14 subpopulations
include alpha (443 cells), beta (171 cells), delta (59 cells), gamma (75 cells), ductal (135 cells), acinar (112
cells), co-expression (26 cells), endothelial (13 cells), epsilon (5 cells), mast (4 cells), MHC class II (1
cell), PSC (23 cells), unclassified (1 cell) and unclassified endocrine (29 cells) [33,49]. Following the
preprocessing (Materials and Methods), for bulk RNA-seq data, we totally analyzed 77 individuals
along with hemoglobin A1c (HbA1c) level; for scRNA-seq data, we analyzed 883 cells from five cell
types, including 443 alpha cells, 171 beta cells, 59 delta cells, 75 gamma cells and 135 ductal cells. We
examined 14,934 common shared genes on both bulk RNA-seq data and scRNA-seq data.
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We first applied MOMF, MuSiC and CIBERSORT on pancreatic islets studies to recover the cell
type proportion of bulk RNA-seq data across all individuals. Because bulk RNA-seq data contain
T2D and control individuals, we examined the cell type proportions separately. From the results,
we found that MOMF generated high ductal cell type proportions across T2D bulk individuals, and
the percentage of ductal cell in T2D individuals is higher than that in normal individuals/controls
(Figure 5A). Specifically, the recovered cell type proportions of MOMF, MuSiC and CIBERSORT are
97.4%, 53.1% and 35.8% in T2D individuals and 96.3%, 39.9% and 22.9% in controls, respectively.
From the previous studies [53], our model validated the findings that the increased pancreatic ductal
replication is strongly associated with T2D. The variance of cell type proportions estimated from
MuSiC and CIBERSORT are extremely large. It is presumably due to both methods that are not able to
account for the heterogeneity of cell compositions across different individuals.

To further validate the effectiveness of MOMF, MuSiC and CIBERSORT, we performed the
association between cell type proportions and HbA1c levels. With cell type proportion results, we
performed simple linear regression (lm function in R) with HbA1c levels, controlling for gender, age
and body mass index (BMI) as the covariates. From the results, we found that the beta cell proportion
shows the negative correlation with HbA1c levels while ductal cell proportion displays the positive
correlation with HbA1c levels (Figure 5B). Both MOMF and MuSiC show the strong association
with beta cell proportions, i.e., p-value = 0.004 and p-value = 0.006, respectively (Figure 5B), while
CIBERSORT is weak, i.e., p-value = 0.683 (Figure 5B). A combination of increasing insulin resistance
and reduced mass or dysfunction of the beta cells is the potential factor of T2D [54].
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Figure 5. AnalyzingT2D bulk RNA-seq data with pancreatic scRNA-seq data. (A) The violin plot is to
show the effect proportion of each cell type from three different methods. beta and ductal cells are
enriched from MOMF, which means that the two cell types potentially contribute to the survival of
CRC. (B) The scatter plots are used to show the results of the associations between Hb1Ac level and cell
proportion as adjust the covariates. The estimated beta cell proportions by both MOMF and MuSiC are
strongly associated with Hb1Ac (p-value = 0.004 and 0.006).

4. Discussion

In this paper, we presented a new deconvolution method, MOMF, which directly models raw
sequencing count data and accounts for the heterogeneity of cell compositions across different
individuals. We have illustrated the benefits via performing deconvolution analysis through MOMF on
both sequencing data (bulk RNA-seq and scRNA-seq). We have shown that MOMF is the only method
currently available that can jointly model bulk RNA-seq and scRNA-seq data, providing the accurate
measurement of cell type proportions which are highly associated with its corresponding survival times.
With three in-depth analyses of real data applications, MOMF displays more reasonable and convincing
results than existing two deconvolution methods, MuSiC and CIBERSORT. In contrast, MuSiC does
not perform well on rare cell type proportion estimates, i.e., the inferred cell type proportions from
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bulk RNA-seq are way off (very close to zero). Overall, MOMF is a useful and efficient tool, which is
implemented as an R package for analyzing cell type compositions in tissue-specific gene expressions.

We primarily focused on using both RNA-seq data that are all modelling raw gene expression
counts. One of the potential applications of MOMF is to deconvolute the mixed gene expression
data which are from microarray experiments (i.e., continuous data). Therefore, exploring MOMF for
continuous-counts or continuous-continuous scenarios is probably going to be part of our further work.
In this case, MOMF will be useful to analyze the gene expression datasets. It can be easily extended to
other multi-omics data analyses which can be either continuous data or count data [55,56]. This will
probably be a very promising research direction in our further work.

MOMF is not without limitations. Perhaps the biggest limitation of MOMF is that the cell
types are required to be labeled before applying MOMF. For scRNA-seq data, where there is no
cell type label information, one solution is to first utilize the existing clustering methods, such as
scNBMF or Seurat [57,58], to specify the cell type label for each cell, and then run MOMF with labeled
scRNA-seq data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/10/1161/s1,
Supplementary Text: MOMF Deconvolution Method, Supplementary Figure S1: The correlation of cell type
proportion estimated by MOMF with two independent runs on CRC data; Supplementary Figure S2: An example
to show the distortion of normalized gene expression caused by logarithm transformation; Supplementary
Figure S3: Simulation results with 2 cell types; Supplementary Figure S4: Simulation results with 5 cell types.
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