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Objective: To investigate whether the brain networks changed in patients with acute 
peripheral herpes zoster (HZ).
Methods: We reviewed the EEG database in Jianyang People’s Hospital. Patients with acute 
HZ (n=71) were enrolled from January 2016 to December 2020. Each included subject 
underwent a ten-minute and 16-channel EEG examination. Five epochs of 10-second EEG 
data in resting-state were collected from each HZ patient. Five 10-second resting-state EEG 
epochs from sex- and age-matched healthy controls (HC, n=71) who reported no history of 
neurological or psychiatric disorders and visited the hospital for routine physical examina-
tions were collected. Brain network and graph theory analysis based on phase locking value 
parameter and functional ICA were performed using a self-writing Matlab code and the 
LORETA KEY tool.
Results: Compared with the HC group, the HZ patients showed significant altered brain 
networks. The graph theory analysis revealed that the clustering coefficient and local 
efficiency of full band in HZ patients were lower than those in HC group (P<0.05). In 
beta band, the global efficiency and local efficiency of HZ patients group decreased, 
compared with healthy group (P<0.05). The functional ICA showed that three components 
showed significant differences between the two groups. In component 2, HZ patients showed 
excess superior frontal gyrus (BA10) neuro oscillation in delta band and less medial frontal 
gyrus (BA 11) neuro oscillation in beta and gamma bands than that in HCs. And for 
component 3, the alpha band of the HZ patients presented increased neuro activities in 
superior frontal gyrus (BA 11) and decreased neuro activities in occipital lobe (BA 18). In 
component 4, the inferior frontal gyrus (BA 47) showed excess activity in the left hemi-
sphere and reduced activity in the right hemisphere in delta band, compared with HC group.
Conclusion: Altered brain networks exist in resting-state EEG data of patients with acute 
HZ. The changes of EEG brain networks in HZ patients are characterized by decreased 
global efficiency and local efficiency in beta band. Moreover, the spontaneous oscillation of 
some brain regions involving pain management and the connectivity of default mode net-
work changed in HZ patients. Our study provided novel understanding of HZ from an 
electrophysiological view, and led to converging evidence for treatment of HZ with neural 
regulation in future.
Keywords: herpes zoster, brain network, graph theory analysis, independent component 
analysis, phase locking value

Introduction
Peripheral herpes zoster (HZ) is mainly characterized by blistering dermatomal rash 
along the nerve and moderate to severe pain in a variety of skin, such as burning, 
stabbing, soreness, bloating, or allodynia.1 It is caused by the reactivation of latent 
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varicella zoster virus (VZV) in spinal or cranial sensory 
ganglia of people who have been primary infected with 
VZV.2 The incidence rate of HZ ranged 3–5/1,000 per year3 

and 29.8% of HZ patients leave over the postherpetic 
neuralgia,4 which could cause negative effects on the 
mood and sleep quality of HZ patients.5

The question how pain is processed in the brain has 
been an enduring puzzle. A large number of studies 
focused on changes in pain modulation pathways and 
brain regions in HZ patients.6,7 Recently, an increasing 
number studies have recognized that pain may reorganize 
the brain networks.8,9 The brain network was used to 
describe the connectivity between interest nodes of the 
brain regions,10,11 which has been widely used in brain 
network research of neurological diseases such as epi-
lepsy and Alzheimer’s disease.12–16 Some studies using 
functional magnetic resonance imaging (fMRI) have 
found altered functional networks patients with peripheral 
HZ, which may indicate that the pain processing in HZ 
patients were different from normal subjects.17,18 These 
studies on HZ are biologically meaningful considering 
that their findings may provide new understandings on 
the multiple dimensions of pain processing. However, 
few studies concentrated on brain function changes and 
pain modulation mechanisms in patients with acute HZ 
using EEG.

A widely accepted brain network analysis method: 
Independent component analysis (ICA) is a classical elec-
troencephalogram (EEG) signal analysis technique, which 
separates scalp electrical signals into their additive inde-
pendent or source components.19 All the components acti-
vated in the results are statistically independent of each 
other to identify independent spatial brain networks and 
their interactions in frequency bands.20 Another commonly 
used phase interaction measure is the Phase Locking Value 
(PLV), the absolute value of the mean phase difference 
between two signals from pairs of electrodes as a complex 
unit-length vector.21 The PLVs reflect information transfer 
from one brain region to other regions.22 In addition, graph 
theory analysis applied to the constructed PLV matrices is 
useful in identifying differences in brain network 
patterns.23 Considering that EEG signals are a complex 
sum of several sources of electrical brain activity, we may 
acquire a deeper understanding of the neurobiological 
mechanisms of HZ using these analysis methods involving 
brain networks. Therefore, we decided to use ICA, PLV, 
and graph theoretical analysis to explore the changes of 
brain networks in patients with acute HZ.

In the present study, we hypothesized that brain networks 
altered in those patients with acute HZ. Thus, we aimed to 
investigate whether and how EEG brain networks changed in 
HZ patients. This is practical considering that in future we 
may adopt novel neural regulation protocols to treat acute HZ.

Materials and Methods
Participants
Seventy-one patients who were diagnosed with acute HZ 
from January 2016 to December 2020 in Jianyang People’s 
Hospital were included. Inclusion criteria: 1) a diagnosis 
of acute herpes zoster by specialized clinicians and aged 
30–80 years; 2) the onset time of acute HZ less than 14 
days; 3) the patients reported no other diseases might 
affect their EEG patterns; 4) no previous history of ner-
vous system disease, mental disease, or head trauma; and 
5) MRI scanning on brain showed negative intracranial 
results. Additionally, 71 age- and sex-matched healthy 
control subjects who visited our hospital for routine phy-
sical examinations were enrolled as the healthy control 
(HC) group. No history of neurological or psychiatric 
disorders was reported in the controls. All included sub-
jects were right-handed. No identifiable features for all 
subjects were reported in the current study. Written 
informed consent was obtained from the included subjects 
before data collection and review of the medical records. 
The study was approved by the Ethics Committee of the 
Jianyang People’s Hospital. This study was conducted 
following the 2008 Helsinki declaration.

EEG Data Acquisition
Ten-minute scalp EEG data were collected from all 
included subjects. The EEG data were recorded using 
a 16-channel analog recorder (NT9200, Xintuo, China) 
continuously for ca. 10 minutes according to the interna-
tional 10–20 system. The electrodes (FP1, FP2, F3, F4, F7, 
F8, T3, T4, T5, T6, C3, C4, P3, P4, O1, and O2) were 
placed using a quantified ruler. The impedance of each 
electrode was kept at less than 10 kΩ. The sampling rate 
was 500 Hz. During the recording time, subjects were 
asked to keep relaxed with their eyes closed.

EEG Preprocessing
All the original EEG data were exported as European Data 
Format (EDF). The EEG was bandpass filtered between 1 
Hz and 45 Hz using a hamming window after the FIR 
filter. Then the electromyogram artefacts and muscle 
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artifacts were completely removed using an EEGlab plu-
gin-in AAR (http://germangh.com). In this tool, the blind 
source separation algorithm was employed to perform 
electrooculogram (fast ICA algorithm) corrections auto-
matically. The EEG matrix with a low fractal dimension 
would be identified as electrooculogram components and 
would be removed automatically.24 And the blind source 
separation algorithm based on canonical correlation ana-
lysis also performed electromyogram (fast ICA algorithm) 
corrections automatically.25

Then, the EEG was recomputed to the common aver-
age reference. The preprocessed EEG data was cut out and 
translated to text format for subsequent analysis. We 
obtained five 10-second-epochs of EEG in the resting 
state for each subject. The EEG data were preprocessed 
using EEGlab (v14.1.1, http://sccn.ucsd.edu).

PLV Based Brain Network Analysis
Electrophysiological signals can be usefully characterized 
in terms of their oscillatory components, through band- 
pass filtering into the standard frequency bands (delta, 
theta, alpha, beta, and gamma). Interactions can then be 
analyzed using measures of within and between fre-
quency-band coupling between electrode pairs.26 Since 
the brain is a nonlinear dynamical system, we can use 
phase locking to quantify the interactions of pairs of 
electrodes.

The absolute value of the average phase difference 
between two signals is characterized by PLV, which can 
be used to measure the degree of synchronization of EEG 
signals in a certain frequency band. This method has been 
descripted in other studies.27,28 In brief, the PLV is 
defined as

PLV tð Þ¼
1
N

∑N
n¼1exp j Δφn tð Þð Þð Þ

�
�
�

�
�
� 1 

where N denotes the total number of sampling points, 
and Δφn tð Þ ¼ φx tð Þ � φy tð Þ

� �
is the instantaneous differ-

ence between signal x and y at time t. The PLV takes 
values on [0, 1] with 0 reflecting the case where there is 
no phase synchronization and the two signals are indepen-
dent and have no obvious synchronization, and 1 where 
the degree of synchronization between the two signals is 
the strongest.

In this study, seven frequency bands were defined: 
delta band (1–4 Hz), theta band (4–8 Hz), alpha1 band 
(8–10 Hz), alpha2 band (10–13 Hz), beta band (13–30 
Hz), gamma band (30–45 Hz), and full band (1–45 Hz). 

Then, a 16×16 PLV matrix was constructed for each sub-
ject and used for later graph theory analysis.

Graph Theory Analysis
In this study, the 16 EEG channels were used as nodes for 
each subject in each frequency band. And the previously 
constructed 16×16 PLV matrix was used for graph theory 
analysis. We selected the path length, global efficiency, 
clustering coefficient, and local efficiency of the PLV net-
work attribute for characterizing brain network topology. 
The path length, which referred to the average distance 
between any two nodes, represented the ability of the net-
work to transmit signals. The global efficiency referred to 
the reciprocal average of the shortest path length, which 
represented the efficiency of signal transmission between 
network nodes and the local efficiency was the trend to 
measure the clustering of nodes with strong connections in 
a network. These graph-based indices were computed using 
MATLAB functions embedded in the Brain Connectivity 
Toolbox (http://www.brain-connectivity-toolbox.net).

The Functional Independent Component 
Analysis (fICA)
To analyze the differences of resting state functional net-
work between two groups, an exact Low Resolution 
Electromagnetic Tomography (eLORETA) functional 
ICA method was employed. eLORETA is a widely used 
method to localize multiple distributed cortical sources of 
EEG data in three-dimensional space.29 The LORETA 
method has been previously validated in many real 
human EEG data. The present used eLORETA 
(v20190226) is an improvement over earlier related 
versions of LORETA29 or Standardized LORETA 
(sLORETA).30 ICA is a mathematical decomposition 
method that separates the EEG signal into a set of statis-
tically independent components. All the technical details 
can be found in other papers.31,32

In brief, first, the EEG signals were transformed to coss- 
spectral EEG matrix for each frequency band using the 
discrete Fourier transform. Then, these transformed files 
were used for computing the spectral density for each cor-
tical voxel and for each frequency band using the algorithm 
described in detail in previous literature.31,33 Thus, we 
obtained six eLORETA images of cortical spectral density 
across six frequency bands (delta band (1–4 Hz), theta band 
(4–8 Hz), alpha1 band (8–10 Hz), alpha2 band (10–13 Hz), 
beta band (13–30 Hz), gamma band (30–45 Hz)). These data 
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correspond to a “function” of space (cortical voxel) and 
frequency. After that, the data from each subject in two 
groups is concatenated. Thus, a matrix including two dimen-
sions was created, in which one dimension corresponds to 
different subjects, and the other dimension corresponds to 
space-frequency. This process was known as functional data 
analysis. When independent component analysis is used to 
this matrix, general networks are found. This method is 
defined as functional ICA. Each functional network is com-
posed of six images, one for each frequency band.32 Those 
components with Z scores larger than or equal to “3” were 
selected.

The present study was intended to achieve an optimal 
number of components. We tested a series number from 
“6” to “16” and found 12 components would obtain the 
maximum differences between two groups. Thus, the opti-
mal number of components were defined as “12” in this 
study.

Statistical Evaluations
Measurement data were represented by mean±standard 
error of the mean (SEM). Two sample t-tests were used 
for detecting the age differences and Chi-square test was 
applied for comparison of gender ratio. Two sample 
t-tests with FDR correction were used for comparison of 
the PLV connections, network properties, and ICA com-
ponents between the two groups. P<0.05 was considered 
as statistically significant.

Results
Demographic results
Seventy-one HZ patients (aged 53.56±14.58 years) were 
included in this study. At the same time, 71 cases matched 
for age and sex served as healthy controls (aged 53.55 
±15.11 years). All 71 HZ patients received acyclovir 0.5 
gram Q.8H. treatment. There was no significant difference 
in gender and age between the two groups (Table 1).

Brain Network Connectivity
Compared with the healthy group, the connections 
between bilateral anterior temporal and right central 
regions in herpes zoster patients were decreased in 
beta band (Figure 1A). No significant survival differ-
ent connections were found in other frequency bands 
after FDR corrections between the two groups (not 
shown).

Network Properties
We computed four parameters of network properties, 
which were based on the constructed PLV weighted 
matrix, including clustering coefficient, shortest path 
length, global efficiency, and local efficiency. Compared 
with the HC group, the clustering coefficient and the local 
efficiency of HZ patients decreased in full band (1–45 Hz) 
and the clustering coefficient, the global efficiency, and the 
local efficiency of HZ patients group decreased in beta 
band (13–30 Hz). The shortest path length, however, 
increased in HZs in this band (Figure 1B and C). For 
other frequency bands, no significant differences were 
found between the two groups.

ICA Networks
Three components, numbered 2, 3, and 4, with the maximum 
differences between HZ and HC groups were obtained in the 
ICA analysis. There were greatest differences in delta, beta, 
and gamma band between two groups in component 2 
(P<0.05, t=2.42). Compared with HCs, superior frontal 
gyrus (SFG) (BA10) in HZs showed excessed beta oscillation, 
and medial frontal gyrus (BA 11) showed reduced neuro 
oscillation in beta and gamma bands. For component 3, com-
pared with the HC group, the HZ patients in alpha1 and alpha2 
bands showed increased activity in SFG (BA 11) and 
decreased activity in occipital lobe (BA 18) (P<0.05, 
t=2.13). In component 4 patients with HZ, the inferior frontal 
gyrus (BA 47) showed excess activity in the left hemisphere 
and reduced activity in the right hemisphere in the delta band, 
compared with HC group. Furthermore, left middle frontal 
gyrus (MFG) presented excess theta activity (P<0.05, t=2.49) 
(Table 2). For other components, no significant differences 
were found between the two groups (Figure 2, Table 2).

Discussion
In the present study, we applied graph theory analysis and ICA 
analysis to detect the potential abnormal changes of EEG in 
HZ patients. We confirmed that the brain networks changed in 

Table 1 Demographics of Subjects Included in the Study

HZ Group 
(n=71)

HC Group 
(n=71)

χ2/t P

Male:female# 29/42 32/39 0.259 0.61

Age (years, mean±SD)## 53.56±14.58 53.55±15.11 −0.01 0.99

Acyclovir 71/71 – – –

Note: #Chi-square test, ##Two sample t-test. 
Abbreviations: HZ, herpes zoster; HC, healthy control.
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patients with acute HZ, which was characterized by decreased 
clustering coefficient, global efficiency, local efficiency, and 
increased shortest path length in the beta band. Furthermore, 
some brain regions involved pain management, such as SFG 
and MFG. These findings deepen our understanding of HZ 
from brain electrophysiological aspects.

PLV analysis showed that the synchronization of bilat-
eral anterior temporal and right central EEG signals in β- 

band decreased in patients with acute HZ. Previous studies 
have confirmed that the temporal lobe cortex is involved in 
the modulation of pain in the brain,34–36 and the β- 
oscillation in the central-parietal lobe may play a role in 
pain perception and processing.34–37 The decrease of inter- 
neuronal connectivity in acute HZ plays an important role 
in pain perception and modulation.

Network property analysis based on graph theory can 
explain the neural activity in the brain from the perspective 
of network and information processing.20 We noted that the 
acute HZ patients showed reduced global and local effi-
ciency, clustering coefficient, and increased shortest path 
length in beta band. These findings from graph analysis 
indicated that acute HZs might show potential deficits in 
cognition considering that beta was involved in various cog-
nitive functions.38,39 The change of network attribute in acute 
HZ patients might be used as a biomarker for identification of 
cognitive function changes. However, the changes of cogni-
tive function in patients with herpes virus infection of the 
peripheral nervous system were not well recognized in clin-
ical practice. Further studies should be designed to explore 
the cognitive function evolutions in patients with HZ.

Transient thermal pain stimuli could elicit significant 
activity in MFG.40 In present study, however, we noted that 
the acute HZ patients showed reduced beta and gamma 
activity in MFG. These differences might be caused by the 
different nature of pain or detection methods in two studies. 
Moreover, the reduced beta and gamma oscillation in MFG 
might indicate that the MFG in HZ patients showed inhibi-
tion responses to HZ pain. Another brain region, SFG, also 
been reported to anticipate some types of pain,41,42 showed 

Figure 1 Comparisons of PLV network and graph theory properties between HZ and HC patients*. PLV network connectivity in beta band (13–30 Hz) (A); Comparison of 
network properties in full band (1–45 Hz) (B) and beta band (13–30 Hz) (C). The blue line in A indicates that the connections between bilateral anterior temporal, right 
anterior temporal, and right central regions in HZ patients decreased when compared with HCs in beta band. No significantly different connection survival was found in 
other frequency bands after FDR corrections between the two groups. For B and C, the tail on each bar indicates the corresponding standard error of the mean (SEM). For 
other frequency bands, no significant differences were found between the two groups (not shown in the figure). *All the results were computed using two sample t-test and 
corrected with FDR method at level P<0.05.

Table 2 The Location Assignments of Peak Voxels for fICA*

Components and 
Frequency Band

Peak MNI 
Coordinates

Lobe BA Structure

x y z

Components 2

Delta 20 65 −5 Frontal 10 SFG

Beta 5 65 −15 Frontal 11 MFG

Gamma 5 65 −15 Frontal 11 MFG

Components 3

Alpha1 −15 65 −15 Frontal 11 SFG

−5 −100 15 Occipital 18 Cuneus

Alpha2 −15 65 −15 Frontal 11 SFG

−5 −100 15 Occipital 18 Cuneus

Components 4

Delta −50 40 −10 Frontal 47 Left IFG

50 25 −15 Frontal 47 Right IFG

Theta −45 50 −10 Frontal 11 MFG

Notes: *These three components showed significant differences between HZ 
patients and the healthy group (P<0.05). Other components in the two groups 
showed no significant differences. The macro locations of these regions are shown 
in Figure 2. The location assignments were performed based on eLORETA methods 
using LORETA KEY software in MNI space. 
Abbreviations: SFG, superior frontal gyrus; MFG, medial frontal gyrus; IFG, 
inferior frontal gyrus.
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excessive delta and alpha activity. These findings might 
suggest that the balance between excitation and inhibition 
has altered in acute HZ patients.

The changes of brain electrical activity might function in 
network patterns in HZ. Previous fMRI studies have reported 
that recuperating from HZ accompanyies default model net-
work (DMN) connectivity alterations.1 In the present study, it 
was noted that the frontal lobe anti-correlated with occipital 
lobe in alpha band of component 3. Parts of these regions were 
assignment within the range of DMN regions. This result 
suggested that the changes of networks in HZ 
patients involved DMN. In fact, the altered DMN has been 
found in multiple pain.43,44 This change might be related with 
pain intensity.45

Study limitations include a relatively small sample. We 
did not address longitudinal effects of HZ on EEG, such as 
the associations between pain intensity and EEG networks. 
In addition, all patients were treated with acyclovir med-
ication, which may have had an impact on brain networks. 
In future research, we will continuously collect cases and 
overcome these limitations for a more comprehensive 
understanding of HZ from brain electrical activity aspects.

Conclusions
Our study confirmed that the altered brain networks exist 
in resting-state EEG data of patients with acute HZ. The 
changes of EEG brain networks in HZ patients are char-
acterized by decreased global efficiency and local 

Figure 2 ICA components showing significant differences between herpes zoster patients and healthy controls. Component 2 (A), component 3 (B), and component 4 (C). 
The images are shown in MNI space. The red color indicates increased neuronal activity and the blue color indicates decreased neuronal activity. The small triangles along 
the coordinate axes indicated the maximum electric neuronal activity. The corresponding peak coordinates are displayed in the upper part of each band image. The location 
assignments of each component are shown in Table 2.
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efficiency in beta band. Moreover, the spontaneous oscil-
lation of some brain regions involving pain management 
and the connectivity of default mode network changed in 
HZ patients. Our study provided better understanding the 
mechanisms of HZ from electrophysiological view, and 
led to converging evidence for treatment of HZ with neural 
regulation in future.

Abbreviations
HZ, Herpes zoster; HC, healthy control; EEG, electroen-
cephalogram; BA, Brodmann area; ICA, Independent 
component analysis; eLORETA, exact Low Resolution 
Electromagnetic Tomography; FDR, False Discovery 
Rate; SFG, Superior frontal gyrus; MFG, middle frontal 
gyrus; DMN, default model network.
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