
Hindawi Publishing Corporation
Journal of Allergy
Volume 2012, Article ID 154174, 14 pages
doi:10.1155/2012/154174

Review Article

Sphingolipids: A Potential Molecular Approach to
Treat Allergic Inflammation

Wai Y. Sun1, 2, 3 and Claudine S. Bonder1, 2, 3, 4

1 Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
2 School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
3 Cooperative Research Centre for Biomarker Translation, La Trobe University, Bundoora, VIC 3086, Australia
4 School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5000, Australia

Correspondence should be addressed to Claudine S. Bonder, claudine.bonder@health.sa.gov.au

Received 10 August 2012; Revised 15 October 2012; Accepted 30 October 2012

Academic Editor: Robert J. Bischof

Copyright © 2012 W. Y. Sun and C. S. Bonder. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed
by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-
conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25%
of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance
of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles
and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require
prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as
the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden
to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of
allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and
in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.

1. Introduction

Allergic inflammation can occur rapidly or delayed via the
classical inflammatory immune reaction involving the pro-
duction of specific IgE antibodies as well as the activation
of inflammatory cells and the endothelium [1]. Many
proinflammatory mediators and cytokines including his-
tamine, leukotriene, and tumor necrosis factor α (TNFα) can
activate the vascular endothelial cells (ECs) to cause pro-
inflammatory microvasodilation and mediate leukocyte
recruitment from the circulation to the sites of allergic
inflammation [2, 3]. Excessive and prolonged leukocyte
recruitment can result in extracellular matrix (ECM) remod-
elling and tissue damage [4]; thus controlling EC activation
provides a strategy to minimize allergic inflammation. This
review discusses the pathophysiology of vascular ECs during

allergic inflammation, current treatments and new therapeu-
tic approaches. We focus on the role of sphingolipids in the
regulation of vasculature during the early phase of allergic
inflammation, in particular, studies utilizing sphingolipid
knockout animals which support their potential as new ther-
apeutic targets.

2. Pathophysiology in
Acute Allergic Inflammation

Histamine is a potent proinflammatory mediator primarily
released by mast cells and basophils with up to 0.01–
1 mol/m3 found in the periphery during an allergic response
[5, 6]. Histamine mediates dendritic cell maturation [7],
T lymphocyte differentiation and migration [8–10], and

mailto:claudine.bonder@health.sa.gov.au


2 Journal of Allergy

Table 1: Common antihistamines marketed in Australia.

Some common antihistamines

First generation Second generation Third generation

Systemic Systemic Topical Systemic/topical

Promethazine Cetirizine Azelastine Levocetirizine

Pheniramine Loratadine Levocabastine Desloratadine

Cyproheptadine Terfenadine Fexofenadine

Dexchlorpheniramine Ketotifen

Trimeprazine Mizolastine

endothelial cell proliferation [11] via a family of four G-
protein-coupled receptors (H1−4) [12]. Histamine receptors
are differentially expressed with only H1 and H2 expressed
by vascular ECs [13, 14] (Figure 1). Within minutes of hista-
mine exposure and binding to H1 and H2, the G-protein sub-
unit αq is recruited to decrease cAMP accumulation and sub-
sequent EC contraction [15]. By contrast, the G protein β
and γ subunits are activated to induce the nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) [16].
Ligand interaction with the H1 receptor causes vascular per-
meability, synthesis of prostacyclin and platelet activating
factor, and release of von Willebrand Factor (vWF) and nitric
oxide [17, 18]. H2 receptor stimulation is linked to the Gαs
subunit for the activation of adenylate cyclase and formation
of cyclic adenosine monophosphate (cAMP), which induces
intracellular calcium-mediated vasodilatation at a slower rate
of onset than that of H1 receptor [19, 20]. In addition, the
H2 receptor can negatively regulate the release of histamine
by mast cells and basophils [21] and suppress the production
of TNFα and IL-12 from inflammatory cells [10, 22, 23].

3. Antihistamines as the Current Mainstay
Treatment for Allergic Inflammation

Antihistamines (e.g., diphenhydramine and chlorpheni-
ramine) were first developed in the 1930s as an inverse ago-
nist for the histamine receptors and have been commonly
used to treat and prevent allergic symptoms ever since [24]
(Table 1). Patients treated with H1 antihistamines exhibit
reduced production of histamine and leukotrienes as well as
downregulation of adhesion molecule expression on the vas-
culature which in turn attenuates allergic symptoms by 40–
50% [20, 25–28]. Long term treatment with H1 antihis-
tamines can retard the progression of respiratory disease
by inactivating functions of macrophages and other Th2
cells thus preventing local tissue remodelling and damage
[29, 30]. Second- and third-generation antihistamines (e.g.,
loratadine, fexofenadine, and cetirizine) (Table 1) were gene-
rated in the 1980s. These drugs also target the H1 receptor
but, in general, are less lipophilic and therefore exhibit redu-
ced ability to penetrate the blood-brain barrier resulting in
a less sedating effect than the first generation counterparts
[28, 31]. Notably, 2–5 times higher dose of these second-gen-
eration antihistamines are required to control mild seasonal
allergic symptoms when compared to the first-generation
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Figure 1: Histamine receptors on ECs. Two histamine receptors (H1

and H2) are found on ECs. Within minutes of histamine binding
to its receptors, the G-protein subunits are activated to initiate
intracellular signalling. The αq subunit of the G-protein contributes
to reduced cAMP accumulation, induced ERK1/2, and induced
inositol phospholipid (PI3K) signalling. The β and γ subunits con-
tribute to the activation of NFκB and subsequent translocation into
the nucleus where transcriptional processes are regulated causing
cellular changes, such as vascular contraction and permeability, all
of which are important for immune regulation and inflammation.

medications [32]. Using H1 antihistamines at a high dose
remains controversial as (i) animal studies have shown that
mice treated with high doses of fexofenadine during the aller-
gen challenge exhibited reduced lung inflammation, reduced
Th2 responses, and reduced the secretion of IL-4, -5, and -
13 [7, 29], (ii) a recent human clinical study demonstrated
that high-doses of desloratadine only marginally improved
allergic symptoms in patients without an increase in adverse
effects when compared to the standard doses [33] and (iii)
long-term high-dose use of antihistamines in patients with
chronic urticaria retained adverse effects, such as rapid eye
movement, sleep disturbance, and negative impacted on
learning and performance [34]. Clearly, other effective clini-
cal approaches are needed to combat allergic inflammation.
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4. Antiselectin Therapy for
Inflammatory Diseases

Another approach is to target the expression of adhesion
molecules on ECs, such as selectins, which are known to
initiate the early capturing and rolling of leukocytes from the
circulation. Antagonism of the selectins is recognized to be a
therapeutic approach to prevent and minimize inflammatory
reactions. Evidence for this comes from P-selectin-deficient
mice which, when challenged with the inflammatory irritant
thioglycollate, exhibit attenuated leukocyte rolling in the
blood vessels for up to 4 hours [35]. They also exhibit a
significant reduction in leukocyte infiltration at the inflam-
matory hindlimb by ischemia on postoperative day 14 when
compared to wildtype (WT) controls [36]. In humans, the
recruitment of activated neutrophils to the local inflamed tis-
sue is largely dependent on adhesion molecules as evidenced
by patients with leukocyte adhesion deficiency (LAD II)
whose neutrophils lack functional sialyl Lewis X expression
(a fucose-containing glycoconjugate ligand for P-, E-, and
L-selectin), exhibit reduced rolling and firm adhesion on
the endothelium [37]. Together, these show that controlling
expression of adhesion molecules can influence the early
phase as well as the chronic phase of inflammatory reactions.

Selectin antagonists have been examined in preclinical
studies, including cutaneous inflammation, allergy and
ischemia-reperfusion injury [38, 39]. The first selectin anta-
gonist CY1503 (Cylexin), an analogue of sialyl Lewis X which
inhibits E-, P-, and L-selectins, has demonstrated a reduction
in the degree of myocardial infarct size associated with a
canine model of coronary artery ischemia and reperfusion,
and reduced leukocyte accumulation at 4.5 hours after opera-
tion [40]. However, the effects of CY1503 remain controver-
sial as a second similar study failed to consistently reduce
myocardial injury and neutrophil accumulation at 48 hours
post-operation [41]. Treatment with CY1503 also failed to
attenuate the “no-reflow” phenomenon of leukocytes and
could not limit the myocardial infarct size in the rabbit [42].
More recently, the oral P-selectin blocking agent, Pentosan
Polysulfate Sodium (PPS), has been examined in a Phase I
clinical study, wherein a single dose of PPS showed improve-
ment of microvascular blood flow in patients with sickle cell
disease [43]. However, no study to date has examined the
efficacy of PPS in controlling leukocyte recruitment during
allergic inflammation.

To date, four classes of selectin blocking agents have been
developed: (i) carbohydrate based inhibitors targeting all P-,
E-, and L-selectins [44], (ii) antihuman selectin antibodies
[45], (iii) a recombinant truncated form of PSGL-1 immu-
noglobulin fusion protein [46], and (iv) small-molecule
inhibitors of selectins [47]. Notably, most of the selectin
blocking agents have failed in phase II/III clinical trials or the
clinical studies were ceased due to their unfavorable phar-
macokinetic properties and high cost [39]. Animal models
also suggest that the timing and potency of selectin block-
ade are crucial to preventing the development of allergic
inflammation with a greater than 90% reduction in leukocyte
rolling required for firm adhesion events to be significantly
attenuated [48, 49]. Given that the direct selectin blockade

by the current compounds remains unsuccessful to regulate
allergic inflammation, new therapeutic approaches which
target the regulation and expression of adhesion molecules
are warranted.

5. Sphingomyelin Pathway

The lipid enzyme, sphingosine kinase (SK), was originally
identified for its role in the sphingomyelin degradation path-
way but is increasingly being recognized as an important
signalling molecule (Figure 2). There are excellent reviews
focusing on the roles of SK/S1P in diseases, such as cancer
[50], immunity [51], asthma [52], multiple sclerosis [53],
rheumatoid arthritis [54], and pancreatic islet transplan-
tation [55]. Herein, we discuss how SK can be used as a
new therapeutic target to combat allergic inflammation,
referencing animal models and human trials, together with
the benefits and adverse effects of manipulating SK using
inhibitors.

6. Sphingosine Kinase

Two isoforms of SK (i.e., SK-1 and SK-2) have been cloned
and characterized in mammalian cells, which both catalyze
the phosphorylation of sphingosine to form sphingosine-1-
phosphate (S1P) [56, 57]. SK-1 has been shown to be the pri-
mary contributor to serum S1P levels with SphK1−/− mice
exhibiting a ∼50% reduction in serum S1P when compared
to wildtype (WT) mice [58] and the SphK2−/− mice serum
S1P levels exhibiting no reduction. In fact, Zemann et al.
showed an increase in serum S1P of SphK2−/− mice [59].
Notably, S1P was undetectable in plasma and lymph of the
conditional double knockout mice [60].

The polypeptide sequences of SK-1 and SK-2 contain
80% similarity, which supports compensatory effects when
one isoform of SK is knocked down [56, 57]. Interestingly,
the localization of SK-1 and SK-2 differs with SK-1 being
predominantly found in the cytoplasm and at the plasma
membrane leading to prosurvival effects [61, 62], and SK-2
being predominantly found in the nucleus and at the endo-
plasmic reticulum (ER) promoting proapoptotic effects [63,
64] (Figure 3). Three splice isoforms of SK-1 have been
identified (i.e., SK-1a, SK-1b, and SK-1c) that differ at their
N-termini with additional 14 and 86 amino acids in SK-1b
and SK-1c, respectively [65]. Two variants of SK-2 have also
been identified (i.e., SK-2 and SK-2 long (SK2L)) arising
from alternate start sites [57]. The specific physiological role
for each SK variant is yet to be further elucidated.

SK has intrinsic activity and can be further activated
by many biological stimuli, including histamine [66], cross-
linking of immunoglobulin receptors [11], TNFα [67], vas-
cular endothelial growth factor (VEGF), interleukins, com-
plement C5a [68], and bradykinin [11]. Upon stimulation,
the catalytic activity of SK-1 increases via the phospho-
rylation of extracellular signal regulated kinase (ERK)-1/2
at Ser225 which results in the translocation to the inner
plasma membrane [69]. The binding of SK-1 to lipid
phosphatidylserine can enhance SK-1 activity and plasma
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Figure 2: Sphingomyelin pathway. Sphingomylein is hydrolysed to ceramide, which is then metabolized to sphingosine and sphingosine-1
phosphate (S1P) by different kinases (green). This process is reversible via the activities of different synthases and phosphatases (red). The
levels of the biological product, S1P, are regulated by S1P lyase which degrades it into hexadecanal and phosphoethanolamine. Although the
structures of each sphingolipid are similar, they have divergent cellular functions with ceramide and sphingoine being pro-apoptotic, and
S1P being prosurvival.

membrane translocation [70]. More recently, calcium- and
integrin-binding protein (CIB)-1 protein has been identified
to translocate SK-1 to the plasma membrane [71]. Con-
versely, dephosphorylation at Ser225 causes deactivation of
basal and TNFα-induced SK-1, a process shown to be regu-
lated by protein phosphatase 2A (PP2A) [72, 73]. In contrast,
SK-2 does not possess the Ser225 phosphorylation site but its
activation, also via the ERK pathway, is suggested to occur
by phosphorylation at Ser351 and Thr578, which induces
translocation from the nucleus to endoplasmic reticulum
[57, 74].

7. Sphingosine-1-Phosphate

S1P is the biological product of SKs and is predominantly
formed in the cytoplasm. S1P can be retained intracellularly
or released by platelets, neutrophils, leukocytes, ECs, and
mast cells via the transporters, ATP-binding cassette (ABC)
transporter ABCC1, ABCA1 and ABCG1 [89–92]. S1P is
bound to high-density lipoproteins (HDL) and plasma pro-
teins, such as albumin, which stabilizes S1P in the circulation
[93]. Platelets secrete the highest levels of S1P but ECs also
upregulate their release of S1P in response to activation and

shear stress [94]. The concentration of S1P ranges from
4 × 10−4 to 1.2 × 10−3 mol/m3 in serum, 2 × 10−4 to 5 ×
10−4 mol/m3 in plasma, and 5 × 10−7 to 7.5 × 10−6 mol/m3

in tissue [93, 95–97]. Interestingly, S1P can also be formed
outside the cell as SK-1 has been shown to be secreted by
human umbilical vein ECs (HUVEC) and macrophages [98,
99].

Increasing evidence supports intracellular targets for S1P
signalling with S1P binding to histone deacetylases (HDAC)-
1 and -2 to regulate histone acetylation [100], TNF receptor-
associated factor 2 (TRAF2) to regulate inflammation, anti-
apoptotic and immune responses via the NFκB pathway
[101], and prohibitin 2 (PHB2) for regulation of mito-
chondrial assembly and function [102]. By contrast, extra-
cellular S1P-mediated signalling has been well described
with five S1P receptors (S1P1, 2, 3, 4, 5) coupled with various
Gα proteins (e.g., Gαi, Gαq, and Gα12/13) which activate
different downstream targets, such as PI3 K/Akt, Bcl2, adeny-
lyl cyclase, ERK, phospholipase C, and p53 for cellular
responses in both an autocrine and paracrine manner [103–
107]. Briefly, S1P1 is important to regulate the egress of
lymphocytes into the blood stream [108], and S1P2 is
involved in mast cell degranulation and recovery from
anaphylaxis in vivo [109, 110], S1P3 is involved in vascular
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Figure 3: Intracellular SK-1 and SK-2 activity. The activation of SK-1 and SK-2 occurs via ERK1/2 phosphorylation in response to pro-
inflammatory mediators, such as histamine and TNFα. Upon the activation, SK-1 is translocated from the cytoplasm to plasma membrane
where it catalyses sphingosine to form S1P. S1P can then be transported outside the cell and then act back on its receptors to induce the
activation of G-proteins for subsequent cellular changes, such as survival, proliferation, and migration. In contrast, SK-2 activity is associated
primarily with the nuclear membrane, where it is phosphorylated prior to being translocated out of the nucleus. At the nuclear membrane
and endoplasmic reticulum, S1P can be dephosphorylated to sphingosine and ceramide via the sphingolipid salvage pathway where many
enzymes including sphingomyelinases, cerebrosidases, ceramides, and ceramide synthases are involved to induce apoptosis.

development in the embryo [111]. S1P4 and S1P5 are not well
studied but have been shown to be expressed by dendritic
cells and lymphocytes, respectively [112, 113].

8. Genetic Manipulation of SK/S1P In Vivo

To investigate the physiological roles of SK/S1P in vivo and
whether their manipulation can regulate disease develop-
ment, genetically modified mice with depletion of either SK-
1 or SK-2 gene (Sphk1 or Sphk2) have been generated and
no phenotypical abnormalities have been identified under
normal conditions [58, 77]. By contrast, the depletion of
both Sphk1 and Sphk2 is embryonic lethal by day 13.5 due
to the severe defects in vasculogenesis and neurogene-
sis involved in CNS development [114]. More recently,
the Sphk1 and Sphk2 heterozygous-knockout mice (i.e.,
Sphk1−/−Sphk2+/−) have been generated [115]. Although
Sphk1−/−Sphk2+/− mice have not been studied extensively,
the female mice exhibit a significant breakage of blood vessels
in the uterine causing early pregnancy loss, which suggests
that a basal level of SK is required for blood vessel integrity
or stability [115]. To investigate the inhibitory effects of
both SKs, administration of specific SK inhibitors serves
as an alternative approach to attain the double knockdown
effects, for example, administration of ABC294640 (SK-2
specific inhibitor) to SphK1−/− mice and administration
of CB5468139 (SK-1 specific inhibitor) to SphK2−/− mice.
However, studies using this alternative approach are lacking,
which are likely due to the complicated pharmacokinetics
and pharmacodynamic of the SK inhibitory agents in vivo.

9. SK/S1P in Allergic Inflammation

SK and S1P are involved in multiple cellular functions,
such as survival, differentiation, activation and migration
(reviewed in [107]). Notably, these cellular properties are
involved in many disease developments, including allergic
inflammation. To better understand the role of SK/S1P in
allergic inflammation, a number of studies have examined
the specific roles of each SK isoform and S1P receptors via
genetically modified mice. For example, both Sphk1−/− and
Sphk2−/− mice have been shown to exhibit a reduction
in ovalbumin (OVA)-induced IgE and IgG production via
an inability to increase mast cell protease 1 in response to
OVA, an enzyme required for IgE-induced anaphylaxis [116].
Our recent work has shown that Sphk1−/− mice but not
Sphk2−/− mice exhibit an attenuated histamine-induced P-
selectin expression and neutrophil recruitment [66]. This
is in agreement with a study by Baker et al. who gener-
ated hTNF/Sphk1−/− mice (i.e., Sphk1−/− mice carrying
the human modified copy of TNFα) and showed that
only hTNF/Sphk1−/−mice but not hTNF/Sphk1+/+, hTNF/
Sphk1−/+, or hTNF/Sphk2−/−mice exhibited a reduction in
paw inflammation and bone deformity [117, 118]. Moreover,
this was determined to be due to decreased articular COX2
protein and Th17 cell contribution to inflammation [117]. In
terms of recovery from allergic inflammation, Sphk1−/− and
S1P2−/−mice were observed to have increased vasodilation,
poor recovery from anaphylaxis and delayed clearance of his-
tamine. This was not observed in the Sphk2−/− mice [109].
Administration of S1P to Sphk1−/− mice can rescue these
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phenomena, which suggests that SK-1 activity aids in the
recovery from anaphylaxis [109].

In humans, increasing evidence suggests that SK and S1P
are involved in the pathophysiology of inflammatory dis-
eases, such as asthma [119], chronic obstructive pulmonary
disease (COPD) [120], microbial-induced sepsis [121], acute
pancreatitis [122], and rheumatoid arthritis [123]. Studies
have shown that the SK-1 protein and activity are upregu-
lated markedly in peripheral immune cells including neu-
trophils, lymphocytes, and macrophages during the early
phase of these diseases, which allow for their activation and
release of the proinflammatory cytokines TNFα, IL-1β and
IL-6 [121, 122]. Not surprisingly, high levels of S1P were
detected in the synovial fluid of arthritic patients, which
enhances COX-2 expression and prostaglandin E(2) produc-
tion via the S1P1 receptor [123]. Blockade of SK-1 in tissue
samples extracted from these patients exhibited a decrease in
proinflammatory cytokine expression [121], which suggests
that the regulation of SK-1/S1P pathway is a potential ther-
apy for inflammatory diseases.

10. Pharmacological Manipulation of SK/S1P

There are a number of SK and S1P receptor inhibitors that
have been generated and studied in the last few decades
(Table 2) (reviewed in [124, 125]). Blockade of SK-1 by inhi-
bitors can attenuate prostate cancer [65], melanoma [126],
inflammation in rheumatoid arthritis [123] and asthma
[127] in vivo. Of all of the SK/S1P inhibitors, only a few have
proceeded to clinical trials and been approved for human use
based on their pharmacokinetics, target specificity, efficacy,
adverse effects, and safety profile. The best example to date
is FTY720 (Fingolimod), which was the first oral prodrug to
be approved by the Food and Drug Administration (FDA)
and Therapeutic Goods Administration(TGA) for the clin-
ical treatment of multiple sclerosis (MS) [128]. The first
described mechanism of FTY720 is predominantly phospho-
rylated by SK-2 to form FTY720-P, which is then able to
bind to S1P receptors (S1P1, 3, 4, 5) [77, 129]. In MS, FTY720-
P blocks S1P signalling largely by the internalization of the
S1P1 on lymphocytes causing lymphocyte egress from the
lymphoid organs and lymphopenia in the periphery [108].

Interestingly, later studies have shown that FTY720 with-
out phosphorylation can potently inhibit SK-1 by competing
with sphingosine as a substrate for SKs and thereby pre-
venting subsequent S1P formation [129–131]. Furthermore,
the analogues of FTY720 (i.e., (S)- and (R)- FTY720-vinyl-
phosphonate) bind to an allosteric site of SK-1 to induce
proteasomal degradation in cells in a noncompetitive man-
ner [132]. As FTY720 itself can inhibit SK-1, studies have
also examined whether high concentrations (larger than
the recent clinical dose of 0.5 mg once daily) and multiple
dosing of FTY720 can be a potential therapy for cancer
and renal transplantation [133, 134]. Unfortunately, results
showed that FTY720 does not improve the prognosis for
postrenal transplantation when compared to the current
protocols [134, 135], likely due to the multiple inhibitory
effects of FTY720 on S1P receptors, SK-1, autotoxin, protein

phosphatase 2A, ceramide synthases, S1P lysase, protein
kinase C and cytosolic phospholipase A [reviewed in [136]].
Clearly, new and specific SK/S1P inhibitors are required. To
this end, Schnute et al. recently generated a specific and
potent SK-1 inhibitor, PF-543, which inhibits SK-1 by com-
peting with sphingosine and resulting in rapid reduction of
S1P formation [79]. The inhibitory effect of SK-1 by PF-543
is over 1000-fold more potent than other SK inhibitors such
as N,N-dimethylsphingosine (DMS) and SKI-II. However,
the efficacy of PF-543 in vivo remains to be examined. In
addition, Kharel et al. reported that their two new amidine-
based SK-1 inhibitors (1a and 1b) can selectively inhibit SK-
1 at high potency for rapid reduction in S1P levels without
toxicity in vitro and in vivo [81].

Although SK-2 is less well studied than SK-1, a role
for SK-2 (via the administration of the SK-2 inhibitor,
ABC294640) has been described in tumor development
[82, 137], Crohn’s disease [138], hepatic ischemia-perfusion
[139], and osteoarthritis [140]. However, this SK-2 inhibitor
also binds to oestrogen receptor [141], which suggests that
administration of this compound may result in additional
off-target effects. Interestingly, a new selective SK-2 inhibitor,
SLR080811, has been shown to inhibit SK-2 at a higher
potency than ABC294640 in vitro and drive an SK-1-depen-
dent increase in blood S1P in WT mice [83]. Whether this
small molecule is suitable for the clinic still requires long-
term efficacy and safety data development.

Notably, pharmacological manipulation of SK/S1P does
not always lead to the same results as observed for genetic
manipulation in vivo. As mentioned above, the hTNF/
Sphk2−/− mice exhibited no significant difference in arth-
ritic inflammation when compared to controls [118]. How-
ever, the hTNF mice treated with ABC294640 exhibited
severe arthritic inflammation in the same study, which may
suggest that high dose of the agent and acute inhibition of
SK-2 contribute to this phenomenon [118]. Moreover, other
animal models include that thioglycollate-induced peritoni-
tis and collagen-induced arthritis (CIA) have shown that
the recruitment of neutrophils and lymphocytes to sites of
inflammation in Sphk1−/− mice did not differ from that
of WT mice [142]. By contrast, Lai et al. have shown that
knockdown of either SK-1 protein or gene in mice by DMS
and small interfering (si)RNA, respectively, exhibit reduced
CIA severity [123, 143]. These different observations may
be due to the different time period of stimulus challenge,
animal strains and models for susceptibility. Nevertheless,
taken together these studies clearly indicate that SK and S1P
are involved in the development of allergic inflammation.

11. Adverse Effects of SK Inhibition

The inhibition of SK/S1P pathway may be an effective thera-
peutic approach to control allergic diseases as shown by the
in vivo studies discussed above. However, excessive or pro-
longed blockade of SK/S1P may lead to profound adverse
effects as evidenced by S1P1−/− and double knockout
of Sphk1−/− Sphk2−/− animals being embryonic lethal
[106, 114] as well as S1P2−/− mice being deaf [144] and
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Table 2: Synthetic inhibitors of SK and S1P receptors.
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Table 2: Continued.

Compound Inhibitory target(s) Structure Ref.
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experiencing occasional seizures [145]. The “side effects” of
small molecule therapy that modulate the SK/S1P pathway
may also raise concerns. For example, FTY720 at the clinical
dose has been reported to cause transient bradycardia, atrio-
ventricular block, macula oedema, hypertension, dyspnea,
and elevated liver enzymes [146]. These symptoms are infre-
quent and manageable; however, compliance of this treat-
ment can be discouraged by patients. In addition, treatment
with FTY720 is also thought to increase the risk of infections
as Sphk1−/− mice are more susceptible for endotoxin-indu-
ced lung inflammation than WT controls [147]. However,
human preclinical data showed that FTY720-treated patients
have no increased risk of infections in 2-year treatment when
compared to the placebo group, except a small increased
risk of lower respiratory tract and lung infections [128].
Notably, although the regulation of SK/S1P looks promising
for controlling disease development, high specificity and
potency of the pharmacological agents are preferable to avoid
the undesirable off-target effects.

12. Strategy for Targeting Sphingolipids as
a Therapeutic Approach

An effective approach to target sphingolipids for allergic
inflammation diseases and avoid adverse effects is to better
understand “when” and “where” such that specific SK/S1P
inhibitors can be administrated appropriately. In ECs, we
and others have demonstrated that the SK/S1P pathway
regulates the expression of adhesion molecules to control

neutrophil recruitment in vitro and in vivo (Figure 4). For
example, during the early phase of allergic inflammation,
histamine-induced SK-1 activity (but not SK-2 activity)
rapidly exocytoses P-selectin to the surface of ECs to initiate
neutrophil rolling in the postcapillary venules of WT mice,
a process shown to be S1P receptor independent [66]. As
expected, this histamine-induced neutrophil recruitment
does not occur in Sphk1−/−mice [66]. Furthermore, TNFα-
induced SK-1 activates α5β1 integrin on human umbilical
vein ECs (HUVEC) to promote the adhesion of neutrophils
under shear stress, again the events appear to be S1P receptor
independent and can be inhibited by FTY720 [148].

By contrast in the late phase of allergic inflammation
(>4 hours), S1P receptor-activated pathways promote vas-
cular adhesion molecule (VCAM)-1, intercellular adhesion
molecule (ICAM)-1, and E-selectin gene and protein expres-
sion on HUVEC in response to TNFα [67], globular adipo-
nectin [149], or histamine [150]. Exposure of ECs to S1P can
also increase Weibel Palade body (WPB) exocytosis of vWF in
a PLC-γ-induced calcium-dependent manner. However, pro-
longed exposure of S1P enhances PI3K-induced nitric oxide
production resulting in reduced WPB exocytosis by ECs
[151]. Taken together, these studies suggest that increased
SK-1 activity is predominantly involved in the early phase of
allergic inflammation whilst S1P/S1P receptors are primarily
involved in more delayed immune responses.

S1P1–5 are distributed in different tissues with S1P1–3

being widely expressed and at high levels in brain, lung,
spleen, heart, liver, skeletal muscle, and kidney with addition
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Figure 4: . Exocytosis of P-selectin by ECs. P-selectin is preformed and stored in Weibel Palade bodies (WPBs). It is found to be solely present
or co-stored in WPBs with von Willebrand Factor (vWF) or angiopoietins (Ang). Upon extracellular stimulation, WPBs exocytose to the cell
surface via the activation of Ral-GTP from Ral-GDP. WPB-containing vWF is also driven and translocated to the plasma membrane by
SNARE. The rapid surface expression of P-selectin mediates the initial recruitment of leukocytes to ECs by rolling and tethering, which is
important during the early development of allergic inflammation.

of S1P1 in lymphoid and S1P3 in testis; S1P4 is restricted to
lymphoid and lung tissue and S1P5 is only expressed in brain,
skin, and spleen (reviewed in [152]). These divergent tissue
distributions of S1P receptors may provide some insight into
which specific S1P receptor inhibitors should be adminis-
tered in relation to the development of inflammation and
disease. Notablty, FTY720-P binds to S1P1, 3, 4, 5 and may
result in multiple side effects; thus other selective S1P1

inhibitors (ONO-4641 and CS-0777) have been generated
and undergone Phase 1 and 2 clinical trials for MS and
psoriasis (reviewed in [125, 153]). Different methods of
administration can be used to deliver the inhibitors/drugs
for local inhibitory effects as evident by in vivo studies where
the inhalation of SK inhibitor can attenuate airway inflam-
mation [127], the administration of FTY720 in the eyes
can prolong corneal graft survival [154], and nanoparticle-
mediated delivery of drugs can enhance the therapeutic
outcomes in hindlimb ischemic mice [155]. However, many
questions remain to be answered, such as whether this nano-
technology is effective enough to deliver SK/S1P inhibitors to
specific sites of the body and whether it is safe to be used in
humans.

13. Conclusion and Future Perspectives

Early allergic reactions and recruitment of inflammatory
cells are key to allergic disease formation and progression.
An effectual therapeutic approach is lacking amongst the
current treatment options, and most treatments (e.g., H1

antagonists) are ineffective in their regulation of the early
phase of allergic inflammation. Thus a better therapeutic
strategy is urged for a rapid control of allergic symptoms to
prevent tissue damage and development of severe conditions.
The SK/S1P pathway has been shown to be important in cell
survival, migration, differentiation, and immune responses.
Herein, we discuss its role in allergic inflammation, both the
early and late phases as well as chronic inflammation. Further
studies involving the manipulation of SK/S1P pathway and
its impact on a variety of diseases as well as the early phase of
allergic inflammation will culminate to provide better insight

into how we can translate animal studies into a new clinical
treatment for human allergic inflammation.

Based on these in vitro and in vivo studies, sphingolipids
are clearly involved in the regulation of adhesion molecule
expression on the vasculature and as such may be a biolo-
gical marker for attenuating leukocyte recruitment and sub-
sequent allergic inflammatory reactions. The next step is to
translate these animal models into human clinical studies
with the ultimate goal of developing new treatments to
tackle allergic diseases. Herein we propose that the current
sphingolipid compounds may be effective in attenuation of
allergic inflammation. For example, FTY720 or new small
molecular inhibitors could be further investigated for their
drug adverse effect profile to then determine their suitability
for long-term use as prophylaxes.
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