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Vascularized composite allotransplantation (VCA) is an effective treatment option for patients suffering from limb loss or
severe disfigurement. However, postoperative courses of VCA recipients have been complicated by skin rejection, and long-term
immunosuppression remains a necessity for allograft survival. To widen the scope of this quality-of-life improving procedure
minimization of immunosuppression in order to limit risks and side effects is needed. In some aspects, the molecular mechanisms
and dynamics of skin allograft rejection seem similar to inflammatory skin conditions. T cells are key players in skin rejection
and are recruited to the skin via activation of adhesion molecules, cytokines, and chemokines. Blocking these molecules has not
only shown success in the treatment of inflammatory dermatoses, but also prolonged graft survival in various models of solid
organ transplantation. In addition to T cell recruitment, ectopic lymphoid structures within the allograft associated with chronic
rejection in solid organ transplantation might contribute to the strong alloimmune response towards the skin. Selectively targeting
the molecules involved offers exciting novel therapeutic options in the prevention and treatment of skin rejection after VCA.

1. Introduction

Acute skin rejection is a frequent challenge, and long-
term immunosuppression is a necessity in vascularized
composite allotransplantation (VCA) [1]. The toxicity profile
of such a drug treatment includes metabolic side effects,
opportunistic infections, malignancy, and organ damage [2–
6]. This illustrates the need for immunosuppressive-sparing
protocols in order to limit side effects of this quality-of-life
improving procedure and widen the indications for VCA.

The infiltration of alloantigen specific T cells into the skin
allograft has been identified as a central element of acute skin
rejection in VCA [7, 8]. Histologically, the appearance of skin
rejection shares many common features with inflammatory

skin diseases and may be difficult to distinguish [9, 10], sug-
gesting that underlying immunological mechanisms might
be similar in some aspects. In inflammatory skin condi-
tions, T-cell recruitment to the skin is orchestrated by a
multitude of adhesion molecules, cytokines, and chemokines
[11]. In part, this concept of inflammation and immune
activation holds also true for the initiation and progression
of allograft rejection in solid organ transplantation (SOT)
[12]. A mechanism currently discussed to be involved in the
development of chronic allograft rejection is the formation of
lymphoid neogenesis and tertiary lymphoid organs (TLOs)
in the transplant [13–15].

The mechanisms and dynamics of skin allograft rejection
have been partially understood and remain the subject of
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numerous trials aiming at a better understanding of the
pathophysiology and novel and targeted drug development.
We herein review the molecular events and key players of
inflammation as well as new therapies with particular regard
to skin inflammation and allograft rejection in SOT and
discuss them in the light of acute and chronic skin allograft
rejection of VCAs.

2. Adhesion Molecules: Anchors for Lymphocyte
Recruitment to the Skin

Adhesion molecules play a crucial role in the function of
immune cells. They are the central actors helping leukocytes
to immediately convert from an inactive, nonsticky status to
an adhesive status, though permitting adhesion to the vas-
cular endothelium with transmigration to inflamed tissues.
Further they support cell-cell interactions through various
homophilic and heterophilic interactions and have the ability
to transmit costimulatory signals to the interacting cells. The
expression pattern of adhesion molecules is characteristic
for each cell population and changes during the maturation
process of a cell [16].

2.1. Adhesion Molecule Families

(1) Selectins. 3 subtypes of selectins, characterized through
their N-terminal lectin domain, are defined [17, 18]: E-
selectin is mainly expressed by activated endothelial cells,
whereas endothelium of noninflamed tissue does not express
E-selectin. Potent stimuli of E-selectin expression are IL-1
and TNF [19]. The “P” in P-selectin stands for “platelet”,
but P-selectin is also expressed in activated endothelial
cells, where it is stored in Weibel-Palade bodies [20] and
is released upon stimulation [21]. In contrast to E- and
P-selectins, L-selectin is constitutively expressed on lym-
phocytes, neutrophils, and monocytes and is known to
play a crucial role in homing of lymphocytes to secondary
lymphoid tissues through binding to its counter-receptor
addressin, which is expressed by high-endothelial venule
cells [22, 23]. However, there is now growing evidence
that all three types of selectins contribute to leukocyte
extravasation in the skin with overlapping effect. E- and P-
selectin seem to play the most important role in leukocyte
homing into the skin [24]. This idea is supported by the
failure of monoselectin antagonists and the success of pan-
selectin agonists in targeting leukocyte extravasation [25, 26].
All types of selectins bind to carbohydrate ligands such as
the tetrasaccharides Sialyl-Lewis-x or P-selectin glycoprotein
ligand-1 (PSGL-1) [27, 28].

(2) Integrins and the Ig Family. Leukocytes (neutrophils,
monocytes, lymphocytes, and natural killer cells) express the
integrins lymphocyte function-associated antigen-1 (LFA-
1) and Mac-1 (both sharing a common β2-subunit [29]),
which bind intercellular adhesion molecule-1 (ICAM-1) and
ICAM-2, two members of the Ig superfamily expressed by
vascular endothelial cells, and leukocytes. While ICAM-1
expression on vascular endothelium and leukocytes can be

stimulated [30], ICAM-2 is constitutively expressed on the
endothelium as a target for beta2 integrins [31]. Another
integrin expressed on mainly lymphocytes and monocytes is
very late activation antigen (VLA), which binds to vascular
cell adhesion molecule-1 (VCAM-1) on endothelial cells
[32]. VCAM-1 has been shown to mediate several steps
in the process of leukocyte extravasation. It is not only
involved in firm adhesion, but also in rolling of T cells and
transmigration through the endothelium [33].

2.2. Functions during Inflammation

(1) Cellular-Vascular Interactions. an important function of
adhesion molecules is the mediation of cellular-vascular
interactions, enabling leukocytes in a multistep cascade to
exit the blood vessel and to migrate into the inflamed tissue
[34]. The selectin-sialyl-Lewis-x interaction between vascu-
lar endothelium and the leukocyte first leads to cell rolling
through reversible tethers between the leukocyte and the
vessel wall. The leukocyte is slowed down and thus brought
into closer proximity to the endothelium. A more firm
adhesion is required before the effective transmigration can
occur: this arrest of the rolling leukocyte is provided through
interactions between immunoglobulins and integrins. For
the induction of tight adherence, costimulating ligands and
chemokines enhance the avidity of integrins on leukocytes
[35–37]. For transmigration junctional adhesion molecules
(JAMs), which are constitutively expressed at the borders
between endothelial cells, play an important role through
interaction with VLA-4 or Mac-1 on the leukocyte [38].

(2) Cell-Cell Interactions. In addition to cellular-vascular
interactions interaction between different types of immune
cells and leukocytes is required for an orchestrated cellular
immune response. “The immunological synapse” is an
assembly of adhesion molecules, which provides relatively
stable interactions between cells of the immune system
thereby supporting antigen recognition and enabling bilat-
eral stimulation of the cells. One important mode of cell-
cell interaction is the binding of naı̈ve T lymphocytes to
antigen-presenting cells (APCs) such as dendritic cells (DCs)
[39, 40]. The interaction between cells through adhesion
molecules allows the T-cell receptor (TCR) to scan the
surface of a DC for appropriate major histocompatibility
complex (MHC-) displayed peptides [41–43]. Furthermore,
the interaction between T-cells and B-cells [44, 45] and T-
cell-mediated killing (through T cell-target cell adhesion and
as well the natural killer cell-target cell interaction) relies on
adhesion molecules [46]. In this context adhesion molecules
are not only anchors for the cells, but also transmitters of
important costimulatory signals for many immunity-related
functions.

2.3. Adhesion Molecules in Inflammatory Skin Diseases. In
inflammatory skin diseases such as psoriasis, allergic contact
dermatitis, and atopic dermatitis, it has been shown that T
cells play a central role in the initiation and/or perpetuation
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of cutaneous inflammation [47, 48]. While the distinct
entities seem to be related to environmental as well as genetic
factors, they can be uniformly characterized through a
subset of T lymphocytes found in inflammatory skin lesions
staining positive for cutaneous lymphocyte-associated anti-
gen (CLA) [49]. CLA is a modified carbohydrate ligand
interacting with E-selectin during skin homing of these
lymphocytes. However, further characterization of this dis-
tinct cell population revealed that they are a heterogenous
population of CD4+ and CD8+ T cells. It has been shown
that CLA-bearing T cells preferentially extravasate through
the endothelium of the superficial dermal plexus [50]. Skin
homing of T lymphocytes therefore seems to be a central
mechanism in inflammatory skin diseases.

For psoriasis the crucial role of T cells homing to
the skin has been clearly demonstrated in several in vitro
and animal studies [51, 52] and this concept is further
supported by the effectiveness of therapies targeting either
the number/proliferation or the extravasation of T lym-
phocytes [53, 54]. The histological pattern of psoriasis
shows a hyperproliferation and hyperkeratosis of epidermal
keratinocytes as well as cellular infiltration into dermis and
epidermis. Epidermal keratinocytes in psoriatic lesions have
been shown to display upregulation of MHC class II antigens
as well as induced expression of ICAM-1. Furthermore,
the vascular endothelial cells upregulate adhesion molecules
of all classes: E-selectin, ICAM-1, VCAM-1, and MHC
class II antigens [55]. The understanding of the relevance
of lymphocyte homing into the skin for the development
of psoriasis has initiated a quest for potential treatments
[56]. However, the redundancy and the many overlapping
functions of adhesion molecules have made the development
of effective therapeutics difficult [57]. The insufficient ther-
apeutic potency of several substances such as monoclonal
antibodies against E-selectin has revealed the difficulty of this
therapeutic approach.

Nevertheless, there is a strong need for new anti-
inflammatory substances for the treatment of inflammatory
skin diseases and induction of long-lasting remissions.
The integrin inhibitor efalizumab (Raptiva), which is a
monoclonal antibody against the alpha-subunit of LFA-1,
has clinically shown to alleviate skin inflammation in plaque
psoriasis [58]. However, EMEA and FDA recommended
withdrawal of this substance from the market because of a
severe side effect: progressive multifocal leukoencephalopa-
thy was observed in a few patients. Numerous compounds
have been introduced inhibiting selectin function. Efomycine
M [59], BMS-190394 [60], OJ-R9188 [61], and TCB-1269
[62] showed an effect in preclinical models of psoriasis,
delayed-type hypersensitivity (DTH), and atopic dermatitis.
However, only insufficient response was reported for most
inhibitors in phase I/II trials. Other substances, which are
still being evaluated in preclinical trials, include inhibitors
of fucosyltransferase IV [63] (an enzyme which modifies
carbohydrate ligands to CLA, a high-affinity ligand for E-
selectin). Furthermore, alefacept, a fusion protein of LFA-3
and the Fc-portion of human IgG, has been reported to cause
long-term remission in at least a subpopulation of psoriasis
patients [64].

2.4. Adhesion Molecules in Solid Organ Transplantation. Is-
chemia-reperfusion injury (IRI) is an event of excessive
inflammatory response that occurs after temporary absence
of blood supply, such as shock, infarction, and transplanta-
tion. Key events during IRI are the generation of damage-
associated molecular patterns (DAMPSs) and upregulation
of inflammatory cytokines and adhesion molecules, which
contributes to recruitment of leukocytes [65, 66]. In liver
transplantation IRI affects the outcome and results in 2–10%
early graft failures [67]. Moreover, it has been speculated
that IRI may also lead to higher incidences of acute and
chronic rejection. Gene expression profiling of IRI in human
liver allografts has revealed an upregulation of adhesion
molecules and integrins [68]. Several preclinical and clinical
trials have focused on prevention of IRI in SOT, and blocking
of adhesion molecules has shown promising results in many
models. In the setting of liver transplantation, blocking P-
selectin with a monoclonal antibody resulted in decreased
incidence of IRI in mouse models [69, 70] and most recently
in a clinical phase II study [71]. The leukocyte adhesion
cascade in myocardial IRI remains an interesting target for
therapeutic intervention. Molecules such as Bβ15–42 [72]
and FX06 [73] have shown promise for limiting damage in
myocardial IRI.

As the mechanisms of leukocyte recruitment to the
allograft in the course of rejection is similar to leuko-
cyte recruitment during inflammation [12, 74], strategies
to block adhesion molecules also demonstrated effects
on allograft survival in different settings. inhibition of
LFA-1 prolonged graft survival in murine heart allotrans-
plantation [75, 76]. Prolonged allograft survival was achieved
in an islet transplant model in nonhuman primates [77].
The monoclonal antibody against LFA-1, efalizumab, has
demonstrated efficacy in a clinical phase I/II study of renal
transplantation [78]. However, an increased incidence of
posttransplant lymphoproliferative disorder was observed in
these patients [79]. A study published by Langer et al. [80] in
2004 showed prolonged survival of rat kidney allografts using
the selectin inhibitor OJ-R9188. This effect was mainly due to
a reduction of infiltrating T cells and macrophages as well as
decreased intragraft expression of cytokines and chemokines.

2.5. Adhesion Molecules in Vascularized Composite Allotrans-
plantation-Potential Targets for Therapy. We have recently
published an analysis of more than 170 biopsies taken
from five human hand and forearm transplant recipients
demonstrating the upregulation of adhesion molecules dur-
ing skin rejection [7]. Immunohistochemical staining of skin
samples has revealed a strong correlation of LFA-1 (also
found to be expressed in keratinocytes), ICAM-1, and E-
selectin with the severity of rejection, while none of these
markers was found to be upregulated in nonrejecting skin.
Quantitative PCR analysis, however, showed no correlation
between the severity of rejection and the gene expression
of these molecules, which may indicate that these adhesion
molecules are not solely regulated at the gene level.

In a series of experimental studies using a rat hind-
limb transplant model, adhesion molecule blockers were
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administered subcutaneously (SC) into the allograft after a
short course of systemic immunosuppression (tacrolimus)
to prevent rejection. Targeting E- and P-selectins using the
small-molecule inhibitor Efomycine M resulted in long-term
(150 days) allograft survival in 5 out of 6 animals [7].
Histology on day 150 showed a mild lymphocytic infiltrate
in the dermis and only single vacuolized keratinocytes in the
epidermis. Local intragraft administration of anti-ICAM-1
and anti-LFA-1 significantly prolonged graft survival when
compared to controls. In 3 out of 4 animals long-term graft
survival was achieved (paper in preparation). In another
attempt to address local inhibition of adhesion molecules,
the fibrin derivative Bβ15–42, which blocks VE-cadherin,
revealed a statistically significant prolongation of hind-
limb allograft survival in the rat when combined with
subtherapeutic doses of tacrolimus. When local treatment
with Bβ15–42 was then combined with an induction with IL-
2 Fc and a short course of cyclosporin A, long-term allograft
survival with significant reduction of CD4+ and CD8+ T
cells was achieved (paper in preparation). These data indicate
the potential of leukocyte migration blockers to prevent skin
rejection in a rat VCA model.

3. Cytokines and Chemokines as Important
Mediators for Cell Trafficking

Attraction of mononuclear cells to sites of inflamma-
tion does not only require membrane-bound adhesion
molecules but also a close interplay of the inflammatory
signal presented by a variety of soluble or membrane-
borne chemoattractive factors. It is known that the spe-
cific expression pattern of chemokines and their receptors
determines the type of cell that is attracted to the inflamed
tissue. This pattern of chemokines is regulated by the local
cytokine milieu. For example, interferon-γ (IFN-γ) induces
upregulation of chemokines, which subsequently attracts
neutrophils, monocytes and T helper-1 (Th1) cells. Further,
a T helper-2 (Th2-) dominated cell recruitment pattern is
induced by chemokines upregulated upon exposure to IL-4
and IL-13 [81].

Chemokines can be characterized as a family of cytokines
with chemotactic activity for leukocytes. To this day, approx-
imately 60 chemokine members have been identified. They
are divided into C, CC, CXC, CX3C subfamilies based
on the cysteine motifs near the aminoterminal end of the
molecule [82]. Several studies emphasize the importance
of chemokines and their receptors in the allograft rejection
process and their role in leukocyte recruitment, Th1 and
Th2 cell differentiation and DC movement and matura-
tion [83–87]. Studies on human renal biopsies delineated
that the expression of Th1 chemokine receptors (CCR5
and CXCR3) and their ligands (CXCL10 (=IP10), CXCL9
(=Mig) and CCL5 (=RANTES) is associated with acute
rejection [88]. Mig was increased in a lung transplant
model and its inhibition decreased intragraft migration
of mononuclear cells [89]. The importance of CCR5 was
shown in islet allografts since targeting CCR5 resulted
in significant prolongation of these grafts [90]. Increased

CXCR3 expression was demonstrated in a murine skin
allograft model during rejection and peptide nucleic acid
(PNA) CXCR3 antisense significantly prolonged allograft
survival by blockade of CXCR3+ T-cell infiltration into
the allograft [91]. Li et al. [92] investigated the intragraft
expression profile of 11 chemokines from all four chemokine
subfamilies in a murine skin transplantation model and
demonstrated that CCL5/RANTES, CCL17/TARC, and FKN
were expressed at equivalent levels in iso- and allografts. The
expression of eight chemokines was upregulated in allografts
compared with isografts also in dependence of postoperative
days. The most significantly elevated chemokine was I-TAC
(CXCL11), which peaked during rejection (postoperative
day 7), and when inhibited via intradermal injection of
anti-I-TAC monoclonal antibody significantly prolonged
skin allograft survival. Most studies in transplantation have
concentrated on rather few chemokines. To analyze their
roles in a meaningful manner, novel techniques including
commercially available multiprobe ribonuclease protection
assays, antichemokine and antichemokine-receptor mon-
oclonal antibodies, and gene-knockout animals are now
available [93, 94]. Despite these prospects, it is important
to emphasize that many data from in vitro experiments
demonstrated the presence of multiple ligands for one
chemokine receptor and often multiple receptors for one
chemokine. This may help to explain, why allograft rejection
was not abrogated in any of these trials. Thus a cocktail
of reagents directed to multiple recruiting chemokines may
be required for efficient inhibition of T-cell infiltration into
allograft. In this context we believe that this may also provide
a future promising strategy in VCA.

4. Mediators of Inflammatory Skin Diseases:
Parallels to Skin Rejection

Skin rejection in VCA presents with erythematous macules
that may progress if not treated to scaly violaceous lichenoid
papules covering the complete surface of the graft [8]. These
alterations are not specific for rejection and may mimic
inflammatory dermatoses. Kanitakis [10] emphasized the
diagnostic challenges in early or mild skin rejection; differen-
tiation from contact dermatitis, insect bites or dermatophyte
infections may be difficult in these stages.

Parallels between acute skin rejection and inflammatory
dermatoses (e.g., contact dermatitis, psoriasis, and atopic
dermatitis) also exist on the molecular and Cellular level.
Allergic contact dermatitis for example is a T-cell-mediated
DTH reaction that occurs upon hapten stimulation in
sensitized individuals [95]. Therefore, the differentiation by
histological and macroscopic criteria can be difficult. It has
been demonstrated, that T cells (CD4+ and CD8+ cells)
are critical and that elements of the innate immune system
(e.g., natural killer cells) may play a key role [96]. Epidermal
Langerhans cells as the most competent APCs in the skin
as well as keratinocytes are regulating this inflammatory
process. Cytokines derived from Langerhans cells (e.g., IL-
12) and from T cells (IFN-γ, IL-4, and IL-10) play a pivotal
role in the induction and initiation of this skin disease [97].
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Given the close interaction of chemokines in the inflam-
matory process and immune response, it is not surprising
that a number of dermatological diseases are a result of
chemokine dysregulation [98]. Strong chemokine expression
in allergic and inflammatory skin diseases such as pso-
riasis and contact hypersensitivity (CHS) has been docu-
mented [99–102]. Specifically, CXCL8/IL-8 and the related
CXCL2/Gro-β are significantly upregulated in psoriatic skin
lesions and thus responsible for the typical intraepidermal
aggregation of neutrophils. CCL2/MCP-1 and CCL5 are
responsible for attracting predominately monocytes and T
cell subsets, and CXCR3 ligands attract Th1 cells [103].
The expression of cytokines and chemokines during the
sensitization and elicitation phase of CHS has been well
studied [104]. Watanabe et al. [105] has shown that TNF-
α and IL-1β play a main role in the sensitization phase
of CHS, meanwhile the elicitation phase is predominately
characterized by IFN-γ, IL-1, IL-4, and TNF-α expression.

5. Tertiary Lymphoid Organs: Do They Play
a Pivotal Role in Chronic Rejection of VCAs?

The role of chronic rejection in VCAs is poorly understood
so far. As reconstructive transplantation is a relatively young
field, follow-up periods of VCA recipients are currently
limited to 13 years. Allograft vasculopathy is the main feature
in chronic rejection of solid organ allografts. Only a limited
number of reports on vascular changes of graft vessels in a
VCA are available at this time [106, 107]. It is hypothesized
that multiple (untreated) acute rejection episodes imitate a
state of chronic inflammation, which may trigger myointimal
proliferation and occlusion of allograft vessels [106, 108].

TLOs are lymphoid-like structures that can be found
in chronically inflamed tissues [109]. They are composed
of B- and T-cell aggregates, specialized populations of
DCs, well-differentiated stromal cells, and high endothelial
venules (HEVs), but they are not encapsulated [110].
Many of the molecular signals and events leading to the
development of secondary lymphoid organs have been
shown to be as well involved in the formation of TLOs
[14, 111]. Mesenchymal lymphoid tissue organizers express
CXCL13, MAdCAM, ICAM, and VCAM and thereby recruit
CD4+CD3− haematopoietic lymphoid tissue inducers. The
expression of lymphotoxin on these inducer cells further
upregulates chemoattractants and adhesion molecules via a
positive feedback loop, resulting in recruitment of immune
cells and formation of HEVs.

5.1. TLOs in Chronic Allograft Rejection. The formation
of ectopic lymphoid structures is thought to enhance the
efficiency of alloantigen presentation and generation of
alloreactive lymphocytes and might therefore enhance the
alloimmune response. This is speculated to be a mecha-
nism in several chronic inflammatory conditions, such as
rheumatoid arthritis, Sjögren’s syndrome, and Hashimoto’s
thyroiditis [112–114]. A retrospective analysis of 350 renal
allografts revealed the formation of regional inflammatory

infiltrates consisting of T and B lymphocytes, plasmocytoid
cells, and DCs [115]. The authors found a strong correlation
between the formation of TLOs and an increased incidence
of chronic rejection and graft loss. Baddoura et al. [13]
reported lymphoid neogenesis in murine cardiac allografts in
the course of chronic rejection. 78% of chronically rejected
allografts revealed either classical TLOs with organized T-
and B-cell zones and peripheral node addressin+ (PNAd+)
HEVs or PNAd+ HEVs without organized lymphoid accu-
mulations. Interestingly, the architecture of TLOs has been
shown to be related to the immune activation status of the
host [116]. In an attempt to address the role and function of
TLOs during rejection Nasr et al. [117] reported that TLOs
are able to generate effector and memory T cells. In a murine
transplantation model full thickness skin grafts containing
TLOs due to transgenic expression of lymphotoxin-a (RIP-
LTa) were transplanted to recipients lacking all secondary
lymphoid organs. These allografts were rejected, while wild-
type allografts were accepted. When RIP-LTa and wild-
type allografts were transplanted simultaneously both were
rejected. Furthermore, Thaunat et al. [118] demonstrated
the production of alloantibodies specific for donor MHC
class I molecules in germinal centers of TLOs in a rat aortic
interposition model, suggesting a local antibody-mediated
alloimmune response. In a mouse model of autoantibody-
mediated cardiac allograft vasculopathy administration of
a lymphotoxin blocker, LTβR-Ig fusion protein, abolished
allograft TLO formation and inhibited the effector humoral
response [119]. Taken together these findings suggest that
TLOs in allografts are not only a result of the chronic
inflammatory stimulus, but also a site where the alloimmune
response is being executed and enhanced.

This contrasts findings by Brown et al. [120], who
reported the presence of TLOs in a murine kidney allograft
model of tolerance to be associated with superior graft
function and survival. In summary, it remains unclear at
this point whether TLOs are associated with a destructive or
beneficial response in organ and tissue transplantation and
if they should be targeted or induced in order to promote
long-term graft survival.

6. Conclusion

A perivascular infiltrate of mainly CD3+ T lymphocytes
in the dermis marks the advent of skin rejection in VCA
[9, 121]. The cellular infiltrate then further spreads into the
dermis and epidermis leading to dermal-epidermal separa-
tion and necrosis if not treated successfully. Since a variety of
adhesion molecules as well as cytokines and chemokines are
responsible for lymphocyte trafficking towards the epidermis
during acute rejection, selectively blocking leukocyte recruit-
ment to the site of inflammation seems a promising approach
to prevent and also treat skin rejection in VCA. Moreover,
novel concepts targeting intragraft lymphoid neogenesis and
the formation of TLOs might be considered in the treatment
of chronic allograft rejection, while it remains a puzzling
feature in VCA. Targeted therapy, inspired by the novel
treatments for inflammatory skin diseases, could evolve to
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a promising treatment option for VCA patients, lowering
their burden of long-term systemic immunosuppression.
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