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Abstract: Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses
and are the leading cause of cancer-related death in children. Current treatments for paediatric
CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment.
Besides, long-term sequelae in the developing brain make it mandatory to find new innovative
approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients
with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their
success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour,
the selective trafficking provided by the blood–brain barrier, and the immunosuppressive tumour
microenvironment have emerged as the main hurdles that need to be overcome for the success
of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest
high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and
the potential of CAR T cell therapy to increase survival and patients’ quality of life.
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1. Introduction

Central nervous system (CNS) tumours are the most common solid cancers in child-
hood, as well as the leading cause of cancer-related death in children. Paediatric CNS tu-
mours comprise 25% of the childhood cancer diagnoses [1]. Current treatments are far from
optimal. Despite their great heterogeneity, affecting their location and molecular mutations,
all tumours are managed the same way: surgery, chemotherapy, and/or radiotherapy.

During the last decades, significant treatment advances have extended overall sur-
vival rates (60–70%), but outcomes for children with unresectable, relapsed, or refractory
tumours remain dismal. Children with disseminated disease and younger age at the time
of diagnosis have a particularly poor prognosis, with a 5-year survival of 15–30% [2,3].
Even the cure is paid at a high price; the adverse effects of current treatments on the
developing brain leave these children with long-term dramatic sequelae. Their quality of
life is drastically affected by neurologic irreversible effects, endocrine disease, cognitive
and developmental disorders, and the possibility of generating secondary malignancies [4].
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Paediatric CNS tumours have not been as extensively studied as the adult ones.
They differ in many aspects, such as clinical presentation, histological distribution, gene
mutations, embryological origins, location, and the tumour microenvironment (TME),
making them respond differently to the treatments [5,6]. Moreover, we must consider that
the paediatric immune system is developing and age-dependent, leading to differences in
treatment response [7].

Advances in molecular characterisation in the last years have brought the identification
of new potential targeted molecular therapies that are being tested in early-phase clinical
trials [5,8].

Despite this, the long-term survival of these young patients remains unacceptably
low. Furthermore, the use of pharmacologic therapies for paediatric brain cancers can be
particularly challenging due to the low permeability of the brain–blood barrier (BBB) and
the lack of approved novel agents [9].

Recently, with the increased understanding of CNS immunology, along with the
reported clinical success of chimeric antigen receptor T (CAR T) cells in haematological
malignancies, CAR T cell immunotherapy has opened new therapeutic avenues for a
targeted approach to eliminate cancer cells while sparing healthy brain tissue.

However, paediatric brain tumours represent a challenge for successful immunother-
apy treatment. They possess unique characteristics, including low mutational burden,
tumour heterogeneity that leads to tumour evasion, location, the barrier generated by the
BBB, the immunosuppressive TME, and the treatment-related toxicities that may cause
fatal consequences on the CNS [10].

In this review, we will focus mainly on the challenges of CAR T cell therapy in
the more prevalent high-grade CNS paediatric brain tumours, such as medulloblastoma,
ependymoma, and high-grade gliomas. Atypical teratoid/rhabdoid (AT/RT) is also one
of the deadliest brain tumours but, also, it is very rare [11]. We are going to discuss the
potential strategies to overcome these hurdles.

2. CAR T Cell Immunotherapy

Adoptive cell therapy (ACT) is one of the most promising strategies used in cancer
immunotherapy [12]. ACT consists of the transfer of immune cells to a patient after
selection, genetic manipulation, and ex vivo expansion to enhance antitumour activity.
ACTs include tumour-infiltrating lymphocytes (TILs), T cell receptor (TCR) T cells, CAR
T cells, and natural killer (NK) cells [13]. ACT has achieved high regression rates in
several cancer types; however, lower rates have been reported in others, especially solid
cancers [14,15]. Within ACT therapies using effector T cells, CAR T cells have emerged as a
powerful strategy harnessing the power of the immune system to eradicate cancer [16].

CAR T cells involve the genetic modification of autologous or donor T cells to recognise
a specific antigen. CARs incorporate an extracellular antigen-binding domain, usually
derived from a single-chain variable fragment (scFv) of a monoclonal antibody, which
is fused via a transmembrane linker to an intracytoplasmic signalling domain (CD3z).
This basic engineered construct forms a first generation CAR. The addition of one or two
costimulatory domains, which are needed to promote T cell activation and functionality,
create second and third generation CARs, respectively [17,18]. Additionally, CAR T cells
can be used as delivery vehicles of inflammatory cytokines (IL-7, IL-12, IL-15, IL-18, IL-23),
antibody fragments, or other biomolecules that enhance their antitumour activity, known
as fourth generation, armoured CAR T cells or TRUCKS-T cells redirected for universal
cytokine-mediated killing [19,20]. Upon antigen recognition, the intracellular signals
trigger CAR T cell activation, which, in turn, secrete perforin/granzyme and inflammatory
cytokines, leading to tumour cell killing. Besides recognising tumour specific antigens,
CAR T cells can also target tumour-associated antigens (TAAs) and immunosuppressive
cells within the TME.

Nowadays, there are five CAR T cell therapies approved by the Food and Drug
Administration for refractory large B-cell lymphoma, acute lymphoblastic leukaemia,
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mantle cell lymphoma, follicular lymphoma, and multiple myeloma. In this context,
anti-CD19 CAR T cells have demonstrated consistent antitumour efficacy in children
and adults affected by relapsed B-cell malignancies, with the percentage of complete
remissions ranging from 70 to 94% in the different trials [21]. Even though there has
been remarkable success in B-cell malignancies, clinical trials testing CAR T cells for solid
tumours have only reported sporadic and transient objective responses [22–28]. CAR T
cells offer some advantages over chemotherapeutic drugs, including targeting multiple
tumour antigens [29]. Nevertheless, lack of specific tumour antigens, inefficient traffic of
CAR T cells to the tumour site, or the hostile TME that avoids T cell activation, proliferation,
and survival are some of the issues accounting for the failure of CAR T cell therapy in
solid tumours. In the specific case of brain tumours, other aspects must be considered,
such as the difficulty to trespass the BBB or the need to avoid inflammation or any other
treatment-related toxicity. In this regard, Abramson et al. reported CD19 CAR T cells could
target CNS diffuse B-cell large lymphoma cells, proving that CAR T cells can bypass the
BBB and encouraging further research for using CAR T cells for brain tumours [30]. Others
have also shown the efficient trafficking of CAR T cells to the paediatric CNS [31–33].

For paediatric patients, additional caution is required, as their brain is in development
and any damage may cause life-long side effects [34].

Most of the clinical trials are generally focused on adult patients, mainly in glioblas-
toma (GBM), showing a modest efficacy [26]. However, these studies have served as a
demonstration of the feasibility and safety of CAR T cells to treat brain tumours, paving
the way to extend further the research in this field and to include more paediatric patients.
As a result of this increased interest in testing CAR T cell therapies in paediatric CNS
tumours, a search in clinicaltrials.gov typing “CAR” and “brain tumours” shows a total of
10 registered trials actively recruiting patients (Table 1).

Table 1. Recruiting or active clinical trials using CAR T cells in children with CNS tumours.

Age NCT Phase Tumour Type Target Antigen Administration Sponsor

2–30 years old NCT04196413 1 DIPG and DMG GD2 Intravenously
Lucile Packard

Children’s
Hospital

1–26 years old NCT04185038 1

DIPG/DMG, and
recurrent or
refractory

Paediatric CNS
tumours

B7-H3

Catheter into
the tumour or

ventricular
system

Seattle
Children’s
Hospital

1–18 years old NCT04099797 1
DIPG, Embryonal

Tumour, HGG,
medulloblastoma

GD2 Intravenously
Texas

Children’s
Hospital

1–26 years old NCT03638167 1

Recurrent or
refractory

Paediatric CNS
tumours

EGFR

Tumour
resection cavity

or the
ventricular

system

Seattle
Children’s
Hospital

1–26 years old NCT03500991 1

Recurrent or
refractory

Paediatric CNS
tumours

HER-2

Tumour
resection cavity

or into their
ventricular

system

Seattle
Children’s
Hospital

4–70 years old NCT03638206 1 and 2
Several solid

tumours. Gliomas
from the CNS

EGFR V III Intravenously Shenzhen
BinDeBio Ltd.

clinicaltrials.gov
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Table 1. Cont.

Age NCT Phase Tumour Type Target Antigen Administration Sponsor

12–75 years old NCT02208362 1
Recurrent or

refractory
malignant glioma

IL13Rα2
Intracavitary,

intratumoral or
intraventricular

City of Hope
Comprehensive
Cancer Center

4–25 years old NCT04510051 1
Recurrent or

refractory brain
tumours in children

IL13Rα2 Intraventricular

City of Hope
Medical Center

National
Cancer Institute

(NCI)

1–22 years old NCT04903080 * 1 Ependymoma HER-2 Intravenously

Pediatric Brain
Tumor

Consortium
Texas

Children’s
Cancer Center
Baylor College

of Medicine

3 years old and
older NCT02442297 1 CNS tumours HER-2

Tumour,
tumour

resection cavity,
and/or

cerebrospinal
fluid (CSF)

space

Baylor College
of Medicine

* Not yet recruiting.

3. Overview of High-Grade CNS Paediatric Tumours

In this section, we will give a rough summary of the most common high-grade CNS
tumours in children. There is an extensive bibliography on this topic; since that is beyond
the scope of this review, see [35–37] for an overview.

3.1. Medulloblastoma

Medulloblastoma (MB) is a highly aggressive embryonal neuroepithelial tumour
(World Health Organization (WHO) grade IV) that usually arises from the cerebellum or
dorsal brainstem. MB accounts for nearly 20% of all CNS tumours in children. Current
standard therapies based on surgery, chemotherapy, and radiotherapy have increased the
survival rate but with devastating long-term toxicities [38]. WHO classifies MB into four his-
tological groups: large cell and anaplastic, nodular desmoplastic, extensive nodularity, and
classic. Additionally, MB is divided into four molecular subgroups: wingless/integrated
(WNT), sonic hedgehog (SHH), group 3, and group 4 [36,39]. MB presents great hetero-
geneity, even within each subgroup. These subgroups differ in many features, such as cells
of origin, tumour vasculature/architecture, molecular mutations, alterations in epigenetic
regulators, and prognosis [5,36,40].

The WNT subgroup is characterised by the activation of the WNT pathway. It com-
prises 10% of all MBs and has the best clinical outcome prediction, with a 5-year overall
survival (OS) >95%.

The SHH subgroup comprises very heterogeneous tumours that share the overex-
pression of the SHH pathway. This subgroup represents 30% of all MB, with a 5-year OS
of 70%.

Group 3 represents 25% of all MB and has the worst prognosis among the subgroups,
with a 5-year OS of 40–50% and half of the patients presenting metastasis at diagnosis. The
underlying molecular drivers have not yet been characterised, although MYC amplification
and gain or loss of chromosome function confers a poor prognosis.
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Group 4 is the least understood group but the most prevalent. This group represents
35% of all MBs, with a 5-year OS of 75–90% [8,40]. Multiple histone mutations and
epigenetic aberrations have been found in this subtype.

Some targeted therapies in early clinical trials for the SHH group and decreases in
the chemo and radio doses are being implemented to achieve the same efficacy as that
achieved for the WNT group, but there are no specific treatments developed for groups 3
and 4 [5,36].

3.2. Paediatric High-Grade Gliomas

Paediatric high-grade gliomas (pHGGs) comprises four types: diffuse midline glioma,
H3 K27-altered; diffuse hemispheric glioma, H3 G34-mutant; diffuse paediatric-type high-
grade glioma, H3 wildtype and IDH wildtype; and infant-type hemispheric glioma [41],
as classified by the WHO [39], and represent 8–12% of all primary brain tumours in chil-
dren. Of note, glioblastoma is no longer used in the setting of a paediatric-type neoplasm.
pHHGs are very aggressive, with a low survival rate. Despite numerous approaches and
molecular data, the 5-year survival rate is still ranging 15–35% [41,42]. The treatment
involves a combination of surgery, radiation, and chemotherapy. Histologically, pHGG are
identical to the adult HGGs, but the molecular genetics and genomic alteration patterns
are unique. Epigenetic changes are common in these tumours. pHGGs carry different and
mutually exclusive histone gene mutations specific to tumour location, receptor tyrosine
kinase mutations, and mutations in the tumour suppressor gene TP53. pHGGs present with
extensive tumour heterogeneity. Although different pHGG subgroups have been proposed
in terms of anatomical location, clinical outcome, histone mutations, or pathway alter-
ations, their great heterogeneity complicates their classification and treatment [8,43–46].
In addition, the molecular genetics of pHGGs differ between infant and older children
with HGG [47,48]. Targeted therapies are also under investigation in early clinical trials
but, to date, they have not conferred a higher survival, even in combination with standard
treatments [35,49].

Diffuse midline gliomas (DMG) are rare tumours characterised by their aggressiveness
and their infiltrative growth pattern [50]. DMGs represent 80% of all paediatric brain
tumours that occur in the brainstem. DMGs have no cure and only less than 10% of patients
survive beyond 2 years from the time of diagnosis [51]. Their treatment remains very
challenging since their location within the brainstem makes surgical resection inappropriate.
Radiotherapy is the standard of care and the combination with chemotherapy has not
shown any benefit. Around 85% of DMG carry a K27M mutation in histone H3 gene or,
less commonly, in the related HIST1H3B gene [52].

3.3. Ependymomas

Ependymomas account for 10% of primary intracranial tumours in children, being
the third most common CNS tumour in this age group. They locate in the brain, posterior
fossa, spinal cord, and supratentorial region. There are nine subgroups based on molecular
analysis depending on the age, location, and biology but, even within those subgroups,
there are subtypes with dismal differences in prognosis. Two-thirds of the tumours are in
the posterior fossa. Posterior fossa ependymoma group A (PFEPN-A) is the most aggressive
but molecular genetic studies have shown a very low mutational burden, with low somatic
mutations. Posterior fossa ependymoma group B (PFEPN-B) tumours display frequent
large-scale copy number gains and losses, and have better outcomes. More than 70% of
supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB
subunit gene RELA (ST-EPN-RELA) [36,53,54]. The current standard of care is tumour
resection and radiation, with chemotherapy giving no substantial survival advantages.
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4. Challenges and Opportunities of Car T Cell Therapy in Paediatric CNS Tumours
4.1. Challenges for Paediatric Brain Tumours

The lower clinical success of CAR T cells in solid tumours is most likely multifactorial,
but heterogeneous tumour antigen expression, limited infiltration of T cells into the tumour,
and the immunosuppressive TME are the main hurdles. In the case of paediatric brain
tumours, there are additional challenges, including the anatomical location, the BBB barrier,
the specific immune function of the CNS, and the necessity to avoid toxicities. Toxicities
may cause long-term sequelae, including not only morbidities and secondary neoplasia,
but also social-economic implications [55]. Some of the opportunities presented by CAR T
cells are summarised in Figure 1.
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4.1.1. Location

Paediatric and adult CNS tumours typically emerge from different tissues. In total,
54 to 70% of all brain tumours in children are present in the posterior fossa (including
the brainstem and cerebellum), while only 15–20% of adult brain tumours are in this
location [56].

MB, ependymoma, and brain stem glioma are common posterior fossa brain tumours
in children. Although these are less frequent in children younger than 1 year of age, the
posterior fossa is the most common site of brain tumours in the first decade of life. Tumours
occurring in this area are usually of either neuronal or glial origin [57]. Neurosurgery is
the mainstay of treatment in posterior fossa tumours in children, with the goal of safe,
maximal resection of the tumour. Location is still a challenge for surgical treatment, with
the consequent dismal prognosis for unresectable tumours [58].

BioRender.com
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4.1.2. Blood–Brain Barrier

The BBB is a highly regulated barrier between the brain and other organs to protect
the brain from toxins, pathogens, and inflammation. However, simultaneously, it hinders
the entry of many treatments. The BBB is composed of capillary endothelial, pericytes,
astrocytes, neurons, and the extracellular matrix conforming to a neurovascular unit that
protects the brain and maintain homeostasis [59]. Regarding the ability of immune cells to
trespass the BBB, the CNS was traditionally considered an immunoprivileged site, but that
idea is not accurate anymore [60]. The trafficking of immune cells is tightly regulated [61].
In the absence of neuroinflammation, immune surveillance occurs via draining lymphatics
to deep cervical deep nodes, with rare translocation of immune cells across the BBB.
These specific immune events occur under precise endothelial cell signalling and immune
cell-shape fluctuation, together with an exquisite balance in the expression of adhesion
molecules [62–64].

In contrast, in response to excessive inflammatory signals, peripheral adaptive and
innate immune cells, including monocytes, neutrophils, and B and T cells can enter the CNS,
where they execute distinct cell-mediated effects to maintain the homeostasis of the brain
and avoid damage from inflammation [60,65]. The CNS-resident immune system is mainly
comprised of innate immune cells called resident macrophages and microglia. These
myeloid cells are highly specialised but also very plastic, and they respond immediately
to any changes in CNS homeostasis, becoming reactive and promoting inflammation [66].
This way, in response to inflammation, including the one produced by tumours’ brain
stromal cells, high levels of immunosuppressive cytokines, such as TGFβ or IL-10, are
secreted. This secretion favours tumour growth and complicates satisfactory treatment
outcomes [60,67,68].

Regarding the BBB permeability, the heterogeneity of paediatric brain tumours must
be considered when applying CAR T cell treatments. Phoenix TN et al. showed that, in MB,
even within the same group of tumours, the different subtypes differ in the functionality of
the BBB presented. Whereas the WNT subtype presents an aberrant vasculature, making a
dysfunctional BBB and leading to accumulation of antitumour treatment, the SHH subtype
has an intact BBB, making it less susceptible to treatment and, therefore, less curable [69].
Knowing the state of the BBB and how it can be manipulated can enhance CAR T cell
therapy treatment.

4.1.3. Tumour Microenvironment

The composition of the TME is crucial to elucidate treatment response to CAR T cell
therapies. The TME is formed by a close interaction between tumour and non-tumour
cells. Non-tumour cells include microglial cells, endothelial cells, pericytes, fibroblasts, and
immune cells. While several of these cell types are also prevalent in brain tumours, some
important features distinguish the brain tumour stroma from other tissues. The crosstalk
among the different cells and the response to cytokines contribute to tumour growth and
outcome to treatment [70]. Different immunosuppressive cells can also be found as reg-
ulatory T cells (Tregs), tumour-associated macrophages (TAMs), and myeloid-derived
suppressor cells (MDSCs), which express cytokines associated with immune suppression,
tolerance, and homeostasis [71]. Additionally, tumour cells can express immune inhibitory
ligands that inhibit T cell activity, increase T cell exhaustion and promote the formation
of a hostile TME [60]. Microglia are the resident macrophages of the CNS. Under physio-
logical conditions, they exist in a resting state. After a stimulus, they activate, producing
proinflammatory cytokines and chemokines to restore brain homeostasis [72]. In response
to a microenvironmental signal, macrophages polarise to a different state. This polarisa-
tion can be summarised on M1 and M2. Both are key regulators of cancer progression.
M1 have antitumor properties, whereas M2 macrophages promote tumour angiogenesis,
immunosuppression, and stromal activation. The interaction between tumour cells and
macrophages promotes mainly an M2 switch [73].



Cells 2021, 10, 2940 8 of 27

Comparing with myeloid cells, the presence of T cells in the TME is low, thus contribut-
ing to T cell exhaustion and lack of T cell persistence. Besides, the immunosuppressive
cytokines released by TAMs lead to T cell senescence [74]

Immune checkpoint inhibitors have emerged as a promising therapy to unblock anti-
tumour T cell responses but have led to some disappointing results in early phase clinical
trials for paediatric tumours [4,43,53]. Programmed death ligand 1 (PD-L1) expression
in paediatric tumours has been low in general, ranging from 0 to 36% PDL-1 positivity,
depending on tumour type.

To properly induce an immune response against a tumour, we need to increase the
immunogenicity of the tumour niche. Unlike adult brain tumours, in paediatric patients,
the immune cell infiltration has not shown any correlation with tumour grade or mutational
load, suggesting new strategies must focus on boosting the antitumour response in the
tumour instead of reversing the immune escape mechanisms [7].

Paediatric CNS tumours have characteristics of “cold tumours” phenotype. They
present low numbers of TILs with limited activity [2]. Several factors contribute to T cell
infiltration, such as cytokines, integrins, tumour neoantigens, and tumour vasculature,
having an important role in response to CAR T cell therapy [61].

Recruitment of immune cells to the tumour is also dependent on cytokines and
chemokines. The scarcity of these cytokines in immunological “cold” tumours contributes
to the maintenance of the immunosuppressive microenvironment and the failure of the
immune system to eradicate tumour cells. Approaches that ensure the availability of
these cytokines in the microenvironment of tumours without increasing their presence
systemically must be developed. Besides, cold tumours lack substantial CD8+ T cell
infiltration needed for antitumour immune response and surveillance.

Additionally, we need to consider that different paediatric CNS tumours have a distinc-
tive immunophenotype. Pilocytic astrocytoma and ependymoma have higher antitumour T
cell infiltration than MB, which is highly immunosuppressed. GBM, ependymoma, and MB
exhibit a myeloid immunosuppressive TME, with a high proportion of M2 macrophages
and poor recruitment of immune cells. Diao S et al. showed that MBs are cold tumours
with a noninflammatory and immunosuppressive TME that leads to poor recruitment of
immune cells [75].

TAMs tend to be pro-tumorigenic in brain tumours, producing low levels of proin-
flammatory cytokines and contributing to low immune T cell infiltration, although their
role is still controversial and it seems tumour-context dependent [68]. While, in MB, TAMs
have been reported to have an antitumoral role [76], in gliomas, inhibition of TAMs leads
to a blockade in tumour progression [76,77]. Furthermore, TAMs contribute to the release
of immunosuppressive cytokines, such as IL-10 and TGF-β, that promote tumour growth
and decrease response to CAR T cell therapy [68,78].

By contrast, DMGs are not highly immunosuppressive tumours. They include rela-
tively noninflammatory macrophages and low tumour immune infiltration, suggesting
limited antitumour immune surveillance [79].

Thus, strategies aiming to reprogramme the tumour immunophenotype and boost
immune cell recruitment and activation would increase antitumour immune responses
within the TME [68]. Moreover, strategies to increase T cell persistence will enhance CAR T
cell therapy.

4.1.4. Lack of Specific Tumour Antigens

The low tumour mutational load in paediatric brain tumours produces few neoanti-
gens, making it more difficult to find targets for CAR T cell therapy, and challenging T cell
activation and response to immunotherapy [80]. Accordingly, the low mutational burden
will fail in promoting an existing T cell immune response, such as immune checkpoint
inhibitors, making it ineffective [2,4]. The lack of specific tumour antigens leads to the
development of CAR T cell therapy-targeting TAAs that can also be expressed at low levels
on normal cells, leading to toxicities (Table 2). Some clinical and preclinical studies have
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identified B7 homolog 3 (B7-H3), EGFRvIII, ephrin type-A receptor 2 (EphA2), HER 2, and
IL13Ra2 as promising TAAs overexpressed on some paediatric CNS tumours (see Table 2
and references [81–87]).

Table 2. Most common tumour antigens for CNS paediatric brain tumours.

Target CNS Paediatric Tumour Expression Expression in Healthy Tissues Bibliography

B7-H3 Moderate-to-high levels in MB,
ependymoma, and gliomas Very low or undetected [81–83]

HER2 40% of MB Not expressed in healthy brain tissue [84]

IL-13Ralpha2 Highly expressed (60–100%) in gliomas,
MB, and ependymoma

Not expressed in healthy brain tissue or
other organs except testis [85–87]

EphA2, Gliomas Not expressed in healthy brain tissue [85,86]

NKG2DL Variable expression in MB Rarely detectable in healthy tissue [88,89]

EGFRvIII Variable expression in pHGG Not expressed in healthy tissue [90]

GD2 High levels in pHGG

GD2 in normal tissues is limited essentially
at low levels on neurons and peripheral
nerve fibres, dermal melanocytes,
lymphocytes, and mesenchymal stem cell

[91,92]

PDGFRA Variable expression in pHGG In healthy tissues expressed on development [93–97]

PIGF Highly expressed in MB

Expressed in placenta and at low levels in
several other organs, including the heart,
lung, thyroid, skeletal muscle, and adipose
tissue under normal physiological conditions

[98,99]

CAR T cells targeting HER2, IL13Rα2, EphA2, B7-H3, and disialoganglioside GD2
(GD2) have been performed, showing efficacy [26,27,82–84,86,90,91,100,101]. Recently, Hay-
dar D et al. established a hierarchy for the expression of the antigens B7-H3, GD2, IL13Rα2,
and HER2, the most common neoantigens expressed on CNS paediatric tumours [102].
The ongoing clinical trials of CAR T cells targeting TAAs in children and young adults
with recurrent or refractory CNS tumours are shown in Table 1.

Regardless of the efforts, still antigen escape and lack of CAR T cell persistence are
among the main causes of treatment failure [24,103–106]. In a GMB patient, the intracavitary
and intraventricular infusion of IL13Rα2 CAR T cells showed an initial remarkable response
for 7.5 months. Although the procedure showed limited adverse effects, the patient
eventually relapsed due to antigen-escape phenotype [26]. Additionally, a study in GBM
patients treated with EGFRvIII-CAR T cells administered intravenously showed trafficking
of the CAR T cells to tumour cells, although the efficacy was inhibited by the local TME
and antigen heterogeneity [107].

In the past, the infusion of HER-2 CAR T cells in GBM raised some concerns about
efficacy and persistence in some clinical trials. In a phase I clinical trial, anti-HER2 CAR-T
cells were administered intravenously in HER2-expressing GBM patients, including some
children. CAR T cell persistence was observed for 1 year. About half of the patients showed
clinical benefits, tumour heterogeneity being the main obstacle for better response rates [27].
Modifications of the CAR T design and targeting of several TAAs should be devised to
maximise efficacy of this therapy [27].

Epigenetic modulators could restore immunogenicity. Paediatric brain tumours carry
fewer somatic mutations and more epigenetic alterations than adult ones. The methylation
profile represents a preserved molecular memory for the cell of origin and, during the dis-
ease, shows a characteristic pattern for each discrete tumour entity. Epigenetic modulators,
such as histone deacetylase inhibitors (HDACis) or DNA methyltransferases (DNMTi), in
combination with CAR T cell therapies, can increase effectiveness [108].
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4.1.5. Toxicity

Although CAR T cell therapies have become a powerful tool in the last decades,
with encouraging outcomes, especially in haematological malignancies, they also harbour
toxicities that impact the morbidity and occasionally mortality of cancer patients [109,110].

CAR T-cell-associated toxicities are considered unique, in contrast to side effects
caused by chemotherapy, which are often nonspecific and can cause permanent multiorgan
damage. As a consequence of CAR T specificity, many of its associated toxicities are
on-target and occur when CAR T cells are expanding, eradicated, or exhausted [111].

Cytokine release syndrome (CRS) is the most common type of toxicity caused by CAR
T cells. CRS can cause headache, nausea, fever, malaise, anorexia, myalgias, hypotension,
and can include multiorgan dysfunction and needs urgent intervention [112,113]. The
severity of CRS varies among different scales. CRS or related neurotoxicity are other
complications that have been observed in patients treated with CAR T CD19 for B-cell
acute lymphoid leukaemia [84,114]. Moreover, toxicities related to the on-target off-tumour
effect should be considered.

While some studies have correlated toxicity symptoms with in vivo CAR T cell ex-
pansion, in others, this correlation is not that clear [115]. The mechanism is not fully
understood, but cytokine release by CAR T cells plays a significant role in this syndrome.
Among them, IL-6, IFNγ, IL-15, IL-8, IL-10, and IL-2 are found to be elevated in the serum
of patients experiencing CRS [112,113,116]. Several reports demonstrated that CRS usually
occurs within the first week following CAR T-cell infusion [117,118]. Moreover, Teachey
DT and collaborators showed a strong correlation between the severity of CRS and the
highest levels of CAR-T cells and serum IL-6 [119]. Furthermore, in leukaemias, studies of
Norelli M et al. using xenotolerant murine models and Giavridis T et al. in SCID-beige
mice showed that CRS was associated with an increase in IL-1 and IL-6, a hallmark of CRS,
and that the monocytes and not CAR T cells were the major source of both cytokines in
CRS [120,121].

The second major side effect developed by patients treated with CAR T cell therapies
is neurologic toxicity and, in particular, the immune effector-cell-associated neurotoxicity
syndrome (ICANS) [110,122]. ICANS is associated with disruption of the BBB and increased
cerebrospinal fluid (CSF) cytokine levels, and can present as aphasia, an altered mental
state, tremor, seizures, headache, and life-threatening cerebral oedema, often occurring
concurrently with or following CRS [123]. The most severe cases of ICANS have been
associated mainly with patients who develop CRS and take place at the same time as CRS
or some days later. The pathogenesis is even less clear than for CRS but, similarly, ICANS
occurs when the peak of CAR T cells is reached [115,124]. Since severe ICANS has been
related to increased CSF protein and cytokine levels, it has been suggested that this toxicity
is triggered by both an increase in BBB permeability and local production of cytokines by
cells within the CNS [91,124].

Other adverse effects regarding the administration of CAR T cell therapies include
persistent cytopenias, infections, and tumour lysis syndrome [125,126]. Besides, the on-
target off-tumour toxicity is an unavoidable side effect when CAR T cells target tumour-
specific antigens. If the tumour-specific antigen is also expressed by tissue stem cells, this
toxicity is extremely hazardous, with the risk of tissue destruction [127].

Mount CW et al. reported lethal neurotoxicity after infusion of anti-GD-2 CAR
T cells in a patient-derived orthotopic xenograft model with H3K27M+ DMGs of the
thalamus. This toxicity was not observed for a patient-derived orthotopic xenograft model
of H3K27M+ DMGs of the pons or spinal cord. These findings highlight the importance of
tumour location, monitoring, and neurointensive care management [91]. Besides, clinical
trials are showing that GD2 CAR T cell therapy for DIPG and spinal cord DMG are safe
and show signs of clinical benefit [128]. In some reports, the adverse events caused by
the CAR T cells have been related to the tumour burden, suggesting that treatment of
small brainstem tumours may reduce CRS or neurotoxicity [91,129]. These results could be
life-changing for the outcomes of children with paediatric brain tumours.
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4.2. Overcoming the Challenges by CAR T Cells

The use of CART cell therapy in paediatric brain tumours can be a useful strategy for
those tumours with suboptimal outcomes and treatment possibilities. However, successful
clinical outcome strategies that facilitate trespassing the BBB, increase T cell infiltration,
and improve in vivo CAR T cell persistence and functionality need to be developed and
tailored to the different tumours and subtypes (Table 3 and Figure 1).

Table 3. Challenges for CAR T cell therapy in paediatric CNS tumours and overcoming strategies.

Challenges Potential Strategies

Tumour microenvironment

Modulation of the TME using TRUCKs [130–136]
Chemokines [137]

Blocking immunosuppressive molecules:
TGFβ-resistant [138]

VEGFR2 CAR T [139–141]
PDGFRA CAR T [94–97,142]

CAR T cells targeting TAMs [68,76,77,143,144]
PIGF CAR T [98]

Trespassing the BBB
CAR T derived exosomes [145–148]

Local delivery [149–153]
Nanoparticles [154–157]

Antigen escape

Targeting multiple antigens [88,89,158–163]
synNotch CAR T [29]

Targeting the CSC [164,165]
New neoantigens [166]

CAR T associated toxicities

T cell subpopulation [167–171]
iCas9 CAR T [172–177]

Prediction with mathematical modelling [178–180]
Manufacturing process [102,168]

4.2.1. CAR T Cells Directed to the Immunosuppressive TME

The immunosuppressive TME hinders the success of CAR T cell therapy. Even in
the case that CAR T cells could reach their target antigens, the TME inhibits effector
T cell function, hampering their antitumour effect. The brain has immunosuppressive
mechanisms to mitigate the inflammatory state [60,67,68]. Poor CAR T cell persistence
can inhibit the antitumour effect. Several approaches to increase CAR T cell persistence
without increasing toxicities are under investigation. CD28 and 41BB are the main CAR T
co-stimulatory domains used. 41BB CAR T cells have shown higher persistence than CD28
costimulatory domain, which is associated with rapid expansion. Other costimulatory
domains or the incorporation of both can increase the persistence of CAR T cells in CNS
tumours [74].

Moreover, immunosuppressive molecules and cells within the TME can decrease the
function and persistence of T cells. TAMs in the brain hamper the availability of cytokines,
contributing to low T cell infiltration. CAR T cells targeting TAMs and, therefore, able to
reprogramme the TME have been recently developed for ovarian cancer [181]. Moreover,
in a recent publication, antiFOLR2 CAR T cells targeting TAM in murine models of ovarian
cancer, colon cancer, and melanoma were able to reprogramme the TME and improve the
efficacy of CAR T cells [181]. In a murine model of GBM, Li Y et al. designed a TGFβ-
resistant EGFRvIII CAR T showing increased survival. They also found polarisation of
microglia from a protumorigenic towards a proinflammatory phenotype [138]. The TME
can be remodelled by the production of cytokines. Alizadeh D. et al. showed in a GBM
model that the increased production of IFNγ by CAR T cells provides immune-stimulatory
effects that changed the tumour immune landscape, including both myeloid and lymphoid
compartments to promote a more activated and less suppressive TME [182]. Moreover,
some studies have shown the role of IFNγ in inhibiting TAM-induced immunosuppression
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and monocyte differentiation into immunosuppressive M2 macrophage phenotype, thus
preventing TAM generation and functions [183].

TRUCKS are CAR T cells engineered with the inducible release of cytokines. CAR T
cells releasing IL-12, IL15, and IL-18 have been studied in preclinical models, increasing
efficacy even in advanced tumours [130,131].

These cytokines increase IFN-γ secretion, favouring T cell infiltration and persistence,
as well as decrease the level of proangiogenic molecules, reactivating the endogenous
immune system [132]. For CNS tumours, the local and the controlled administration of
these immunomodulatory cytokines is paramount to minimise toxicities, since high toxicity
has been related to their systemic application [133].

In a syngeneic model of GBM Agliardi J et al. showed that the local administration
of IL12 improved CAR T cell function, eliminating tumour growth. IL12 was also able to
modulate the TME, and increase CAR T cell persistence and infiltration of T cells [134].
In a phase 1 clinical trial in patients with HGG, the controlled intracerebral expression of
IL-12 was shown to be safe. The production of IL-12 was regulated by a ligand-inducible
expression switch and controlled by the oral activator veledimex. The results showed
tolerability and an increase in TILs [184]. IL-18 release has also been incorporated in some
CAR T therapies. This therapy showed potent antitumour efficacy, both for melanoma [185]
and in a pancreatic tumour [130] model of immunocompetent mice. Its functioning has been
further explored in other tumour-bearing mouse models, arising as a promising therapy for
solid tumours [186]. IL-15, a cytokine with a role in T cell survival and antitumour activity,
is an alternative TRUCK strategy. Alizadeh D et al. showed that CAR T cells expanded in
IL15 preserved a stem-like memory T cell (TSCM) phenotype and improved their metabolic
fitness, resulting in superior in vivo antitumour activity [187]. Moreover, GD2 CAR T
cells expressing IL-15 were enriched in stem-cell-like cells and promoted enhanced CAR
T antitumour effect and expansion in a paediatric tumour model of neuroblastoma [188].
Besides, IL-7 secretion, together with IL-15, has been used in a CAR T strategy to extend T
cell persistence [189].

Although many preclinical studies have shown the feasibility of using TRUCKS,
further research is warranted in paediatric CNS tumours. The selection of the appropriate
interleukin(s) for each tumour type to produce a change in the immune state of the TME is
essential to boost CAR T cell effector functions without increasing toxicities [123,133].

Despite several trials that are currently testing armoured CAR Ts, at the moment, none
of them are focused on brain tumours [135,136].

CAR T cells designed to express proinflammatory cytokines could balance the mi-
croenvironment immune milieu from tolerant to inflammatory, improving antitumour
immune response [22]. In this regard, Jin L et al. showed how CAR T cells expressing
IL-8 receptors (CXCR1 or CXCR2) increased the intratumoral trafficking of CAR T cells
and enhanced antitumour responses in several preclinical models of aggressive tumours,
including GBM [137].

Moreover, the platelet-derived growth factor receptor α (PDGFRA) is uniquely ex-
pressed by fibroblasts in the adult heart [93,190], and it is dysregulated in a subset of
pHGGs and DIPG tumours, driving glioma formation and associated with worse progno-
sis [46,94–97]. Xiao W et al. have shown that PDGFRA CAR T cells exhibited potent killing
activity toward PDGFRA-positive rhabdomyosarcoma cells in vitro and in vivo; the same
approach can be applied to pHGG tumours with activation of PDGFRA [142,191].

Radiotherapy can increase tumour immunogenicity but the neurologic effects and
neurocognitive morbidity associated with radio- and chemotherapy are of major concern
for the long-term survivors [192].

Gene-editing techniques, such as CRISPR-Cas9, that can disrupt a gene of interest are
under investigation. The disruption of T cell inhibitory molecules, such as PD1, CTLA-
4, TIM-3, or TIGIT, in CAR T cells can increase persistence and, therefore, treatment
efficacy [74]. In this context, in a preclinical model of GBM, Choi BD et al. showed that
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the intraventricular infusion of an EGFRvIII CAR T resistant to PD1 inhibition prolonged
survival and achieved complete and durable cures in some animals [193].

Therefore, CAR T cell strategies should consider these characteristics and address the
recruitment, activation, and retention of tumour-specific effector immune cells [79].

Angiogenesis: Abnormal tumour blood vessel is another characteristic of solid tu-
mours, including some paediatric CNS tumours, that hinders CAR T cell infiltration.

Some paediatric brain tumours are highly angiogenic, such as HGG, but the benefit of
antiangiogenic therapy in children is not clear. Some clinical trials are studying the efficacy
of antiangiogenic treatments on paediatric brain tumours. Although it is a safe procedure,
the antitumour effect is poor, and one of the main problems they face is the inability to
cross the BBB [194].

As for other approaches, adult GBM has been used as a model for tumour angiogenesis,
making the extrapolation of the results to paediatric tumours insufficient [195].

HGGs and grade III MB express high levels of the proangiogenic factor vascular
endothelial growth factor (VEGF) and PDGFR [194]. Bao et al. found that glioma cancer
stem cells (CSCs) in comparison to non-CSCs, produce elevated amounts of VEGF [196].

Targeting VEGF will not only decrease or normalise the tumour vasculature, but will
improve tumour immunity. VEGF functions also as an immunosuppressor molecule that
blocks the maturation of dendritic cells, decreases T cell proliferation, and increases the
number of Tregs, as well as MDSC activity [139]. Anti-VEGFR2 CAR T will likely improve
tumour immunity while normalising tumour vasculature. This treatment seems more
indicated to early stages of the disease, although it has not been tested in paediatric CNS
tumours yet [140].

Placental growth factor (PlGF) is a member of the VEGF family and is involved in
bone-marrow-derived cell activation, endothelial stimulation, pathologic angiogenesis,
and wound healing [98,99]. The role of PIGF in tumour promotion is controversial, with
some studies showing the involvement of PIGF in tumour growth and others showing the
opposite [98]. Around 90% of primary MBs express PIGF, as well as other paediatric brain
tumours, and correlate with poor survival [98]. A phase I clinical trial to study different
doses of a humanised antibody against PIFG has already been completed in paediatric
patients with relapsed or refractory MB (NCT02748135), although no results have been
reported. PIGF is also expressed in some other paediatric CNS tumours, such as gliomas,
ependymomas, and AT/RT tumours, making this approach a therapeutic opportunity.
Targeting the tumour vasculature will decrease hypoxia but also increase oxygen levels,
immune cell infiltration, and therapeutic delivery.

This CAR T cell therapy alone or in combination with another strategy, such as
immune checkpoint inhibitors, or local CAR T administration could improve survival, as
has been shown for other paediatric solid tumours [142].

4.2.2. Trespassing the BBB

Several strategies have been used to facilitate the delivery of therapeutic agents,
including transient BBB disruption by using hypertonic solutions or low-intensity pulsed
ultrasounds, nanoparticle-based carriers, or the use of alternative routes to CNS drug
delivery (intraventricular/intrathecal or olfactory routes) [59,197,198]. In a murine model
of glioma, temporal disruption of the BBB by low-intensity pulsed ultrasound increased
the delivery of EGFR CAR T cells and prolonged survival of the treated mice [199]. Other
approaches have emerged with real possibilities in paediatric CNS tumours.

CAR T Cell Delivery

With an inefficient effector cell trafficking, only a minor fraction of CAR T cells can be
found infiltrating the tumour [154]. Nanoparticles are one of the innovative approaches
that can be used as carriers for drug delivery [154]. Their physical and chemical charac-
teristics and the possibility to attach different molecules make them an interesting tool to
transport the therapeutic compound across the BBB [155]. Metallic, polymeric, and lipid
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nanoparticles can be used to transport the therapeutic compounds, stimulate CAR T cells
before infusion, or overcome TME immunosuppression. Moreover, their pharmacokinetic
and pharmacodynamic properties allow the use of low doses of immune-modulating
molecules, reducing their side effects [154].

Very few studies have been explored with the use of nanoparticles for enhanced CAR
T cell therapy in brain tumours, most of which have been summarised by Balakrishnan
PB et al. [155].

Recently, one study revealed that a nanoparticle RNA vaccine can directly enhance
the cytotoxic effect of CAR T cells and overcome insufficient stimulation and low sustain-
ability [156].

A different approach has arisen in the last years for the use of nanoparticles. Loading
CAR T cells with magnetic nanoparticles (MNPs) can increase the delivery to the tumour
site, therefore, overcoming the anatomical barriers. The adsorption of effector cells to
MNPs to guide and retain them using an external magnetic field (EMF) at the tumour site
could increase CAR T cell infiltration and decrease CRS toxicity by reducing the number of
effector cells infused [157]. This fact is very important in children, since sometimes it is
difficult to obtain enough material for the generation of autologous CAR T cells for brain
tumours. Sanz-Ortega L et al. showed that MNPS attached to the T cell surface can be
guided and retained to the target site by an EMF without affecting their biological activity
and characteristics [157]. They also showed that CD8+ T cells loaded with MNPs can be
directed to a tumour expressing an antigen of interest [200].

MNPs technology has already been approved for the treatment of brain tumours by
inducing intratumoral thermotherapy in patients with recurrent GBM multiforme [201].

Magnetic hyperthermia takes advantage of the susceptibility of cancer cells to high
temperatures. This way, intratumorally injected MNPs generate heat after exposure to an
external alternating magnetic field and, consequently, induce cell death within tumours.
An advantage of this technique is the application to unresectable or difficult to access
brain tumours. Another important point of the use of MNPs is that they can restore
cancer-specific immune responses [202].

Although this approach can solve some of the main limitations of CAR T cell therapy,
much work should still be done to understand the mechanisms of interaction between T
cells and MNPs, and optimise delivery.

CAR T Cell-Derived Exosomes

Exosomes are small vesicles (30–120 nm) containing nucleic acid (DNA, mRNAs, and
microRNAs) and protein cargo secreted by all cell types. They are found in body fluids,
including blood, saliva, urine, breast milk, and CSF. Exosomes are viewed as specifically
secreted vesicles enabling intercellular communication [145].

Recent publications have shown that exosomes derived from CAR T cells (Exo-CARs)
hold great potential to target cancer cells [146–148]. Exo-CARs maintain the same mem-
brane topology as CAR T cells, with the extracellular domain exposed on the surface of the
exosomes, and, thus, keeping the antigen recognition capacity. Additionally, upon antigen
recognition on the tumour cell, Exo-CAR releases cytotoxic effector molecules, such as
granzyme B and perforin, and exerts antitumour cytotoxicity. Besides having the same
antigen recognition and antitumour toxicity of CAR T cells, they possess some advantages
over their parental cells. Their nanoscale size would confer an improved ability to cross this
barrier over the whole cell [149,203,204]. Additionally, Exo-CAR may easily penetrate the
stroma-rich matrixes and may be more helpful to treat solid tumours [147,148]. Moreover,
recent studies by Fu W et al. and Yang P et al. in murine models of solid tumours showed
that animals injected with Exo-CAR exhibited no signs of toxicity, even at the highest dose
tested [147,148]. Furthermore, one of the studies showed Exo-CARs lack expression of
inhibitory molecules, such as PD1, protecting them from T cell exhaustion and providing
enhanced resistance to the immunosuppressive TME [148]. Recently, Exo-CD19 CARs have
been derived from CD19CAR-expressing HEK293T cells. This strategy aims to develop “off-
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the-shelf” targeted CAR exosomes, avoiding the limitations of manufacturing CAR T cells
from autologous PBMCs [146]. It is important to note that both platforms—CAR-T-derived
exosomes and CAR T cells—can be combined and/or alternated, and this combination
will probably strengthen the application for CAR-based cancer therapy in paediatric CNS
tumours. However, the use of exosomes equipped with CAR molecules is still at a starting
point and needs further exploration.

Routes of Administration of CAR T Cell Therapy

Delivery of CAR T cells in paediatric brain tumours is also a topic of debate. Dif-
ferent routes have been studied: intravenous, intraventricular, and intra-tumour-cavity,
with the results favouring the last two routes. In a preclinical model of AT/RT tumours,
the intraventricular or intratumoral administration of B7-H3 CAR T cells had a higher
antitumour effect and reduced systemic levels of inflammatory cytokines when compared
to CAR T cells administered intravenously [150]. In a xenograft mouse model of MB and
ependymoma, the administration of EPHA2, HER2, or ILRα13 CAR T cells in the CSF was
an effective treatment, increasing the amount of CAR T cells in contact with the tumour
cells and decreasing toxicities [85].

For these two types of tumours that metastasize adjacent to the CSF, this could be the
preferred administration route to decrease toxicity and bypass the BBB.

Systemic delivery of CAR T cell therapy for CNS tumours could lead to inefficient
crossing of the BBB. Mulazzani et al. showed that the intravenous administration of
CAR T cells was less efficient in tumour killing than the intratumor administration [151].
Nellan et al., in a xenograft murine model using different MB cells lines, showed that the
HER2-BBz-CAR T cells effectively eliminated tumour cells via regional and intravenous
delivery, although intravenous delivery required a high concentration of effector cells [152].
Since a high concentration of effector cells could increase on-target off-tumour toxicities,
locoregional delivery is the preferred route of administration in most clinical trials (Table 1).
Moreover, other authors, such as Priceman PJ et al., demonstrated that intraventricular
regional administration of HER2-CAR T cells was more effective and with fewer side effects
than local delivery, using an orthotopic human xenograft model of breast cancer metastasis
to the brain [153]. Limited investigations are available for brain tumours but, reiteratively,
the local intracranial CAR T administration seems to be a better option than intravenous
infusion, and, also, regional delivery could be beneficial over local infusion [205].

5. Antigen Escape

Molecular and cellular heterogeneity is one characteristic of brain tumours that ham-
pers CAR T cell therapy. Even in the case of a uniformly expressed TAA, there is the
possibility of antigen loss. Antigen escape is one of the major challenges in CAR T cell
therapy, with tumour cells selecting clones that downregulate antigens targeted by effector
CAR T cells.

The ideal target should be expressed on most tumour cells and, specifically, in the
cancer-initiating cells, which are usually resistant to conventional therapies [206–209].

c-Met, CD133, and CD171 are CSC markers expressed on GBM. In GBM, CAR T cells
targeting CSC markers have had remarkable success in preclinical studies [164]. Although
some clinical studies are ongoing, none of them are being developed in brain tumours [165].

The tumour antigens should not be expressed on cells from healthy tissue, avoiding
toxicity through on-target off-tumour effect. However, even when the target has been iden-
tified and it is mostly expressed, malignant cells can outgrow at relapse, downregulating
TAA expression, which, in the case of CD19 CAR T for haematological malignancies, has
been associated with splicing alternatives [158,210].

Moreover, CAR T cells require higher antigen densities to fully activate effector
functions [159–161,211]. The heterogeneous expression of target antigens in the tumour,
along with the immunosuppressive TME, lead to tumour CAR T cell killing escape when
using a single antigen. One strategy to overcome this limitation is the design of CAR T
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constructs targeting several antigens. NKG2D CAR T cells recognise up to six ligands
(NKG2DL) that are usually overexpressed on tumour cells and cells from the TME but not
in healthy tissue [88,162]. We have previously shown that these ligands are upregulated
in MB [89]. Moreover, we proved the safety and effectiveness of NKG2D CAR T cells in
an in vivo model of paediatric osteosarcoma [163]. Although NKG2DL shedding has been
studied as an immune escape strategy in some tumours, these ligands were not detected in
serum when a cohort of paediatric brain tumours was analysed [7]. Specifically, NK cells
have been shown to efficiently target paediatric DIPG tumours, reinforcing the anti-tumour
effectiveness of NKG2D CAR T therapy [79].

Advances in RNA sequencing, microarray analysis, and proteomics have made it
possible to identify new preclinical targets. This way, strategies that combine different
approaches or CAR T cells targeting multiple antigens should be considered.

Other alternatives are to study the antitumour effect of CAR T cells expressing
membrane-anchored gangliosides. One of the most studied in paediatric tumours is
GD-2. GD-2 is expressed at low levels on some tissues [92,101] (Table 2). GD-2 CAR T is
already in clinical trials in neuroblastoma, osteosarcoma, and H3K27M+ DMGs [28,127,212]
GD-3 is another ganglioside highly expressed on malignant gliomas; thus, this could be
another candidate for CAR T cell therapy in children with CNS tumours [166].

As we previously mentioned the possibility of targeting TAMs expressing folate recep-
tor β by an anti FOLR2 CAR T, some tumours are also positive for folate receptor α (FRα).
In 95 MB patients, Liu et al. observed expression of FRα, comparing with healthy brain
tissue; also, in an in vivo model, tumour growth decreased upon FRα targeting [143,144].

6. Toxicity

For CNS tumours, CAR T cell therapy-related toxicity could lead to catastrophic
outcomes and long-life side effects, so minimisation of adverse events is critical. Preclinical
research is providing novel alternatives to reduce CAR-T-associated toxicities that have to
be cleared in clinical trials. The intensity of conditioning therapy, high CAR T cell dose,
and CAR T cell construct design are among the main factors that lead to increased CAR T
cell expansion in vivo and boost toxicity.

As an example, some groups are focusing their research on modifying the CAR
structure to ameliorate toxicity by decreasing CAR-antigen binding domain affinity to
micromolar affinity or altering CAR transmembrane regions to modulate cytokine secre-
tion [213]. Other methods involve the modification of CAR T cells expressing suicide
switch molecules, CAR T cells directed against tumour antigens, or pharmacological im-
munosuppression by using immunomodulatory pharmacologic drugs [172–176]. Several
different approaches are already under investigation, with some of the systems being in
early phase clinical trials. For paediatric CNS tumour patients, several considerations must
be considered when choosing the approach. In case of life-threatening toxicity, iCasp9 irre-
versibly eliminate CAR T cells. Endogenous switches, such as synNotch and iCAR, regulate
CAR T cells, but the time and intensity of CAR T cell activity cannot be controlled [177].
Some strategies have already been tested in clinical trials in CNS tumours, such as the
CAR T expressing the gene coding for inducible caspase-9 (iCasp9). Phase I efficacy and
safety trials of the CD2 CAR T iCasp9 technology have been initiated in several indications,
including DIPG and spinal DMG [172] (Table 1).

New methods to keep a balance between cytokine secretions and CAR T cell activation
without reaching a toxicity level are needed.

Preclinical models have their limitations. Patient-derived xenografts (PDXs) have
been increasingly used in translational research, but immunocompromised models create
a host environment that does not recapitulate the one from the patients. The lack of an
immune system hampers the potential development of some of the most common negative
effects of CAR T cell therapy, on-target off-tumour effect, CRS, and neurotoxicity [214].
Adequate preclinical models should be chosen to better study brain malignancies [215–218].
Humanised mouse models are probably a better model to recapitulate T-cell-based therapy,
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but they also present some limitations, such as lack of recapitulation of CAR T cell toxicities;
also, these models are expensive and difficult to obtain for routine use [219]. Syngeneic
models are more economic and have a functional immune system. They also can unveil
on-target off-tumour toxicities. These models present some disadvantages due to the
differences in mouse and human biology, including the absence of human antigen targets
and different inflammatory environment [220,221]. Moreover, chemokines involved in
infiltration can be species-specific, limiting efficient trafficking, i.e., human IFNγ secreted
for T cells, a cytokine important for tumour elimination, does not act on murine tumour
stromal cells [222]. All these issues do not support the results for clinical translation.

Mathematical modelling has emerged as a tool to predict treatment response and CAR
T cell dynamics. This tool can give answers about CAR T cell dosing to avoid relapse and
toxicities, studying CAR T cell expansion and exhaustion and the interaction between CAR
T cells and immune cells. These aspects are patient-dependent and an important feature
of the success of this therapy [178]. In some studies, developed in paediatric leukaemia,
the authors underlined the importance of the characteristics of the infused CAR T cells.
Leon-Triana O et al., in a pilot mathematical model, used a dual target for tumour cells
and the antigen present in normal cells, such as CD19+. They showed poor CAR T cell
persistence due to the immunosuppression and low levels of tumour target [179]. In brain
tumours, mathematical modelling has also been applied in a model of GBM. Sahoo P
et al. showed, in a CAR T cell treatment response in glioma (CARRGO) model, that the
rate of cancer cell killing by CAR T cells is inversely related to the CAR T cell dose, but
CAR T cell dose correlates with the proliferation and exhaustion of CAR T cells [180].
Although with some limitations, such as tumour heterogeneity and immunosuppressive
TME, these in silico models are useful for predicting the behaviour of CAR T cell therapy
and tumour growth.

7. Other Considerations

Optimisation of the CAR T cell manufacturing process to enrich for the population,
which can contribute to sustaining an effective antitumour response, is crucial, especially
when they encounter hostile conditions of solid tumours [167,182]. To improve the pro-
tocols for culturing time, cell density, choice of IL, including concentration and timing
of supplementation, for ex vivo culture are important variables to produce an optimal
clinical product [103]. Moreover, the selection of a T cell subtype with a non-alloreactive
phenotype, such as memory T cells, will contribute to decreasing toxicities. Most clinical
trials have been performed with CAR T cells with an effector memory phenotype, which
translates to poor persistence in vivo. This lack of persistence has encouraged finding a
subset of T cells that are less differentiated or with a memory phenotype [168]. TSCM are
under investigation given their self-renewal capacity, engraftment potential, and ability
to generate other T cell subsets. Because the frequency of these T cell subpopulations in
peripheral blood is very low (2–3%), specific manufacturing processes that can enrich and
expand CAR TSCM cells are already in preclinical studies [167,169,170]. Another important
question is the therapeutic window of CAR T cell therapy. The density and expression on
healthy tissues of TAA for CAR T cells have to be considered. The level of TAA expression
on healthy tissues narrows the therapeutic window of this therapy. Moreover, the TAA
density threshold for CAR T cell recognition and activation are important issues to be con-
sidered. These and other modifications that can broaden this window would be necessary
to enhance efficacy [171].

8. Conclusions

Little improvement has been made in the last decades for recurrent or relapsed
paediatric brain tumours. Children with CNS tumours present unique challenges due to
their brain development and immature immune system. The research field in CAR T cell
therapy has advanced extraordinarily, but mainly for adult patients and haematological
malignancies. Given the differences in paediatric and adult CNS tumours, the results
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obtained from adults cannot be applied to children. Therefore, new strategies must be
tailored to the unique characteristics of paediatric CNS tumours.

Future strategies with CAR T cells need to consider the hurdles of these tumours, lack
of specific TAA, tumour heterogeneity, diffusion through the BBB, the TME, and the small
number of patients that limit data generation. Innovative therapies, such as Exo-CAR T
and nanotechnology, are promising fields due to their characteristics and advantages.

The integration of multidisciplinary data and preclinical research with the combination
of different strategies will be required to maximize positive results. All these efforts
will translate into breakthroughs in CAR T cell therapy for these patients with generally
suboptimal clinical outcomes. Safety should always be the main consideration when
assessing new treatment for these children.
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