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IntroductIon
Hyperbaric oxygen (HBO) improves outcome in experimen-
tal cerebral ischemia and is therefore emerging as a possible 
co-treatment for acute ischemic stroke in addition of tissue 
plasminogen activator (tPA), whose recombinant form is 
considered the best approved treatment for acute brain 
ischemia to date (Peplow, 2015). Thus, despite controversial 
results that have shown that HBO enlarges ischemic brain 
damage by blocking autophagy (Lu et al., 2014) and further 
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produces vasoconstriction (Stirban et al., 2009), a condi-
tion thought to be deleterious in stroke disease, numerous 
investigations have reported beneficial effects of HBO on 
infarct size and neurological deficits (Veltkamp et al., 2000, 
2005; Eschenfelder et al., 2008; Yang et al., 2010; Xu et al., 
2016). Although the mechanisms of action of HBO are not 
well established and are still lively under discussion, HBO 
has been shown to induce neurogenesis (Lee et al., 2013), to 
improve the decrease in tissue oxygenation induced by isch-
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emia (Sun et al., 2008), to promote thrombolysis through 
activation of endogenous tPA (Chazalviel et al., 2016b), and 
to reduce the decrease in regional glucose metabolism (Lou 
et al., 2007). Likewise, interestingly, normobaric oxygen 
(NBO) has also been shown to reduce infarct size (Singhal 
et al., 2002; Henninger et al., 2007; David et al., 2012), to 
induce neurogenesis (Wagenfuhr et al., 2016), to promote 
endogenous tPA-induced thrombolysis (David et al., 2012) , 
to increase cerebral blow flow and to improve the decrease 
in tissue oxygenation induced by ischemia (Liu et al., 2004, 
2006; Shin et al., 2007; Baskerville et al., 2011), thereby 
questioning the interest of HBO compared to NBO in the 
treatment of acute brain ischemia.

Therefore, in the present study, we investigated and 
compared the effects of a post-insult treatment with NBO 
(partial pressure of oxygen (pO2) = 1 atmospheres absolute 
(ATA) = 0.1 MPa) or HBO (pO2 = 2.5 ATA = 0.25 MPa) 
on the release of lactate dehydrogenase (LDH) – used as 
a marker of cell injury – in acute brain slices exposed to 
oxygen and glucose deprivation (OGD), an ex vivo model 
of brain ischemia.

MaterIals and Methods
Materials
Brain slices were drawn from male adult Sprague-Dawley 
rats (n = 15; Janvier, Le Genest Saint-Isle, France) weighing 
250–280 g according to an animal use procedure approved 
by the University of Caen ethics committee in accordance 
with the Declaration of Helsinki and the framework of the 
French legislation for the use of animals in biomedical 
experimentation. 

Rats were sacrificed by decapitation under anesthesia, 
and the brains were carefully removed and placed in ice-
cold freshly prepared artificial cerebrospinal fluid (aCSF) 
containing 120 mM NaCl, 2 mM KCl, 2 mM CaCl2, 26 
mM NaHCO3, 1.19 mM MgSO4, 1.18 mM KH2PO4, 11 
mM D-glucose, and 30 mM HEPES (pH = 7.4). Coronal 
brain slices of 400-μm thickness including the striatum 
(anteriority: from −1.2 mm to +2 mm from bregma) were 
cut using a tissue chopper (Mickie Laboratory Engineering 
Co., Gomshall, Surrey, UK), and allowed to recover at room 
temperature for 45 minutes.

Intervention and total LDH release analysis
After recovery at room temperature, brain slices were 
incubated individually in a home made 16-vials versatile 
normobaric-hyperbaric chamber (Blatteau et al., 2014) 
that was placed in an oven at 36 ± 0.5°C. Temperature was 
controlled using a temperature probe placed in an empty 
vial. Each vial contained 1.3 mL of freshly prepared aCSF, 
saturated, and continuously bubbled with 100% oxygen (25 

mL/min per vial). After a 30-minute period of stabilization, 
aCSF was renewed with oxygenated aCSF, and the slices 
were then incubated for an additional 1-hour period to al-
low recording basal LDH levels. Whereas sham slices were 
incubated for an additional 20-minute period in the same 
conditions, those corresponding to the ischemic groups 
were incubated in a glucose-free solution, saturated, and 
continuously bubbled with 100% nitrogen (OGD slices). 

After this 20-minute period of OGD, the medium was 
replaced in all groups with freshly prepared aCSF, and the 
slices were treated and continuously bubbled for a 3-hour 
period with either normobaric medical air composed of 
75% nitrogen and 25% oxygen (control slices) or with nor-
mobaric 100% oxygen (NBO-treated slices). HBO treated 
slices were pressurized at a compression rate of 1 ATA/min 
with 100% oxygen up to 2.5 ATA. After a 3-hour period at 
2.5 ATA, during which increased oxygen level was provided 
to the slices through oxygen diffusion and equilibrium be-
tween “air” and saline, decompression was performed at a 
slow decompression rate of 0.1 ATA/min shown to induce 
no cell injury (Baskerville et al., 2011; Blatteau et al., 2014). 
To avoid multiple compression and decompression in the 
HBO experiment, aCSF was not replaced and served as a 
pool throughout the 3-hour period of treatment with medi-
cal air, NBO or HBO. 

OGD-induced neuronal injury was quantified by the 
amount of LDH released in the incubation solution samples. 
LDH activity was measured using a spectrophotometer at 
340 nm in 50 µL of incubation medium by following the 
oxidation (decrease in absorbance) of 100 mL of β nico-
tinamide adenine dinucleotide (NADH) (3 mg in 10 mL 
of PBS) in 20 µL of sodium pyruvate (6.25 mg in 10 mL 
of PBS) using a microplate reader. OGD-induced LDH 
effluxes were expressed as the amount of LDH measured 
in the incubation solution and as a percentage of pre-OGD 
control value. The number of animals and the number of 
slices was respectively n = 4-6 and n = 24-32 per condition.

Statistical analysis
Data are expressed as the mean ± standard error of the mean, 
and were analyzed using parametric statistics. Between-
group comparisons on total LDH release were performed 
using parametric ANOVA. Following a significant F 
value, post-hoc analysis was performed using the Tukey’s 
honestly significant difference method for samples of dif-
ferent size (online software: http://statistica.mooo.com/
OneWay_Anova_with_TukeyHSD). Level of significance 
was set up at P < 0.05.

results
Brain slices were exposed to experimental ischemia in the 
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with the same device in our laboratory in in vitro models 
of thrombolysis (Abraini, 2013; Chazalviel et al., 2016b). 
In addition, from a clinical perspective, this point is not 
of major critical importance since such a procedure with 
10% oxygen is not current therapeutic practice. Finally, the 
cerebral slices’ vital activity was not measured. However, 
we have previously shown using pharmacological and 
neurochemical approaches measuring carrier-mediated- 
and KCl-evoked dopamine release that acute brain slices 
exposed to similar control and OGD conditions that those 
used in the present report remained functional (David et 
al., 2008).

 That said, both NBO and HBO have been shown to re-
duce infarct size (Veltkamp et al., 2000, 2005; Singhal et 
al., 2002; Henninger et al., 2007; Eschenfelder et al., 2008; 
Yang et al., 2010; David et al., 2012; Xu et al., 2016), to 
promote endogenous tPA-induced thrombolysis (David et 
al., 2012; Chazalviel et al., 2016b), to improve ischemia-
induced decrease in tissue oxygenation (Liu et al., 2004, 
2006; Shin et al., 2007; Sun et al., 2008; Baskerville et 
al., 2011), and to induce neurogenesis (Lee et al., 2013; 
Wagenfuhr et al., 2016), thereby questioning the interest 
of HBO compared to NBO in stroke. In the present study, 
to investigate this question, we compare the oxygen diffu-
sion effects of NBO and HBO in acute brain slices exposed 
to OGD, an ex vivo model of brain ischemia that allows 
investigating the acute effects of NBO and HBO on tissue 
(parenchyma) oxygenation independently of their facilitat-
ing action on cerebral blood flow and thrombolysis at the 
vascular level and of their long term effects on neurogenesis. 
We found that HBO, but not NBO, reduced OGD-induced 
cell injury, thereby indicating that to be fully efficient 
oxygen diffusion-induced tissue oxygenation of the brain 
parenchyma requires oxygen partial pressure higher than 1 
ATA. Consistent with our findings of a lack of significant 
effect of NBO through passive-mediated oxygen transport is 
the fact that both NBO and HBO, administered 1 hour before 
thrombolysis, have been shown to reduce infarct size in rats 
subjected to transient thromboembolic brain ischemia, but 
that only HBO but not NBO has been further demonstrated 
to decrease infarct volume in permanent thromboembolic 
middle cerebral artery occlusion-induced ischemia (Sun et 
al., 2010). The apparent discrepancy between our finding 
of a lack of effect of NBO at reducing cell injury in brain 
slices exposed to OGD and the beneficial effect of NBO 
at reducing infarct size in rats subjected to transient brain 
ischemia (Sun et al., 2010) could be due to the fact that this 
latter study was performed in vivo, conditions in which mi-
crovasculature could play a major role in oxygen transport 
(Chazalviel et al., 2016a). Indeed, interestingly, as a possible 
mechanism for the facilitating action of NBO on cerebral 

form of OGD to determine the effect of NBO and HBO on 
OGD-induced neuronal injury as assessed by the release of 
LDH. Figure 1 illustrates the effects of a 3-hour treatment 
with of NBO (pO2 = 1 ATA) or HBO (pO2 = 2.5 ATA) on 
LDH release induced by OGD. Exposure to OGD led to an 
increase in LDH release compared with sham slices (Tukey 
HSD value = 0.0010053; P < 0.01). Post-insult treatment 
with NBO showed no significant effect on OGD-induced 
LDH release compared to control slices treated with air 
(Tukey HSD value = 0.8975409). In contrast, post-insult 
treatment with HBO led to a significant reduction in LDH 
release compared to both control slices and NBO-treated 
slices (Tukey HSD value = 0.0010053; P < 0.01).

dIscussIon
Before discussing our findings, possible limitations in 
study design should be examined. First, aCSF was used as 
a pool for brain slices and was not replaced throughout the 
experiment, conditions that could have lead to LDH decay 
or accumulation. However, we used this protocol to avoid 
multiple compression and decompression in the HBO ex-
periment, conditions that would have led to LDH release 
induced by decompression stress (Blatteau et al., 2014, 
2015) and therefore to experimental bias compared to the 
control and NBO groups. Second, no hyperbaric experiment 
was performed with 10% oxygen to investigate the possible 
effect of pressure per se. However, support for an effect of 
HBO rather than pressure per se is previous data performed 

Figure 1: Exposure to oxygen and glucose deprivation (OGD) results in 
an increase of lactate dehydrogenase (LDH) release compared to sham 
(SHM) slices taken as a 100% value. 
Note: Hyperbaric oxygen (HBO), but not normobaric oxygen (NBO), reduces 
LDH release in brain slices exposed to OGD compared to control air-treated 
slices (AIR). #P < 0.01, vs. sham slices; *P < 0.01, vs. control air-treated slices.
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highlights one of the mechanisms by which HBO, in ad-
dition of other multiple processes, seems to be efficient at 
reducing brain damage in acute stroke models.
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