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THE BIGGER PICTURE Material microstructures are small structural features intermediate between atoms
andmacroscopic products with often decisive impact on the performance of engineeringmaterials. Amajor
goal of modern materials science is to improve material properties through the control of microstructure
evolution duringmaterial processing and service. Microstructure evolution is traditionally simulated by con-
tinuum models based on partial differential equations. Here we demonstrate that convolutional recurrent
neural networks, a type of machine-learning method, can be trained to predict various microstructure evo-
lution phenomena with significantly improved efficiency. The method can learn the evolution rules from
microstructure image sequences and make reliable predictions even with incomplete information about
the systems or underlying mechanisms. This work illustrates the increasing power of data-driven ap-
proaches to address the computational challenges in microstructure modeling.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Microstructural evolution is a key aspect of understanding and exploiting the processing-structure-property
relationship ofmaterials. Modelingmicrostructure evolution usually relies on coarse-grained simulationswith
evolution principles described by partial differential equations (PDEs). Here we demonstrate that convolu-
tional recurrent neural networks can learn the underlying physical rules and replace PDE-based simulations
in the prediction of microstructure phenomena. Neural nets are trained by self-supervised learning with im-
age sequences from simulations of several common processes, including plane-wave propagation, grain
growth, spinodal decomposition, and dendritic crystal growth. The trained networks can accurately predict
both short-term local dynamics and long-term statistical properties of microstructures assessed herein and
are capable of extrapolating beyond the training datasets in spatiotemporal domains and configurational and
parametric spaces. Such a data-driven approach offers significant advantages over PDE-based simulations
in time-stepping efficiency and offers a useful alternative, especially when thematerial parameters or govern-
ing PDEs are not well determined.
INTRODUCTION

Material microstructures are mesoscale structural features that

serve as an indispensable link between atomistic building blocks

and macroscopic properties, leading to direct impacts on the

processing-structure-property relationship of engineered mate-

rials. Tailoringmaterial properties through controlledmicrostruc-
This is an open access article under the CC BY-N
ture evolution under nonequilibrium conditions during material

processing or service, including ubiquitous phenomena such

as solidification, solid-state phase transformations, and grain

growth, is arguably a cornerstone of modern materials science.

The ability to understand and predict microstructure evolution

has therefore long been a pivotal goal of computational materials

design.
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Due to time and length scales well beyond the capability of

molecular dynamics, simulations of microstructure evolution

often rely on coarse-grained models such as partial differential

equations (PDEs) as employed in the phase-field method.1–4

Nevertheless, this approach also faces notable challenges. First

of all, microstructure simulations employing PDEs remain fairly

expensive. In the temporal dimension, strict upper limits on the

minimum time-step size are dictated by the stability of numerical

schemes that employ explicit time integration for nonlinear

PDEs. Likewise, implicit time-integration methods handle larger

time steps at the expense of additional inner iteration loops at

each step. In addition, while in principle governing PDEs can

be derived from the underlying thermodynamic and kinetic con-

siderations, identifying, parametrizing, and validating PDEs in

practice require significant efforts. For complicated or less stud-

ied materials, the evolution rules might be either not fully under-

stood or too complex to be described by tractable PDEs.

We propose amachine-learning (ML) method as an alternative

to microstructure evolution modeling. Recent progress in ML,

and deep neural networks5 in particular, enables a data-driven

approach to solving PDEs in place of the traditional numerical

method.6–18 Based on statistical learning with big datasets, ML

models can be applied without explicit prior knowledge of the

physical mechanisms. With proper training, it is possible for

ML algorithms to infer ‘‘hidden’’ parameters from the input

microstructure images and identify the correct evolution trajec-

tory. Moreover, ML models allow much larger time stepping to

achieve significant speed in the temporal domain. For example,

Raissi and coworkers used a single four-layer neural network6,7

to obtain the solutions to the Burgers equation, which otherwise

require 500 Runge-Kutta iterations. Breen et al. tackled the noto-

riously difficult three-body problem with a 10-layer neural net,

skipping thousands of smaller time steps.15 Similarly, coarser

spatial grids may be used in ML models, as will be shown in

this work. Although previous studies reveal the power of neural

nets in rediscovering and solving different types of differential

equations, deep learning of microstructure evolution, which

can be described by PDEs in 2 + 1 (i.e., 2 spatial and 1 temporal)

or 3 + 1 dimensions, remains a challenging subject.

In this work, we apply the convolutional recurrent neural

network (RNN) to predict the spatiotemporal evolution of micro-

structure represented by two-dimensional (2D) image se-

quences. RNNs are neural nets designed to predict temporal

data sequences with a hidden memory unit.19,20 With the devel-

opment of effective variants such as the long short-termmemory

(LSTM) to address the vanishing gradient problem during back-

propagation,21 RNNs have found widespread success in natural

language processing,22,23 speech recognition,24 and computer

vision.25–27 Recently, LSTM combined with convolutional neural

nets (CNNs) has been proposed for predictive learning of spatio-

temporal sequences.28 Compared with other neural network ar-

chitectures designed to emulate 1 + 1 and 2 + 1 PDE solutions,

convolutional LSTM employs CNN to efficiently extract latent

spatial features of the system, which is advantageous in

capturing the spatial correlation inherent in the evolution dy-

namics. Among several variants of convolutional RNNs devel-

oped in recent years,29–31 the Eidetic 3D LSTM (E3D-LSTM)

model31 goes a step further by applying convolution to both

the spatial and the temporal dimensions (i.e., 3D convolution
2 Patterns 2, 100243, May 14, 2021
[3D-Conv] for 2 + 1 systems) for integrated spatiotemporal

feature extraction. Such a design facilitates a deeper coupling

between the spatial and the temporal domains and enables

improved performance in image sequence prediction in both

short and long times. We choose the E3D-LSTM model for this

work and use the terms E3D-LSTM and RNN interchangeably

hereafter.

We assessed RNN’s learning ability and predictive power in

the context of four well-known evolution phenomena with

increasing levels of complexity: plane-wave propagation, grain

growth, spinodal decomposition, and dendritic crystal growth.

To facilitate comparison with physics-based models, the

training datasets were generated from PDE-based simulations

or explicit mathematical functions, whose behavior is well un-

derstood. A focus of our study is to examine to what degree

RNNs can grasp and extract the evolution rules from the micro-

structure images it sees. To this end, extensive and stringent

tests are devised to evaluate how well RNNs generalize and

extrapolate the learning within the spatiotemporal domain

and configurational and parametric spaces. We find that the

properly trained RNN is able to extend the predictions up to

10 times the time spans of the training data, with significantly

larger time-step sizes than used in the PDEs, and to systems

of larger dimensions. It can forecast the evolution of systems

with parameters not included in the training sets or initial con-

figurations that exhibit significantly different statistical distribu-

tions from the training images. In addition to the excellent pixel-

wise comparison between the ground truth and short-term pre-

dictions, the RNN accurately captures the statistical properties

of microstructures in the examples considered (e.g., average

size, grain, particle size, or interface curvature distribution) in

the long term. The satisfactory performance of the RNN in these

tests provides compelling evidence that it is capable of

‘‘emulating’’ the physical principles underlying diverse micro-

structure evolution phenomena, which explains why it is able

to make reliable predictions well beyond the scope of training

data. Such extrapolation capability further improves the RNN’s

efficiency by allowing it to be trained with a relatively small data

size. Our work illustrates the promise of ML approaches in gen-

eral as a useful alternative to physics-based simulations of

microstructure evolution.

Broadly speaking, the use of ML algorithms has grown very

rapidly in materials science in recent years.32–35 They have

seen diverse applications ranging from the discovery of new

materials36–40 to the predictions of materials’ properties,41–45

the development of accurate and efficient potentials for atom-

istic simulations,46–49 microscopic and spectroscopic data anal-

ysis and processing,50–62 and effective inference of a material’s

properties from a limited experimental dataset.63,64 A large num-

ber of these works are devoted to material microstructure, with

encouraging results, including microstructure classification and

quantification,50–54,65–67 image segmentation,55,56 predictions

of microstructure-property relations,57,68–70 mapping process-

ing-microstructure relations,71–74 microstructure optimiza-

tion,75–77 and equilibrium configuration prediction.78 Datasets

in these works are mainly in the form of static microstructure im-

ages. This work focuses on revealing the important temporal

correlation between images of microstructures along their evolu-

tion trajectory.
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Figure 1. Application of the RNN to predict-

ing plane-wave propagation

(A) Examples of output frames predicted by the

trained RNN (P) based on 10 input frames in

comparison with the ground truth (G).

(B) RMSE (black) and SSIM (blue) of the predictions

averaged over 200 testing cases as a function of the

frame index j.

(C) Relative errors of the wave-propagation

parameters (jkj, u, and b) inferred from the

predicted images.

ll
OPEN ACCESSArticle
RESULTS

We employed numerical simulations to generate sequences of

64 3 64-pixel images as training datasets for four classical

examples of evolution phenomena, i.e., plane-wave propaga-

tion, grain growth, spinodal decomposition, and dendritic crystal

growth. With varied complexity, they represent a good combina-

tion of testing problems for evaluating the capability of the RNN

in predicting microstructure evolution.
Plane-wave propagation
Before delving into problems pertinent to real materials, we first

tested the RNN with a simple toy model: plane-wave propaga-

tion dynamics of a scalar field c explicitly described by the

following expression:

cðx; y; tÞ = 1

2
sin

�
kxx + kyy + ut + q0

�
expð�btÞ+ 1

2
;

(Equation 1)

where k
!

= (kx, ky ) is the wave vector, q0 is a random phase, and b

is a decay exponent. We used Equation 1 to generate image se-

quences, each of which consisted of 200 frames at a time interval

of 0.005 between two adjacent frames starting at t = 0. The pa-

rameters in Equation 1 were randomly chosen for each

sequence: 2p=
��� k!���˛½0:3;0:6�, 2p=u˛½0:03;0:06�, 2p= b˛ ½1:5;6�,

and q0˛½0;2p�. Among the generated sequences, 80 were

used for training, 20 for validation to evaluate model conver-

gence during training, and 100 for testing. Each simulation
sequence was divided into staggered 20-

frame training clips (i.e., frames 1–20, 11–

30, etc.), each of which represented a

training data point. For testing, the RNN

was used to predict the next 50 frames

based on an input of 10 consecutive

frames. A total of 1,500 tests were

performed.

Figure 1A illustrates two representative

tests, which visually show little difference

between the ground truth and the predic-

tions. Figure 1B shows the pixel-wise

comparison based on the root-mean-

square error (RMSE) and structural simi-

larity index measure (SSIM)79 averaged

over the 1,500 tests. Both RMSE and

SSIM vary between 0 and 1, and lower
RMSE or higher SSIM scores indicate better agreement be-

tween the predictions and the ground truth. It can be seen

that the RNN exhibits high pixel-wise accuracy in the short

term within the length of training clips, where RMSE stays

below 0.5% and SSIM above 99%. In the longer term, both

RMSE and SSIM vary with time at a greater rate, but remain

below 5% (or above 93%) for up to 50 output frames. As a

more revealing measurement of how well the RNN recognizes

the wave-propagation rules, the parameters in Equation 1

were extracted from the predicted images and compared

with their ground truth values. As shown in Figure 1D, the pre-

dicted
��� k!��� and u differ from the ground truth by less than 2%,

but b shows a larger deviation up to 20%. A probable reason for

the less accurate prediction of b is that b characterizes a slower

decaying mode of wave motion and may require longer training

sequences to learn precisely its temporal behavior.

Overall, the RNN exhibits excellent performance when applied

to the simple plane-wave propagation problem. Next, we test it

against more realistic microstructure evolution problems.

Grain growth
Grain growth describes the increase in the average grain size in

polycrystals with time to reduce the excess energy associated

with grain boundaries. During the process, some grains grow,

while others shrink and disappear, leading to a persisting drop

in the number of grains in the system. The growth or shrinkage

rate of a grain in 2D polycrystals is determined by its number

of sides N according to the famous von Neumann-Mullins or

‘‘N-6’’ rule:80,81
Patterns 2, 100243, May 14, 2021 3
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dA

dt
= Mg

p

3
ðN� 6Þ; (Equation 2)

where A is the grain area, and M and g are the grain boundary

mobility and energy, respectively. Equation 2 states that any

grains with fewer than six neighbors will shrink, and those

with more than six sides will grow at a rate proportional to

N� 6.

We generated the training data by performing isotropic 2D

grain growth simulations with a phase-field mode82 (see exper-

imental procedures). Simulations were performed on a 256 3

256 grid with periodic boundary conditions to accommodate

a sufficient number of grains. Subsequently, the simulation im-

ages were downsampled to 64 3 64 pixels by averaging. Each

simulation employed the same parameters but started with a

different initial configuration constructed by Voronoi tessella-

tion with 100 random seeds. It output a 20-frame clip after a

relaxation period, which was intended to remove the artifacts

in the polycrystalline structure. The time interval between two

adjacent frames corresponded to 80 PDE time steps. The first

frame in a clip contained ~75 grains and the last one had ~45

grains. A total of 2,400 clips were prepared for training and

600 for validation during training.

After training, the RNN was subjected to a set of more chal-

lenging extrapolation tests than in the wave-propagation prob-

lem. First, we applied the trained model to predict longer image

sequences with less input information. The RNN was required to

predict 199 frames based on only one input frame. Theoretically,

this was feasible, as grain growth obeys the dissipation dy-

namics described by PDEs of the first order in time (Equation 8).

Here the length of the test sequences was 10 times that of the

training clips, and more significantly, 90% of the output frames

(frame index j = 21–200) depicted coarsened polycrystalline

states never seen by the RNN during training. Figure 2A presents

two representative tests, which show that the RNN does a very

good job in the temporal extrapolation. The predictions and

ground truth were difficult to distinguish visually in the short

term, e.g., at frame index j = 30, but visible local structure differ-

ence emerged at the later stage. Figure 2C shows that the

average RMSE of 1,000 tests rises and stabilizes around 20%,

while SSIM decreases to ~0.4 at the 200th frame. Despite the

increasing difference, the predicted polycrystalline structures

were free of any noticeable artifacts throughout the sequences.

We note that the accumulation of the discrepancy between the

ground truth and the predictions is inevitable in the long term.

This is because the grain boundary connectivity bifurcates

upon grain disappearance (see examples in Figure S1), which

leads two initially identical configurations on to divergent evolu-

tion pathways. As such, statistical measurement of the similarity

between the two polycrystalline configurations is moremeaning-

ful than pixel-wise comparison, and the RNN performs very well

in this regard. As shown in Figure 2D, the error in the predicted

average grain area CAD of 1,000 testing cases remained below

5%, while CAD had a 5-fold increase. Figure 2E shows that the

predictions and the ground truth also have very good agreement

in the grain size distribution. The Euclidean distance between

them is only 0.71% at j = 50 and still has a low value of 1.61%

at j = 200. TheRNN thus faithfully reproduced the statistical char-
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acteristics of polycrystals even after a 10-fold extrapolation in

time. Further extension of the prediction to 1,000 frames is

presented in Figures S2A and S2B, which show that the RNN still

managed to produce realistic looking microstructure and

exhibited good agreement with the ground truth in grain size dis-

tribution. A nonnegligible portion of the trials had only one grain

remaining in the system beyond j > 1,000. While we intentionally

limited the training data to a small time span here to examine the

RNN’s extrapolating capability, its long-time prediction accuracy

can be improved by including data from the later evolution stage

into the training sets.

Next, we subjected the RNN to spatial extrapolation tests by

asking it to predict grain growth in a system much larger than

the training images. The 3D-Conv in E3D-LSTM operates on in-

puts and internal states with a fixed filter size (5 3 5 3 2 used in

this work) that is independent of the input image size. After the

weights in the 3D-Conv filters in the network are trained by 64

3 64 images to learn the spatiotemporal correlation of the sys-

tem, the same filters can slide over larger images to predict their

evolution. Therefore, the evolution rules learned by themodel are

expected to be extendable to larger domains. Figure S3 presents

the results of the grain growth kinetics on a 2563 256 mesh pre-

dicted by the RNN trained on 643 64-pixel images. The predic-

tions exhibit similar RMSE and SSIM compared with those for

the smaller 64 3 64-pixel domain. The spatial extensibility of

the RNN means that there is no need for retraining the model

when applying it to problems of different sizes, which is a very

appealing feature for practical applications.

As the third type of extrapolation test, the RNN was applied to

predict the evolution of artificial polycrystalline configurations

qualitatively different from the training data. Figure 2B show-

cases such an example, in which the system contains four

orderly arranged four-sided grains embedded within four larger

grains.

Its statistical difference from the training configurations is

quantified by their distinct two-point correlation functions gðrÞ
as shown in Figures S4A and S4B. The individual grains in the

artificial polycrystal have a strong spatial correlation as reflected

by the sharp peaks in gðrÞ. Despite the notable morphological

difference from those generated by random Voronoi tessellation,

its evolution is accurately captured by the RNN.

The above tests demonstrate the RNN’s capability to gener-

alize and extrapolate its learning in the spatiotemporal and

configurational spaces. This is a strong indication that it has

grasped the evolution rules, which is further supported by other

evidence. Grain growth consists of two elementary processes:

the continuous shrinkage or expansion of grains without chang-

ing their number of sides, N, and the discontinuous changes in

the grain boundary connectivity when grains switch edges or

disappear. The former process is governed by the N� 6 rule

(Equation 2) resulting from the curvature-driven boundary move-

ment. In Figure 3A, we show the average growth rates for grains

with different N using data from all 1,000 tests. The predictions

faithfully reproduce the N dependence of the ground truth. On

the other hand, Figure 3B illustrates all four possible topological

events that could occur to the grain boundary network upon

grain disappearance or edge switching in a 2D system. Many in-

stances of these events exist in the training dataset and are
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Figure 2. Application of the RNN to predict-

ing grain growth

(A) Examples of RNN output frames (P) based on

one input frame in comparison with the ground truth

(G).

(B) RNN prediction of the evolution of an artificial

polycrystalline configuration, in which four small

four-sided grains are embedded in larger six-sided

grains.

(C) RMSE (black) and SSIM (blue) of the predictions

averaged over 1,000 cases as a function of the

frame index j.

(D) Time evolution of the average grain area in 1,000

testing cases predicted by the RNN versus ground

truth.

(E) Grain size distribution at j = 50 and 200 predicted

by the RNN versus ground truth. Effective grain

radius was calculated by
ffiffiffiffiffiffiffiffiffi
A=p

p
.
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observed by the RNN model during training. The numerical

examples in Figure 3B show that the trained RNN is able to

correctly predict each one of them. Therefore, the satisfactory

performance of the RNN derives from its learning of the

elementary steps of the grain growth process.

Spinodal decomposition
As a third example of microstructure evolution phenomena, we

trained the RNN to predict spinodal decomposition, which is
the phenomenon of spontaneous phase

separation in unstable binary or multi-

component systems widely found in alloys

and polymer blends.83 Mathematically, the

spatiotemporal evolution during spinodal

decomposition is described by the Cahn-

Hilliard (C-H) equation84 (Equation 9 in

experimental procedures), which is numer-

ically solved to generate the ground truth in

this work. Compared with grain growth,

spinodal decomposition is a more com-

plex evolution phenomenon, since it in-

volves not only curvature-driven interface

migration but also coupled long-range

diffusion of chemical species. The

complexity is also reflected by the fourth-

order nonlinear C-H equation versus the

second-order phase-field PDEs for grain

growth.

Spinodal decomposition consists of two

distinct stages: a fast composition modu-

lation growth stage, followed by a slower

coarsening stage, at which the length scale

of the phase-separation pattern gradually

increases due to the Gibbs-Thomson

effect.83 Due to their very different time

scales, image sequences with a fixed

time interval cannot effectively resolve

both stages at the same time. Here we

chose to train the RNN to recognize the

system evolution in the second coarsening
stage. Training and validation data were generated from 480 and

120 simulations, respectively, which employed the same param-

eters but different initial states. The system started from a uni-

form binary mixture with one of three compositions at c0 =

0.25, 0.5, and 0.75, which produced different types of domain

morphologies. A random noise of amplitude Dc = 0.01 was

added to the initial configurations to trigger phase separation.

Each simulation produced 100 images, and the system

became phase separated after 2 or 3 frames. Similar to the
Patterns 2, 100243, May 14, 2021 5
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Figure 3. Evidence of the RNN capturing the evolution rules of grain

growth

(A) The RNN accurately predicts the dependence of the grain growth rate

CdAðNÞ=dtD on the number of grain sides N. CdAðNÞ=dtD is averaged over grains

of the same N in all of the testing cases.

(B) Examples from testing cases show that the RNN correctly predicts the four

possible topological events when a grain disappears or loses an edge to its

neighbors. Red circles highlight where the events occur in the predicted

images.
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wave-propagation problem, these frames were divided into

staggered 20-frame training clips (i.e., frames 1–20, 11–30, .,

81–100). The time interval between 2 adjacent frames corre-

sponded to 370 time steps on average in phase-field simula-

tions, which employed an implicit PDE solver with variable

time-step size. To ensure conservation of mass during evolution,

the E3D-LSTM model was modified to enforce that the average

of the image pixel values remained unchanged after passing

through the neural net.

We performed temporal extrapolation tests on the trained

model in a way similar to the case of grain growth. The RNN

was asked to output 200 frames, or 10 times the training clip

length, given 1 input frame that was taken from the 50th frame

of a simulation starting from a uniform mixture. Seventy-five

percent of the output frames (j = 51–201) thus fell outside the

time span of the training sets. In addition, predictions based on

10 input frames were also tested. The results are presented in

Figure S5 and show similar performance compared with those

with 1 input frame only, which indicates that the information con-

tained in one initial frame is sufficient for the RNN to correctly

project the evolution trajectory. Figure 4A showcases several ex-

amples from a total of 510 tests with 170 each having c0 = 0.25,

0.5, or 0.75. The short-term predictions up to j ~ 50 closely
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resemble the ground truth, which was quantified by the low

RMSE (<0.06) and high SSIM (>0.97) in Figure 5A. While the

discrepancy gradually accumulates with time and visible differ-

ences appear at the later stage, the long-term predictions are

realistic looking and no artifacts can be discerned. In addition,

Figure S6 confirms that the conservation of c is strictly obeyed

in the output frames. Morphology-wise, it is difficult to tell by hu-

man eyes whether the images are generated by the RNN or sim-

ulations. Such similarity is corroborated by the statistical anal-

ysis of the microstructure. In Figure 5B, we compare the

interface curvature distributions in the predicted versus ground

truth images of 170 testing cases with c0 = 0.5, which have a bi-

continuous two-phase morphology. The agreement is very good

in both short and long terms, which can be quantified by the

Euclidean distance between the two distributions: 0.00936 at

frame j = 26 and 0.05811 at j = 201. On the other hand, systems

with c0 = 0.25 or 0.75 contain individual particles of the minority

phase (c = 1 or 0) dispersed within the majority phase. Figure 5C

shows the time dependence of the average particle size CRD for
170 tests with c0 = 0.25. The corresponding particle size distribu-

tions are presented in Figure 5D. The comparison is again satis-

factory. The predicted CRD has a maximal error of 1.04% within

the test period, and the Euclidean distance between the pre-

dicted and the true size distributions is only 0.01 at j = 26 and

0.034 at j = 201. In Figure S2C, we show an example of the

RNN prediction up to 2,000 frames. While its pixel-wise differ-

ence from the ground truth becomes larger, the predicted struc-

ture remains realistic and does not show any image blurring. The

predicted interface curvature distribution also agrees well with

the ground truth as shown in Figure S2D.

We next performed the spatial extrapolation test by applying

the trained model to a larger 2563 256-pixel domain. As shown

in Figure S7, the RNN performs equally well in the extended sys-

tem, with RMSE and SSIM comparable to those in the smaller

domain. Furthermore, Figure 4B shows an example in which

the RNN’s ability to predict the evolution of configurations

‘‘foreign’’ to the training set was tested. The initial configuration

in the test was created by placing circular particles of c = 1 with

random radii on square lattice sites in the matrix of c = 0. As re-

vealed by the two-point correlation functions in Figures S4C and

S4D, the particles in this microstructure exhibited strong spatial

correlation, while those in the training images were spatially un-

correlated. Although it never saw such a configuration during

training, the RNN captured its evolution very well.

The impressive extrapolation capability of the RNN when

applied to spinodal decomposition implies its understanding of

the physical rules of this phenomenon. The coarsening of the spi-

nodal structure is thermodynamically driven by the interface cur-

vature dependence of chemical potentials (i.e., the Gibbs-Thom-

son effect) and kinetically limited by the diffusion of the species in

the system. Figures 5B and 5D show that the RNN grasps the

Gibbs-Thomson effect, which causes the fraction of low-curva-

ture interface segments to increase with time, and Figure 5C

confirms that the diffusion-controlled coarsening kinetics is

captured by the model. Apart from the accurate statistical repre-

sentation, the examples in Figures 5E and 5F illustrate that RNN

is also capable of predicting subtle local morphological changes.

The fate of the particle highlighted by red in Figure 5E is deter-

mined by the relative sizes of its neighbor particles and itself,
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Figure 4. Application of the RNN to predicting spinodal decompo-

sition

(A) Comparison between predictions (P) and ground truth (G) from two testing

cases, in which the RNN outputs 200 frames based on 1 input frame of spi-

nodal structure generated from random perturbation to a system of uniform

composition.

(B) The RNN prediction of the evolution of an artificial biphasic configuration, in

which second-phase particles (c = 1) of randomly chosen radii are arranged in

an orderly manner within the primary phase (c = 0).
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which exchange mass between one another via diffusion due to

the size-dependent chemical potential. The red particle first

grows at the expense of a smaller neighbor, but subsequently

shrinks by losing mass to the other two bigger particles nearby.

In Figure 5F, the particle in red receives an incoming diffusion flux

from two smaller adjacent particles. Its growth rate exhibits two

bursts, which coincide with the complete dissolution of the two

particles. The RNN’s ability to predict detailed evolution features

as demonstrated in these examples further inspires confidence

in its comprehension of the underlying physics.
Dendrite growth
In the last example, we gave the RNN a more challenging task to

predict dendritic crystallization patterns. During crystal growth,

dendritic structures, like beautiful snowflakes, often form due

to the morphological instability of the growth front, which is pro-

moted by the negative temperature and/or species concentra-

tion gradient(s) ahead of the phase boundary and the interface

energy anisotropy. Such instability phenomena are intrinsically

difficult to predict. In addition, dendrite growth is amulti-physical

process coupling phase transformation, long-range mass/heat

transport, and interface instability. As a result, microstructure im-

ages fed to the RNN do not contain the complete information of
the system state, which further increases the difficulty of making

accurate predictions.

Here we generated training data using a phase-field model of

solidification in pure systems by Kobayashi.85 As described in

the experimental procedures, the spatiotemporal evolution of

the system state is described by two coupled PDEs for the tem-

perature (T) and phase-field (4) variables. 4 distinguishes be-

tween the solid (4 = 1) and the liquid (4 = 0) phases during solid-

ification. We use 4ðt; x; yÞ to create the microstructure images. T

and other parameters in the governing equation (Equation 15),

such as the normalized latent heat K, are thus hidden from the

learning process. We performed phase-field simulations on a

64 3 64 mesh, in which a small solid nucleus was placed at or

near the center and surrounded by the supercooled liquid phase.

The training and validation sets contained 800 and 200 simula-

tions, respectively. To enrich the training data, each simulation

had a different nucleus, crystal orientation q0, andK. Specifically,

Kwas randomly chosen from (1.2, 2) and q0 from (0, p=3) (crystal

was assumed to have six-fold symmetry). The nucleus was given

a random shape (circle, rectangle, or ellipse), size (2–6 pixels),

and off-center distance ( ± 5 pixels in the x and y directions).

Similar to the case of spinodal decomposition, 100 image frames

with equal time intervals were obtained from a simulation and

divided into eight staggered 20-frame training clips.

In testing, the trained RNN model was required to predict 50

frames from 10 consecutive input frames, which were taken

from the first half of a simulation. Predictions were not extended

to longer times because the dendrite tips already approached

the domain boundaries after 50 output frames in many tests,

and growth stagnated subsequently. Instead, we focused on

conducting the extrapolation tests in the model parameter

space. Specifically, K was randomly and uniformly selected

from (0.8, 2.4) to generate ground truth data in the testing cases.

This means that half of the selected K values fell outside its range

in the training data, i.e., (1.2, 2). q0 and the solid nucleus shape

were also randomized. Figure 6 presents several examples

from a total of 600 testing cases. The predicted dendritic struc-

ture matched the ground truth well in all the cases, even at K =

1.161 and 2.106, which were outside the scope of training

data. In particular, the RNN captured the fine features of the den-

drites, such as the locations of secondary side branches. It can

be seen that the crystal growth pattern depended strongly on K.

Smaller K resulted in thicker primary branches and more

compact morphology. The RNN managed to recognize the cor-

rect evolution trajectory based on the input images without prior

knowledge of the underlying K value. Figure 7A shows the RMSE

and SSIM of the predictions averaged over the 600 testing

cases. The RNN fared well in pixel-wise comparisons, although

the prediction error increased faster with time than in the cases

of grain growth and spinodal decomposition, which can be

attributed to the more complex physics of the dendrite growth

process.

As a more revealing indicator of the RNN’s performance, we

used several shape descriptors (Feret diameter dferet, convexity,

solidity) to characterize the dendrite morphology. Feret diam-

eter, which is defined as the maximum distance between two

parallel tangent lines touching the shape, provides a measure

of the linear dendrite dimension. Convexity and solidity quantify

the degrees of concavity and compactness of the crystal.
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Figure 5. Accuracy of the RNN in predicting

spinodal decomposition

(A) RMSE and SSIM of RNN predictions averaged

over 510 testing cases as a function of the frame

index j.

(B) Distribution of the interface segment curvature k

at j = 26 and 201 in 170 testing cases with c0 = 0.5.

(C and D) Evolution of the average second-phase

particle radius CRD (C) and particle area Ap distri-

bution (D) in 170 testing cases with c0 = 0.25. CRD
was calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CApD=p

p
.

(E and F) (Top) Examples of local morphological

evolution predicted by the RNN from two testing

cases with c0 = 0.25. (Bottom) Size evolution of the

red particle in the images as predicted by the RNN

versus ground truth.
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Figure 7B shows the time evolution of these descriptors from one

test, while their average errors for all 600 tests are plotted in Fig-

ure 7C. It can be seen that the RNN accurately predicted the

dendritic shape evolution with an average error less than 7%

throughout the tests. In addition to global metrics, we also exam-

ined how well the RNN reproduced local dendritic structural fea-

tures. In Figure 7D, the number of secondary branches formed

on a primary branch in a test is plotted as a function of time. It

shows that the RNN performed very well in predicting the

frequency of the side-branching events occurring near the

dendrite tip.

DISCUSSION

In addition to prediction accuracy, we compared the computa-

tional efficiency of using the RNN formicrostructure evolution pre-

dictions with that of PDE-based simulations. During training and

testing, the time interval between two RNN output frames is 80

times that of the average time-step size used in the grain growth

simulation, 370 times in spinodal decomposition, and 7 times in

dendritic crystal growth. This illustrates that the RNN can improve

efficiency by using larger time steps than PDE solvers, for which

the time-step size is limited by the stability of the numerical

schemes. In the grain growth example, the RNN’s advantage in
8 Patterns 2, 100243, May 14, 2021
spatial coarsening is also demonstrated.

Because of the diffuse-interface represen-

tation, a grain boundary typically needs to

be resolved by 5 or 6 pixels in phase-field

simulations to maintain desired numerical

accuracy.3 However, the RNN is not sub-

ject to the same spatial resolution require-

ment and can predict system evolution on

a coarser mesh (64 3 64) than used in

phase-field simulations (256 3 256). We

benchmarked the computational perfor-

mance of E3D-LSTM on both a GPU

(NVidia GeForce GTX 1080-TI) and a CPU

(Intel i7 3.2 GHz) and compared them with

the performance of phase-field simulations

run on a CPU. The results are summarized

in Table S1. Averaged over more than 500

trials, the RNN accelerates the predictions
by 92 times for spinodal decomposition and 79 times for dendrite

growth when run on a GPU, and 7.6 and 8.6 times on a CPU,

respectively. The speedup is more significant in the grain growth

example (718-fold on the GPU, 87-fold on the CPU) because of

the spatial coarse graining exploited by the RNN. In our tests, it

takes 130–450 s to load and initialize pretrained RNN models.

Therefore, the RNN is very efficient, especially when applied to

a large number of cases in one run so that the overhead associ-

ated with initialization is small.

The overall efficiency of the RNN in predicting microstructure

evolution also depends on the training data size and the efforts

and resources required for data collection. Figure S8 shows

the dependence of the validation error on the number of training

clips Nclip for plane-wave propagation and grain growth. In both

cases, the improvement in model performance becomes negli-

gible afterNclip goes beyond ~2,000. Tests show that the optimal

accuracy can be further tuned, e.g., with the number of layers or

the number of hidden features. In principle, a large enough neural

net could be arbitrarily accurate, but in practice, training such a

model becomes infeasible. Our current model is a decent

compromise between accuracy and computational cost. On

the other hand, we find that increasing the length of training clips

beyond 20 frames does not significantly improve the prediction

accuracy. For all of the examples in this work, the time spent



Figure 6. Application of the RNN to predict-

ing dendritic crystal growth

RNN predictions (P) versus ground truth (G) from

five testing cases with different K values, in which

the RNN outputs 50 frames based on 10 input

frames.

ll
OPEN ACCESSArticle
on generating the training datasets is comparable to the model

training time. The plane-wave propagation and dendrite growth

examples also demonstrate the transferability of the trained

model, which can robustly interpolate or even extrapolate pre-

dictions to parameter values not included in the training data.

Therefore, the data requirement of the RNN should not present

a major obstacle to its applications.

Despite the overall very impressive performance, our tests

show that the learning rate and predictive power of the RNN

vary with the nature of the microstructure evolution phenomena

it is applied to. Among all the examples, the RNN demonstrates

the best learning ability in predicting grain growth, because its
evolution rules are localized, which could

be relatively easily recognized by E3D-

LSTM through the 3D-Conv operation

that specializes in remembering local

motion. In contrast, training the RNN to

predict spinodal decomposition is more

challenging because the long-range

mass transport inherent in the process

creates longer and stronger spatiotem-

poral correlation, which requires more

convolution operations and longer-term

memory states to extract the essential fea-

tures. In fact, the model can be success-

fully trained to predict grain growth with

only two E3D-LSTM layers, but four layers

are needed for spinodal decomposition to

reach similar prediction accuracy. We also

find it necessary to include longer image

sequences (100 frames) into the training

datasets for spinodal decomposition to

better inform the RNN of the evolution

trajectories. Predicting dendrite growth

presents additional challenges due to the

interface instability and the existence of

hidden variables (T) not directly seen by

the RNN.

The PDEs underlying the three micro-

structure examples investigated here

(grain growth, spinodal decomposition,

dendrite growth) describe dissipative dy-

namics, in which the system’s evolution

rate decreases with time. For example,

the growth rate of the average grain or par-

ticle size varies as t�1=2 and t�2=3 in grain

growth and spinodal decomposition,

respectively. Such behavior is common

in microstructure phenomena, as the ther-

modynamic driving force continues to

diminish during evolution. Compared with
other PDEs such as the wave equation and chaotic PDEs that

have been successfully emulated by neural networks, ML of

these problems faces a new challenge, i.e., to train the neural

nets to predict the long-time behavior based on only short-

time data with much faster evolution dynamics. Nevertheless,

we find that E3D-LSTM can utilize microstructure images from

the early stage to reliably predict the much slower evolution at

10-fold larger times. To our best knowledge, this impressive

long-term predictive ability has not been demonstrated for

similar PDE systems. We attribute it to the novel architecture of

E3D-LSTM, which integrates 3D CNN into the LSTM to better

capture the long-term spatiotemporal correlation.
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Figure 7. Accuracy of the RNN in predicting

dendritic crystal growth

(A) RMSE (black) and SSIM (blue) of the predictions

averaged over 600 testing cases.

(B) Time evolution of the Feret diameter dferet ,

convexity, and solidity of a growing crystal from a

testing case. Solid lines are ground truth (G), and

dashed lines are predictions (P). The shape de-

scriptors were calculated in ImageJ after image

binarization. Convexity is defined as Lh=Lc, where

Lc is the crystal perimeter and Lh is the perimeter of

the convex hull of the crystal. Solidity is defined as

Ac=Ah, where Ac is the crystal area and Ah is the

area surrounded by the convex hull of the crystal

shape.

(C) Relative errors of predicted dferet , convexity, and

solidity of crystals averaged over 600 testing cases

as a function of image frame index j.

(D) Development of secondary branches on the

dendritic crystal in a testing case. Ns is the number

of secondary branches on a primary branch of the

dendrite. Insets above and below the curves show

the crystal shape from the ground truth and pre-

dictions, respectively, at times marked by the black

squares.
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Another distinction between this work and previous NN-based

PDE emulators lies in that we intentionally require the RNN to be

trained with only partial information of the PDE solutions or to

make predictions with incomplete knowledge of the underlying

PDEs. In the grain growth case, training images are generated

from the 3-norm of 100 grain-orientation order parameters {h1,

h2, ., h100}, which are solved from the governing equations

(Equation 8). Information on grain orientation is lost in the im-

ages. The PDEs for dendrite growth (Equations 14 and 15)

involve both the phase field 4 and the temperature field T, but

only 4 is used to create microstructure images. Furthermore,

the RNN trained for dendrite growth is not explicitly given the

value of the latent heat parameter (K) in the PDEs during predic-

tion and instead needs to infer its value from the input image

sequence to identify the correct evolution trajectory. We made

these choices for training and testing because they reflect how

the RNN may be potentially used in real applications, in which

missing information is often the norm rather than the exception.

Like our training sets, microstructure images obtained from op-

tical or electron microscopy are usually grayscale images of

phase contrast and do not capture all the physical fields relevant

to the evolution processes. It is also common for some proper-

ties of a material system not to be known or accurately charac-

terized so that the corresponding PDE parameters are ill deter-

mined. Our study demonstrates that a well-trained RNN can

not only serve as a PDE emulator, but also infer implicit material

properties from spatiotemporal data and provide a ‘‘reduced or-

der’’ representation of the targeted problems to lower the data

demand and improve the training and prediction efficiency.

Over the last 3 decades, many types of microstructure from

different materials systems have been successfully simulated

by various phase-field models.2–4 The phase-field method has

become a proven and versatile computational technique for

capturing complex microstructural morphology and coupling

multiple physical processes within a unified framework.
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Microstructures from phase-field simulations faithfully repro-

duce experimental observations in a diverse set of materials sys-

tems,86–92 and therefore can serve as reliable training data to

train the RNN for predicting a wide variety of microstructure evo-

lution phenomena.

The rapid advancement in in situ and operando characteriza-

tion techniques in recent years has fueled the collection of exper-

imental spatiotemporal microstructure data from a wide range of

materials systems at an ever-increasing rate.93–97 At the same

time, however, it becomes an increasing challenge to efficiently

analyze the acquired data to generate useful insights. The deep

learning approach examined in this work provides a valuable tool

for extracting high-level, quantitative information from such data.

Many types of experimental digital images could be used as

input to the RNN, including those from microscopy and tomo-

graphic reconstruction, after standard preprocessing (resizing,

denoising, segmentation, etc.). For microstructure evolution

governed by known evolution rules, the RNN could be trained

with numerical simulation results with parameter values

randomly sampled from the relevant parameter space. It can

then be applied to the experimental data of a specific system

to learn its parameters and augment operando experiments,

which often require sophisticated instruments (e.g., synchrotron

X-ray beamlines) with limited availability, by extending the obser-

vations in time and space.When dealingwith newmicrostructure

evolution phenomena that do not have physical models yet, the

RNN could be trained directly with experimental image se-

quences and subsequently be used as a surrogate model to

probe the system behavior more conveniently and/or under con-

ditions that are difficult to access experimentally.

In conclusion, we trained a convolutional RNN (E3D-LSTM) to

predict the spatiotemporal evolution of material microstructure.

Using training data from four distinct evolution processes

(plane-wave propagation, grain growth, spinodal decomposi-

tion, and dendritic crystal growth), the RNN, which is composed
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of the same network architecture, is able to adapt efficiently to

different evolution rules. The ability of the RNN to generalize

learning beyond the training datasets was systematically exam-

ined by a series of extrapolation tests. In addition to performing

very well in pixel-wise comparison with ground truth in short-

term predictions, the RNN accurately described the statistical

properties of microstructures assessed herein over long periods

up to 10 times the training data’s time span. Without additional

training, neural nets trained on small-size images could be

straightforwardly applied to larger systems with comparable ac-

curacy. The method can reliably predict the evolution of micro-

structures whose morphology or underlying material parameters

differ qualitatively from the training data. The spatiotemporal,

configurational, and parametric extensibility demonstrated by

the RNN suggest that it is capable of learning the evolution rules

of the microstructure phenomena considered here, which pro-

vides the physical basis for its practical applications. Computa-

tionally, the RNN is not restricted by the numerical stability of

PDE solvers and can employ time-step size 1–2 orders of magni-

tude larger than PDE-based simulations in our tests. Beyond

accelerating simulations shown in this study, the ML approach

may provide a valuable pathway toward prediction of micro-

structure evolution in situations where the material parameters

or evolution principles are not completely resolved or only partial

information of the system state is available. The current E3D-

LSTM model can also be extended to predicting the spatiotem-

poral evolution of 3D systems in a straightforward manner by re-

placing the 3D-Conv operation with 4D convolution98,99 (3

spatial +1 temporal) in the network. Given the lack of optimized

4D convolution subroutines in current deep learning frameworks,

a practical solution is to extend from 2D to 3D spatial convolu-

tions in alternative RNNs such as PredRNN. Its application to

the learning of molecular dynamics trajectory will be reported

elsewhere.
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Convolutional recurrent neural network

Unlike static data without temporal context, sequential data such as themicro-

structure evolution trajectories in the form of image sequences require special

treatment for deep neural networks to learn efficiently and accurately. De-

signed to take advantage of the temporal information of sequential inputs,

the RNN along with its LSTM variants was first successfully employed in voice

recognition and natural language processing. Recently, Shi et al.28 proposed a

convolutional RNN model to make full use of features in both spatial and tem-

poral domains for image sequence prediction. Figure S9 compares the struc-

tures of CNN, RNN, and convolutional RNN. Unlike the vanilla RNN, a convolu-

tional RNN uses a CNN instead of fully connected layers to extract latent

features from input images and represent the system state in the convolutional

latent space. When the system state is updated by the network at new times, it

is passed through a decoder, which is typically a single convolutional layer

without bias and activation, to generate predicted images in the real space.
More recent studies replace the initially stacked chain structure28 with sophis-

ticated neural nets to improve information flow and reach better performance.

For example, Yunbo Wang and coworkers developed a series of neural net-

works for spatiotemporal predictive learning.29–31 The latest E3D-LSTMmodel

was employed in our study. Compared with other state-of-the-art models that

use 2D convolution operations, the E3D-LSTM integrates 3D (one temporal

and two spatial dimensions) convolution (3D-Conv) deep into RNNs, which

is effective for modeling local representations in a consecutive manner. As

shown in Figure 1C of Wang et al.,31 successive input frames are encoded

by 3D-Conv encoders before being fed to the E3D-LSTM units. Outputs of

E3D-LSTM units are decoded with a 3D-Conv layer to obtain the real-space

predictions. In addition to adopting 3D-Conv as its basic operations, E3D-

LSTM exploits a self-attention mechanism to memorize long-term interactions

in addition to short-term motions. This is achieved by implementing two

distinct memory states in E3D-LSTM: spatiotemporal memory and eidetic

3D memory. The former is designed to capture the short-term motion,29 while

the latter computes the relation between local patterns and the whole memory

space to distinguish and revoke temporally distant memories.

Model setup

Each data point in the training sets is a sequence ofNt 2D images generated by

a scalar field cðt; x; yÞ (0%c%1, t = 1.Nt , x = 1.Nx, y = 1.Ny ). The spatial

dimensions Nx and Ny are 64 unless otherwise stated. For each problem

considered, the training dataset is a 4D array ciðt; x; yÞ with Ntotal image se-

quences (i = 1.Ntotal ). Following Wang et al.,31 four E3D-LSTM layers are

stacked together in the model (only two layers in the case of grain growth),

each with 64 hidden features. For spinodal decomposition, a normalization

layer was added at the end to enforce mass conservation. The model is imple-

mented in TensorFlow100 and trained on four NVidia V100 or 1080-TI GPUs.

Typical training time is 36 h, with an initial learning rate of 10�3 that gradually

decays to 10�5. The training image size is chosen to be 64 3 64 because it

is large enough to accommodate sufficient variation in microstructure config-

urations and also provides adequate resolution to resolve interfaces in micro-

structure with at least 1–2 pixels. During training, we started from about 400

image clips and gradually increased the number of clips until the model accu-

racy reached a plateau. The validation set is 1/4 the size of the training set,

which is typical in NN training.

Data usage and augmentation

The whole dataset was randomly partitioned into three subsets: training, vali-

dation, and testing/prediction (e.g., at a ratio of 70:15:15). The validation set

was used to monitor the convergence during training, while the testing or pre-

diction set was completely withheld from training. The latter may also include

customized sequences with different spatial/temporal dimensions and/or

initial configurations. Training data were augmented by performing symmetry

operations of the 2D point group 4mm on the original images, which transform

cðt; x; yÞ to cðt;x;yÞ, cðt;x;yÞ, cðt;x;yÞ, cðt;y;xÞ, cðt;y;xÞ, cðt;y;xÞ, and cðt; y; xÞ
(xhNx + 1� x, yhNy + 1� y). Such data transformations can be achieved by

array rearrangements and do not require additional float-point calculations.

Analysis methods

RMSE and SSIM were used in pixel-wise comparison between ground truth

and predictions. RMSE is defined as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNx

i = 1

XNy

j = 1

�
pgði; jÞ � ppði; jÞ

�2
NxNy

vuut ; (Equation 3)

where pgði; jÞ and ppði; jÞ are the pixel values of ground truth and predictions,

respectively. SSIM79 is defined as:

SSIM =

�
2pgpp + c1

��
2sgp + c2

�
�
p2
g +p2

p + c1

��
s2
g + s2

p + c2

	 ; (Equation 4)

where pk and sk (k = g; p) are the average pixel value and variance of ground

truth or predictions, respectively, and sgp is their covariance. c1 and c2 are

small constants and chosen to be c1 = ð0:01LÞ2 and c2 = ð0:03LÞ2, where L

is the range of pixel values. The Euclidean distance between the distributions

of quantity q from RNN predictions and ground truth is defined as:
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d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i =1

�
qi
g � qi

p

	2

s
; (Equation 5)

where n is the number of bins within the interval between the minimum and the

maximum of q, and qi
g and qi

p are normalized counts in the i-th bin of the

ground truth and predictions, respectively. n=20 was used for all the

calculations.

Simulation method

Phase-field simulations were employed to generate the ground truth for three

microstructure evolution processes, i.e., grain growth, spinodal decomposi-

tion, and dendritic crystal growth. The phase-field method is a powerful

computational technique for modeling microstructure evolution in diverse ma-

terials systems.2–4 In a phase-field model, different phases are represented by

one or multiple order parameters, and their interfaces are tracked by the level

sets of the order parameters. The spatiotemporal evolution of the microstruc-

ture is described by the governing equations of the order parameters derived

from thermodynamic and kinetic principles.

Grain growth

Isotropic grain growth in a 2D polycrystalline structure was simulated by a

multi-order-parameter phase-field mode.82 In the model, a set of order param-

eters fh1ðxÞ; h2ðxÞ;.;hNðxÞg is used to represent N distinct grain orientations.

The free energy of the system is expressed as:

F =

Z "
fðh1; h2;.; hNÞ +

n

2

XN
i = 1ðVhiÞ2

#
dV ; (Equation 6)

where the homogeneous free energy density f is given by:

f = m

"XN
i = 1

�
h4
i

4
�h2

i

2

�
+
3

2

XN
i = 1

XN
j>ih2

i h
2
j +

1

4

#
; (Equation 7)

which has N local minima located at ðh1;h2;.;hNÞ = ð1; 0;.;0Þ;ð0; 1;.;0Þ;.;

ð0; 0;.;1Þ. The evolution of hiðxÞ (i = 1.N) follows the time-dependent Ginz-

burg-Landau or Allen-Cahn101,102 equation:

vhi

vt
= � L

dF

dhi

: (Equation 8)

In all the simulations, the dimensionless parameters N = 100,m = 1, n = 1,

and L= 1 were used. The initial polycrystalline structure was generated by Vor-

onoi tessellation103 with 100 grains. Equation 8 was solved by the forward Eu-

ler finite difference scheme with periodic boundary conditions and grid

spacing Dx = 1 and time-step size Dt = 0.2. Single-channel images of the poly-

crystalline structure were generated by assigning
PN

i =1h
3
i as the pixel value so

that pixels were close to 0 in the grain boundary region and 1 inside the grains.

Spinodal decomposition

Spinodal decomposition was simulated by the C-H equation:84

vc

vt
= V,



Mcð1� cÞV

�
vfchem
vc

� eV2c

��
; (Equation 9)

where c is the molar fraction of a species in a binary system. We used the reg-

ular solution model to describe the homogeneous free energy density:

fchemðcÞ = RT ½clnc + ð1� cÞlnð1� cÞ�+ucð1� cÞ; (Equation 10)

with a positive value assigned to the regular solution coefficient u to favor

phase separation. Equations 9 and 10 were solved with no-flux boundary con-

ditions. The dimensionless parameter values u = 0:27397, e = 0:1682, and

M= 1 and mesh spacing Dx = 1 were used in all of the simulations. Equation 9

was solved with an implicit variable-order backward differentiation formula

(BDF) solver in COMSOL Multiphysics with an average dimensionless time-

step size of 4.01. Images were output from simulations at a time interval of

1,500, or an average of 370 steps between two frames.

Dendrite growth

We used a phase-field model developed by Kobayashi85 to simulate the den-

dritic solidification process in a pure materials system. Compared with other

more quantitative models,4,104 this model was chosen for its simplicity, since
12 Patterns 2, 100243, May 14, 2021
the purpose of this work was not to study dendritic growth but to use it as

an example to evaluate the RNN. The system state was described by the tem-

perature field T and an order parameter 4, which distinguishes between the

solid (4 = 1) and liquid (4 = 0) phases. The free energy of the system is given

by:

F½4;T� =
Z 


1

2
eðqÞ2jV4j2 + fð4;TÞ

�
dr; (Equation 11)

where the anisotropy of the solid/liquid interface energy is controlled by the

orientation dependence of the gradient energy coefficient, eðqÞ =
e0ð1 + dcos½nðq � q0Þ�Þ, where q represents the interface normal and is calcu-

lated from the gradient of4 as q = arctanð� 4y =4xÞ. We employed n= 6 in sim-

ulations to produce dendrites with 6-fold symmetry. f is a double-well

potential:

fð4;TÞ = 1

4
44 �



1

2
�1

3
mðTÞ

�
43 +



1

4
�1

2
mðTÞ

�
42; (Equation 12)

mðTÞ = a

p
arctan½gðTeq �TÞ�; (Equation 13)

where Teq is the solid/liquid equilibrium temperature. The time evolution of the

coupled 4 and T fields is governed by:

t
v4

vt
= � dF

d4
; (Equation 14)

vT

vt
= V2T +K

v4

vt
; (Equation 15)

where constant K represents the latent heat. The following dimensionless pa-

rameters were used in all the simulations: a = 0:9, g = 10, Teq = 1, t = 0:001,

e0 = 0:01, and d = 0:03. K and q0 varied. The system had a uniform initial tem-

perature at Tðt = 0;x;yÞ = 0. Equations 14 and 15 were solved with a variable-

order BDF solver in COMSOL Multiphysics with mesh spacing Dx = 1 and

average time-step size Dt = 5:73 10�4. Images were output from simulations

at a time interval of 0.004, or an average of seven time steps between two

frames.
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89. Das, S., Tang, Y., Hong, Z., Gonçalves, M., McCarter, M., Klewe, C.,
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