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1 |  INTRODUCTION

Measuring is a fundamental activity and technique in science, 
engineering, industry, and trade. Although widely utilized, 

not much thought is given to it. Traditionally measurements 
and science have aimed toward a single measurement quan-
tity (value) with as small an uncertainty in the form of stan-
dard deviation as possible.
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Abstract
Measurements are widely used in science, engineering, industry, and trade. They 
form the basis for experimental scientific research, approach, and progress; however, 
their foundations are seldom thought or questioned. Recently poikilosis, pervasive 
heterogeneity ranging from subatomic level to biosphere, was introduced. Poikilosis 
makes single point measurements and estimates obsolete and irrelevant as measur-
ands display intervals of magnitudes. Consideration of poikilosis requires new lines 
of thinking in experimental design, conduction of studies, data analysis and inter-
pretation. Measurements of poikilosis must consider lagom, normal, variation ex-
tent. Measurements, measures, and measurands as well as the measuring systems and 
uncertainties are discussed from the perspective of poikilosis. New systematics is 
introduced for description of uncertainty in measurements and for types of experi-
mental designs. Poikilosis- aware experimenting, data analysis and interpretation are 
discussed. Instructions are provided for how to measure lagom and non- lagom ef-
fects of poikilosis. Consideration of poikilosis can solve scientific controversies and 
enigmas and can allow novel insight into systems, processes, mechanisms, and reac-
tions and their interpretation, understanding, and manipulation. Furthermore, it will 
increase reproducibility of measurements and studies.
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Measurements form the basis for experimental scientific 
research, approach, and progress. They should be based on 
deep understanding of the investigated phenomenon and its 
dependence on other factors for the results to be meaning-
ful. This article is written from the perspective of life sci-
ences, mainly biology and medicine; however, it applies also 
to other fields. Measurements have to be rethought to take 
recently introduced pervasive heterogeneity, poikilosis,1 into 
account.

Well conducted experiments are expected to be valid and 
repeatable, but that is not always the case. Replication crisis, 
also called reproducibility crisis, refers to inability to rep-
licate published studies and observations despite extensive 
efforts. This is far too common and seen in many fields.2 
Some examples are described here. Replication effort was 
conducted for 53 landmark studies in clinical cancer research 
published in major journals. Only in six cases (11%) the find-
ings could be confirmed.3 Only 39 out of 100 experimental 
and correlational studies in psychology could be replicated.4 
In another replication experiment, 75% of 67 articles in on-
cology, cardiovascular diseases and women's health failed in 
reproduction.5 Two large pharmacogenomic studies showed 
inconsistency: out of 15 shared drugs and 471 cell lines only 
one compound showed “moderate” and another “fair” cor-
relation.6 According to a survey among 1,500 scientists from 
various fields, 70% had failed to replicate results of others, 
and >50% even their own studies.7 There were differences 
between disciplines, but irreproducibility was high among all 
of them.

Irreproducibility originates due to many reasons. For 
example, antibodies, widely used reagents, are a common 
source for irreproducibility due to batch- to- batch variability 
and unspecific binding.8 Another major reason is misuse and 
misunderstanding of statistical probability, which is often ex-
pressed as a p- value. In some fields, especially in medicine, 
observations in publications have to be supported by almost 
an enchanted p- value, typically a value <0.05. Many studies 
are underpowered, therefore low p- values are not reliable9 
and reproducibility is low. Single minded concentration on 
p- values has led to publication bias as only those studies that 
show “significant” p- value are published,10 others are usually 
not even submitted to journals.

It has been presented that majority of the published sta-
tistical probabilities and interpretations based on them are 
wrong.11 In addition to honest mistakes, statistical results are 
often misleading because of data dredging, p- hacking and 
p- harking (hypothesizing after results are known).12 These 
practices include selection of a subset of data points support-
ing wanted outcome and search for a statistical test that gives 
low enough p- value.

Moreover, an important factor affecting reproducibility 
of scientific observations is poikilosis, normal, and perva-
sive heterogeneity in systems.1 Every system and experiment 

display poikilosis at multiple levels. Since it has not been 
properly taken into account, replication of experiments may 
be challenging or impossible. As many studies are based on 
low numbers of investigated entities (or limited number of 
values even in “big data”) they do not allow to chart the range 
of poikilosis. Therefore, replication studies may not work.

Poikilosis has much larger effect on experiments beyond 
reproducibility. Poikilosis makes single point measurements 
and estimates obsolete and irrelevant as the measured mag-
nitudes lie within a range (interval). Inclusion of poikilo-
sis requires new line of thinking in experimental design, in 
conduction of studies, data analysis, and interpretation. It is 
also apparent that new types of analytical and statistical ap-
proaches will be needed.

In this article, I briefly present poikilosis and its normal 
variation extent (lagom), discuss measurements, measures 
and measurands as well as the measuring systems and un-
certainty from the perspective of poikilosis. Then, poikilosis- 
aware experimenting, data analysis and interpretation are 
discussed. Further, guidelines for measuring lagom and non- 
lagom effects of poikilosis are provided. Poikilosis has not 
yet been properly treated in any study, therefore its full mean-
ing and significance have not been revealed.

2 |  POIKILOSIS AND LAGOM

According to definition,1 poikilosis is inherent pervasive 
variation, heterogeneity and fluctuation in living organisms, 
populations, ecosystems, biosphere and in their compo-
nents and in processes within them. This means that most 
experiments aiming at and reporting a single value or score 
are defective as the intrinsic interval of heterogeneity in the 
measured entity is missed.

Heterogeneity in biological systems has often been called 
noise although it in fact refers to poikilosis. Noise means un-
certainty, which originates from many sources and has been 
described in the "Guide to the Expression of Uncertainty in 
Measurement" (GUM) by the Joint Committee for Guides in 
Metrology (JCGM,13) for the International Organization for 
Standardization (ISO).

Several databases contain information about heterogene-
ity in different fields, some of which are listed in Table 1. 
There are variation data from molecular heterogeneity to ge-
netic and epigenetic variations (substitutions, insertions, de-
letions, indels, chromosomal and genome wide differences, 
methylation status differences etc.), post transcriptional and 
post translational modifications of RNA transcripts and 
proteins, and RNA alternative splicing. Databases are also 
available for allometric, pharmacogenetic and - genomic and 
physiological differences as well as for ecosystem heteroge-
neities and biodiversity, and earth magnetic heterogeneity. 
This small sample indicates that there is already a substantial 



   | 613VIHINEN

amount of poikilosis- related information, although poikilosis 
per se has not been measured.

Although poikilosis is pervasive, it does not mean that any 
extent of heterogeneity would be allowed and possible within 
a system. Lagom means “suitable, sufficient, allowed and 
tolerated extent of variation at any level in an organism, pop-
ulation, biological system or process”.1 Level in here does 

not mean any connotation of ranking or scaling. Biological 
processes are regulated to lagom extent by numerous active 
mechanisms as well as passive and intrinsic characteristics 
of systems.14 Lagom indicates the range where poikilosis 
is at allowed and suitable extent, but it can vary at different 
time points and situations, thus, to be dynamic and context 
dependent.

T A B L E  1  Examples of databases for information about variation

Database URL Reference

Ecosystems

EarthEnv Global Habitat Heterogeneity https://www.earth env.org/texture 63

Dutch Caribbean Biodiversity Database https://www.dcbd.nl/tags/heter ogeneity 64

Molecules

IDEAL
Intrinsically Disordered proteins with Extensive Annotations and 

Literature

https://www.ideal - db.org 65

Physiology

Organ System Heterogeneity DB http://mips.helmh oltz- muenc hen.de/Organ_System_Heter 
ogeneity

66

HeteroMeth: A Database of Cell- to- cell Heterogeneity in DNA 
Methylation

http://qianl ab.genet ics.ac.cn/Heter oMeth 67

Genetics

dbSNP https://www.ncbi.nlm.nih.gov/snp 68

LOVD https://datab ases.lovd.nl/share d/genes 69

VariBench http://struc ture.bmc.lu.se/VariB ench/index.php 70

ClinVar http://www.ncbi.nlm.nih.gov/clinvar 71

Genomic structural variation

European Variation Archive https://www.ebi.ac.uk/eva

Protein post translational modification

PTMD http://ptmd.biocu ckoo.org 72

Epigenetics

WashU Epigenome Browser https://epige nomeg ateway.wustl.edu 73

RNA mod

REDIportal http://srv00.recas.ba.infn.it/atlas 74

Editome Disease Knowledgebase (EDK) https://bigd.big.ac.cn/edk 75

Alternative splicing

ExonSkipDB https://ccsm.uth.edu/ExonS kipDB 76

ASpedia http://combio.snu.ac.kr/aspedia 77

Allometry, biomass

BAAD: a Biomass And Allometry Database for woody plants https://github.com/dfals ter/baad 78

Biospecimens

EFLM Biological Variation Database https://biolo gical varia tion.eu

Biologic Variation and Desirable Specifications for QC https://www.westg ard.com/guest 17.htm

Pharmacology

PharmVar, Pharmacogene Variation https://www.pharm var.org 79

PharmGKB, Pharmacogenomics Knowledgebase https://www.pharm gkb.org 80

Magnetism

Paleomagnetic data https://www.ngdc.noaa.gov/geoma g/paleo.shtml

https://www.earthenv.org/texture
https://www.dcbd.nl/tags/heterogeneity
https://www.ideal-db.org
http://mips.helmholtz-muenchen.de/Organ_System_Heterogeneity
http://mips.helmholtz-muenchen.de/Organ_System_Heterogeneity
http://qianlab.genetics.ac.cn/HeteroMeth
https://www.ncbi.nlm.nih.gov/snp
https://databases.lovd.nl/shared/genes
http://structure.bmc.lu.se/VariBench/index.php
http://www.ncbi.nlm.nih.gov/clinvar
https://www.ebi.ac.uk/eva
http://ptmd.biocuckoo.org
https://epigenomegateway.wustl.edu
http://srv00.recas.ba.infn.it/atlas
https://bigd.big.ac.cn/edk
https://ccsm.uth.edu/ExonSkipDB
http://combio.snu.ac.kr/aspedia
https://github.com/dfalster/baad
https://biologicalvariation.eu
https://www.westgard.com/guest17.htm
https://www.pharmvar.org
https://www.pharmgkb.org
https://www.ngdc.noaa.gov/geomag/paleo.shtml
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Furthermore, poikilosis replaces homeostatis, which 
means a fixed standard set point towards which a system is 
returned by (negative) feedback control mechanisms, with a 
more relevant model of heterogeneity. As the ending - stasis 
indicates, homeostasis is based on a stable state. Even strin-
gently regulated processes display variation. For why ho-
meostasis is not a viable theory, see discussion on its costs, 
requirement for monitoring and regulation, as well as for its 
excessive contribution to free energy in living systems in 
comparison to poikilosis.1

3 |  MEASURING PROCESS

Magnitude, quantity, is determined in a measurement process 
for a measurand, object under measurement (Figure  1). In 
metrology, the third component of the process is measure, 
which is a (standardized) scale for the extent of the measured 
entity. Measurement results are usually described with nu-
merical values in the units of the measure and often followed 
by estimates of uncertainty expressed as standard deviation.

Life sciences and engineering have not generally been in-
volved in theoretical definition of measurement, whereas in 
mathematics and philosophy theories of measurement have 
a long history (see 15). Theories can be grouped as mathe-
matical, realist, operationalist/conventionalist, information 
theoretic and model- based.15 Representational Theory of 
Measurement (RTM) 16 has been the prominent theory in 
social sciences, psychology, mathematics, philosophy and 
many other fields for many decades. According to RTM, 
measurement is a representation of an empirical relational 

system to a numerical relational system. Critique and limita-
tions of RTM have emerged, see e.g.17- 19

This treatise is based on the pragmatic definition of 
measurement in the International Vocabulary of Metrology 
(VIM,20): process of experimentally obtaining one or more 
quantity values that can reasonably be attributed to a 
quantity.

Measurement process comprises of several steps. First, 
the measurand has to be defined. It has to be relevant for 
the investigated object or process and representative for it. 
Second, suitable method has to be obtained for measure-
ments. Third, measurement process must be detailed for the 
entire procedure from data collection, sampling etc. all the 
way to data analysis and interpretation of observations. In the 
fourth step, the sources of error have to be charted and ways 
for their treatment identified.

Measurements are performed with some kind of instru-
ment. Note that counting is not considered as a measurement. 
Uncertainty in measurements includes effects of noise, which 
according to definitions used in signal processing means 
modification of measurement signal during acquisition 
(capture), conversion, processing, transmission and storage. 
Many of the characteristics of the instrument contribute to 
uncertainty (Figure 2). The operator of the measurement can 
also be a source of uncertainty.

GUM defines two types of errors in measurements: ran-
dom and systematic error.13 Random error arises e.g. from 
stochastic or unpredictable variations, uncontrolled test and 
environmental conditions and varies unpredictably in rep-
licate measurements. Systematic error remains constant in 
replicate measurements and can be reduced by performing 
multiple measurements. Neither of the error types can be 
completely eliminated. Poikilosis is the third component of 
uncertainty and affects also the quantity of the measurement 
being responsible for its interval. Figure  2 describes novel 
systematics for various forms of measurement- related un-
certainties. Despite extensive literature and availability of 
Catalogue of Bias (https://catal ogofb ias.org/), the full de-
scription of extent of measurement errors and biases has been 
missing.

Type A evaluation of uncertainty can be obtained from 
probability density function derived from frequency distribu-
tion of measurements.13 Type B uncertainty is obtained from 
an assumed probability density function and can include, for 
example, previous measurement data, data from calibration 
and general knowledge of the measurement system.

Poikilosis has to be taken into account in measuring pro-
cess as source of variation and uncertainties, therefore results 
should be presented as intervals. Single measurement value 
with a standard deviation does not cover poikilosis and thus 
cannot be used to measure, for example, many biological pro-
cesses. Since poikilosis is dependent on the condition of the 
investigated system, it is mandatory to include full details for 

F I G U R E  1  Measuring process includes measure, measurement 
and measurand and answers to question indicated. Poikilosis is related 
to measurand and measurement as the intrinsic heterogeneity of 
measured objects and as interval of measured quantities

Measure
How much?

     Measurand                 Measurement
 What?                          How?

https://catalogofbias.org/
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the entire measurement and sample collection and treatment 
process. Poikilosis- aware measuring requires a mental shift 
to cover the full range and extent of variations and their sig-
nificance, especially for lagom extent.

4 |  MEASURAND

Measurand is the object or event of measurement, see meas-
urement process triangle in Figure  1. Several aspects of 
measurand are pertinent for measurements, namely relevance 
of measurand, choice (sampling), collection and treatment of 
samples. Only some measurements are direct, i.e. measuring 
the object of interest. In biology and medicine, many meas-
urands are indirect and measure some entity related to the 
investigated phenomenon, because direct measurement of the 
actual measurand, for example, enzyme activity or protein or 
metabolite concentration in cells or tissues of interest cannot 
be directly studied. These biomarkers are typically measured 
from blood, saliva, urine, sweat, or tears. For example, it is 
not possible to take biopsy from the brain of a living person. 
The relevance of the biomarker is essential for the biologi-
cal process, component, or reaction that is of interest. When 
measuring biomarkers instead of the actual object- related 
data, conversions, assumptions and computations are made 
and can be sources of error (Figure 3).

Unless properties of a single individual entity are mea-
sured, scientific measurements are related to an entire pop-
ulation or on samples of it. It is often impossible and many 
times unnecessary to measure every individual, entity, ele-
ment, unit, group, or data item in a population. Results can 
be generalized to the entire population from a representative 
unbiased sample. There are two main categories of sampling 
methods, namely probability and nonprobability sampling, 
both of which can be used with or without replacement. In 
sampling without replacement, an element can be selected 
only once, whereas when sampling with replacement, an el-
ement can appear more than once. An example of the latter 
sampling type is a fruit fly experiment where an insect is re-
leased after measurement and could be caught again.

Sampling methods are well developed but have to be 
properly applied. In probability sampling, every unit or in-
dividual in a population has a chance to be selected. In non-
probability sampling some elements of the population have 
no chance to be selected at all. Probability sampling methods 
include systematic, simple random, stratified sampling, clus-
ter, multistage, and probability proportional to size sampling. 
There are many nonprobability sampling methods including 
convenience (accidental, grab, or opportunity), purposive 
(judgemental), consecutive (total enumerative), quota, snow-
ball, voluntary, minimax, line intercept, panel, and theoreti-
cal sampling.

F I G U R E  2  Systematics for measurement uncertainty including various types of errors, biases and poikilosis [Colour figure can be viewed at 
wileyonlinelibrary.com]

Sources and types
of measurement

uncertainty

Operator
- differences in sample 
   preparation
- intervention of measurand
- instrument reading error
- observer bias

Measurand
- relevance
- definition
- realization of definition
- sampling bias
- sample collection
- sample treatment differences
- sample transport and storage

Measure
- unit
- definition of standard

Instrument/measuring system
- measured entity
- direct/indirect measurment
- resolution, sensitivity
- specificity, sensitivity
- imperfect calibration
- standard for calibration

Measurement
- invasive/non-invasive
- data acquisition/capture
- assumptions, approximations,
  constants used
- measurement environment
- measurand intervention
- data processing
- data storage

www.wileyonlinelibrary.com
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Bias in sampling always leads to errors and uncertainty 
in measurements. In medicine, sampling bias has been called 
ascertainment bias. Multiple types of biases are related to 
survey studies originating, for example, from selection and 
exclusion criteria such as pre- screening, coverage, question-
naire formulation and order or questions, self- selection, sur-
vivorship, and others. STRANGE framework was presented 
to prevent sampling bias in animal studies by considering 
social background, trappability and self- selection, rearing 
history, acclimation and habituation, natural changes in re-
sponsiveness, genetic make- up, and experience.21 Existing 
sampling methods are valid tools from the perspective of 
poikilosis provided that the heterogeneity of the system is 
appropriately sampled.

Another important area of sample related bias originates 
from how the samples are collected, treated, transported, 
and stored. Cell and tissue samples are examples in which 
extensive treatments are performed before the samples are 
measured, therefore they can be sources for various forms of 
measurement uncertainty (Figure 3).

Several calculators and approaches are available for sam-
ple size estimation to define how many replicates are needed 
to obtain statistically significant results. These methods re-
quire information about population and sample size, estimate 
of error rate and wanted confidence level in different exper-
imental setups. These estimates of numbers of parallel ex-
periments do not consider poikilosis. Coverage of interval of 
values characteristic for poikilosis may require more samples 
than traditionally expected.

Many measurements have an assumption that the investi-
gated system is at a steady state. Such measurements are the 
easiest to perform. Transition states are often more interest-
ing as they allow to follow how the system changes. Since 
many transitions are fast and difficult to capture in heteroge-
neous samples, large datasets are needed.

5 |  MEASURES AND MEASUREMENTS

Standard measures are usually not contributing towards 
uncertainty of measurements as they are well defined. The 
International Bureau of Weights and Measures (French: 
Bureau international des poids et mesures, BIPM) is an inter-
governmental organization that has defined the most essen-
tial and basic measurement standards (etalons). International 
System of Units (SI, abbreviated from the French Système 
international (d'unités)) provides official metric base units 
for measures and standards for defining the measures. Many 
additional measures are used and obtained from instruments 
and they may contribute to uncertainty or measurement 
results.

No measurement is exact and thus all measurements con-
tain uncertainty by being composites of actual measured enti-
ties and uncertainties. In addition to measurement errors and 
biases, poikilosis adds to uncertainty (Figure 3).

In science, a typical measurement setup is to investigate 
the effects of a perturbation or alteration. Measurement quan-
tity M is the sum of effective variation (E) and uncertainty 
(U) as follows:

Effective variation is the introduced variation V reduced 
by R

where R is the sum of reversing, attenuating, buffering and 
correcting factors and processes.14 The mechanisms responsi-
ble for the reduced effects are called TARAR countermeasures 
after tolerance, avoidance, repair, attenuation, and resistance.14 

M = E ± U.

E = V − R,

F I G U R E  3  Sources and types of 
measurement uncertainty. Operator, 
measurand, measurement, measure and 
measuring system or instrument all can 
contribute to uncertainty [Colour figure can 
be viewed at wileyonlinelibrary.com]

Uncertainty

Error                                                                  Poikilosis

Random error                             Systematic error

                                 Measurement bias               Selection bias

                   Random error                Non-random error

Operator error      Sample treatment      Instrument/measuring      Data managing      Environment
    and bias                      error                        system error                    error                      effect

Sampling bias      Susceptibility bias      Post-hoc data      Attrition bias
                                                                manipulation

www.wileyonlinelibrary.com
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Effects of most alterations and perturbations in normal biologi-
cal systems are depleted. Measurement of a perturbation effect 
on measurand reveals effective variation E and its uncertainty 
U. E is the measurable quantity.

Uncertainty has traditionally been calculated as root sum 
of squares for individual components of type A and type B 
uncertainty, the former describing systematic error and the 
latter random error. There are other formulations for inclu-
sion of more complicated cases of uncertainty (see e.g. 22). 
How poikilosis should be considered in the calculation of 
combined uncertainty may have to be defined case by case.

Measurement errors have several sources starting from 
operator bias and errors and intervention of the measurand by 
operator and observer bias (experimenter bias, in some fields 
called allegiance bias) (Figure 3). Instrument/measuring sys-
tem can intervene the measurand, for example, via sensors. 
Intervention of the measurand depends also whether the mea-
surement is invasive or noninvasive. Invasive instruments 
likely affect the measurand more than noninvasive methods. 
The instrument or measuring system is dependent on the type 
of measurement. Only some instruments measure directly the 
measurand such as a tape measure the height of a study sub-
ject. Instead, most biological and medical instruments mea-
sure indirectly. For example, most barometers measure the 
air pressure alterations based on compaction or expansion of 
an aneroid capsule of thin metal, movements of which are 
converted indirectly to indicator movement via mechanical 
levers. Similarly, most scientific instruments make indirect 
measurements that are based on various assumptions, ap-
proximations and constants to obtain the final measurement 
quantity. Many instruments are dependent on computers and 
are prone to data processing and storage errors and, for exam-
ple, errors in curve fitting. Measurement environment may 
have a substantial effect on the outcome.

Instrument or measuring system realizes the definition 
of a measure into practice. The accuracy and resolution of 
measurements depend on how well this realization is made. 
Calibration is an important process to prevent system-
atic error and is dependent on reliable standards and their 
implementation.

The discussion above in this section relates to errors and 
biases within measurement process and measuring device. 
Poikilosis adds uncertainty to the measurement as the mea-
sured object has a spectrum of values within an interval in-
stead of a single value. In addition to population variation, 
measured entities show within subject heterogeneity due to 
poikilosis.

Scientific measurements are typically standardized 
or harmonized to have as low an uncertainty as possible. 
Depending on the experiment and field, there are different 
ways to achieve this. Standardization and harmonization, in 
the form of standard operating procedures (SOPs) and other 
systematic protocols, reduce sample to sample variation. In 

biology, samples can be harmonized, for example, using ho-
mogeneous cell lines or inbred strains, or by synchronizing 
cells, reactions or processes within them. However, none 
of these approaches reduces poikilosis within the samples. 
Single cell studies do not suffer from sampling bias (however, 
even they are somehow selected) but require a large number 
of cells because of poikilosis.

Standardization of samples, experiments, and conditions 
can be taken even too far and thereby undermine the rele-
vance of observations. An example comes from animal re-
search. Mouse studies are widely used model systems which 
are performed in standardized conditions using genetically 
uniform inbred strains of certain age, standardized husbandry 
and environmental conditions etc. These actions are good 
to homogenize experiments, however, they miss biological 
variation and can lead to results that cannot be generalized 
and verified, for example, in other strains or conditions.23 
Reproducibility of animal models is generally rather poor.24,25 
Simulations indicated that standardization of animal studies 
contributed to poor reproducibility.26 Laboratory mice mod-
els in immunology may have different immune phenotypes 
in comparison to wild animals. Various naturalization strate-
gies have been presented to improve translational potential of 
studies with laboratory animals.27

6 |  EXPERIMENTAL DESIGN

The choice of experimental design is instrumental for every 
investigation. The design depends on many factors. A re-
searcher has to consider what is the scientific question, what 
kind of data are available, and what is possible to obtain, 
the extent of resources, and what is legal and allowed to do. 
Figure 4 presents a new and systematic taxonomy for experi-
mental designs ranging from observational, descriptive and 
analytical, methods to various types of experimental study 
designs. Analytical studies contain a control which is missing 
from descriptive study designs.

Many studies are observational because of necessity, ana-
lytical, or experimental investigation may not be possible for 
example due to small number of available cases. Studies of 
rare diseases are an example, there may be just a few known 
cases in the entire world, therefore large experimental studies 
are not possible in such cases.

In the beginning of experimental design, investigated 
variables (independent, dependent and control variables) are 
chosen along with estimated amount of data. A good design 
should facilitate obtaining valid and reliable results that can 
be replicated.

Random controlled trials (RCTs) are considered as the 
most reliable design type for guiding medical decision 
making on treatments, drugs and others. Interestingly, anal-
ysis of effect estimates did not find significant differences 
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between RCTs and observational studies.28 Experimental 
designs have been ranked in medicine into a hierarchy (ev-
idence pyramid) according to increasing evidence they are 
supposed to provide.29 On the top of the pyramid are sys-
tematic reviews, which are often based on meta- analyses 
of large RCTs. There are about 200 ranking schemes 
(http://cjblu nt.com/hiera rchie s- evide nce/), the Grading 
of Recommendations Assessments, Development, and 
Evaluation (GRADE) 30 being probably the most widely 
used. Although these schemes can be valuable, the out-
come has to be estimated case by case. It has been argued 
that the hierarchies rank used methods instead of data pro-
duced by the methods and that interpretations based on ev-
idence hierarchies are poor.31

Systematic reviews and meta- analyses are not without 
flaws, therefore a classification of spin (overstatement of 

effects) has been released.32 Analysis of the 10 most cited 
RCT articles revealed biased results,33 thus it is important 
to know about limitations and biases in all types of experi-
mental designs instead of considering certain types or exper-
iments to be without bias or to be better and more reliable by 
definition.

With randomization of study objects, it is possible to 
avoid many biases. Blinded, especially double blinded, stud-
ies are highly valued in medicine as many sources of bias 
and error are excluded, for example, when even the health 
care personnel treating the individual do not know whether 
the treatment is a drug or placebo. RCT is considered as gold 
standard in clinical medicine and sociology, but not equally 
relevant in many other fields.

Study designs have different capabilities to quantify and 
measure poikilosis, explain its significance and to be used in 

F I G U R E  4  Systematics for types of experimental designs. The types at most detailed levels are not comprehensive, instead present a sample of 
available designs. Although descriptive studies report heterogeneity cases, they cannot provide full account of poikilosis. Analytical experimental 
designs can consider some details of poikilosis, however, only certain experimental study designs allow systematic study of poikilosis with 
controlled perturbations. These studies allow to define whether the observations are of lagom or non- lagom extent and thus indicating the status of 
the system. Experimental studies can also be designed to address interactions of levels [Colour figure can be viewed at wileyonlinelibrary.com]

Experimental design

Analytical                                                            Descriptive

                      Case-control      Cross-sectional      Longitudinal                               Individual                                           Aggregate

                                                     Cohort      Panel                     Case report        Case series        Cross-sectional        Correlational 
                                                                                                                                                                                            (ecological)        

                                         Prospective      Retrospective

Experimental

Randomized                                                                                          Nonrandomized

     Randomized              Randomized                      Community trial      Field trial      Quasi experiment     Natural experiment 
    controlled  trial         uncontrolled trial

Cluster      Crossover      Factorial      Parallel      Case-control      Difference in      Nonequivalent       Regression 
                                                                                                          difference         control group        discontinuity

              Difference in      Interrupted      Instrumental      Prepost      Propensity      Regression      Regression      Synthetic
                difference        time series        variables                               score            adjustment      discontinuity     controls

Observational

http://cjblunt.com/hierarchies-evidence/
www.wileyonlinelibrary.com


   | 619VIHINEN

predictions (Figure  5). Only experimental studies can con-
trol and test poikilosis; however, observational studies can 
also chart and analyze poikilosis. Descriptive studies can ex-
plain and identify heterogeneity in individuals and cohorts 
and range from anecdotal examples up to detailed aggregates. 
Analytical approaches can define poikilosis intervals in con-
trolled setups, for example to obtain reference values for clin-
ical laboratories.

Analytical experiment designs have a potential to de-
scribe some aspects of poikilosis. In experimental study 
designs poikilosis can be defined based on perturbations 
and control of heterogeneity. Randomized controlled trials 
are in theory the best suited study design, however random-
ized uncontrolled trials and quasi experiments could also 
be poikilosis- aware. In natural experiments, community and 
field trials the contribution of poikilosis may be difficult to 
discern from other factors, errors and biases. Experimental 
studies can be used for investigation of connected levels and 
poikilosis in them.

Data from descriptive studies can be used for developing 
prediction methods, mainly for classification purposes. Data 
obtained from experimental study designs lend to predic-
tive power also for mechanism- oriented predictors and for 
regression.

In addition to experimental design, size and represen-
tativeness of studied sample, and evaluation whether the 
measurements are at lagom level are crucial for reliable 
measurements. Understanding effects and mechanisms of 
relevant TARAR countermeasures is a key for accurate inter-
pretation of observations.

7 |  DATA ANALYSIS AND 
INTERPRETATION OF MEASUREMENTS

Data processing and analysis are integral parts of many meas-
urements and many instruments are connected to or contain 

a computer. As mentioned above, various assumptions, con-
stants and approximations in the instruments and measure-
ments can contribute to uncertainty of results. Further data 
analysis is needed when analyzing and combining observa-
tions for several measured entities. Suitable statistical test 
has to be used for these purposes, but without data dredging 
or p hacking. In data analysis, the most common assump-
tion is to have normally distributed data, although that is not 
always the case.

7.1 | Distribution

Experimental data sets show a very large number of differ-
ent types of data distributions, such as continuous (including 
normal), discrete, joint, mixed discrete/continuous, and other 
distributions. Although experimental data are generally as-
sumed to have normal, also called Gaussian, distribution, this 
form of distribution is quite rare, even compared in frequency 
to that for unicorns34 based on analysis of 440 studies. In a 
more recent paper for a study of 693 distributions in many 
fields, only 5.5% were close to normality.35

To find out the type of distribution, it is recommended to 
visualize the dispersion of data and perform computational 
analyses. Normal distribution has a symmetric bell- shape. 
From the distribution can be detected modality of the set, 
whether it is unimodal with a single maximum or multimodal 
when there is more than one peak. Quantile- quantile (Q- Q) 
plot and similar visualizations are useful and can be pro-
duced with many analysis packages. Q- Q plot is a probability 
plot, which shows a graphical comparison of two probability 
distributions by plotting their quantiles against each other. 
Normal probability plot is a special case of Q- Q plot for nor-
mal distribution.

There are additional relevant features to study from distribu-
tions. Skewness is a measure for the asymmetry of a distribution. 
Instead of being symmetrical, a distribution can have negative or 

F I G U R E  5  Capabilities of 
experimental designs to address poikilosis- 
related features [Colour figure can be 
viewed at wileyonlinelibrary.com]
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positive skew. Kurtosis reveals how tailed the distribution is since 
it describes the shape of a probability distribution. Leptokurtic 
distributions have fat tails with many cases towards the end of the 
scale. Platykurtic distribution has thin tails compared to normal 
distribution, which is called mesokurtic. There are mathematical 
tests for skewness and kurtosis, the third and fourth central mo-
ments are widely used for this purpose.

Visualization can indicate an additional property, whether 
the data are homo-  or heteroscedastic. The variance in het-
eroscedastic distribution is different across elements while in 
homoscedastic case the variance is at the same range for all 
elements.

The most advanced statistical tests are for normally dis-
tributed data. In the case of non- normally distributed data 
there are some options. First, although normal distribution 
is rather rare event, methods designed for this distribution do 
not demand to have a perfect fit.

Second, certain statistical tests for normally distributed 
data are robust and can thus be applied to non- normal dis-
tributions. These tests include t- tests (1- sample, 2- sample, 
paired), ANOVA and some others.

Use of non- parametric tests is a third option. However, the 
number of these tests is limited and their power and specific-
ity are generally considered to be lower than for parametric 
tests.

Fourth, it may be possible to convert the data to normal 
distribution by performing a transformation. A mathematical 
function is then applied to each point in the data set. If done, 
it is important to keep in mind that interpretations apply only 
to the converted data.

Statistical methods are needed also for the analysis of poiki-
losis. As poikilosis means heterogeneity, an interval of values 
has to be considered instead of a single number per measured 
entity. Available methods are not well suited for this purpose. 
Intervals at lagom extent could possibly in some studies be 
reduced to single values allowing use of traditional statistical 
methods. New experimental and statistical approaches will be 
needed to fully investigate poikilosis and its extent.

7.2 | Outliers

Many types of biases and errors lead to occurrence of spu-
rious data points that are often called for outliers. It is es-
sential to find out if there is a measurement error, typically 
a random error, preferably by rerunning the analysis, al-
though this is not always possible. Repeated experiments 
can reveal whether there is an outlier, measurement error 
or a wrong assumption of the data. The numbers of outliers 
are reduced by performing multiple replications. The pres-
ence of many putative outliers may indicate heavy- tailed 
distribution and that the measurements considered as devi-
ant are not outliers.

Treatment of outliers can have a substantial effect on de-
scriptive statistics. Thus, it is important to have consistent 
definition for them. Their numbers should be compared to 
the expected number per sample size and distribution, for ex-
ample, as an estimate with binomial distribution for normally 
distributed data set. Several model- based methods have been 
developed for oulier detection. All these methods are sub-
jective and depend on some assumptions. They also require 
normally distributed data and none of them considers effects 
of poikilosis.

There are two ways to deal with the outliers. Either they 
are deleted or trimmed. They can be transformed with win-
sorization to the nearest non- outlier value or be replaced by 
another estimate, such as median or mean or utilizing regres-
sion model by imputation. Transformation of data can be a 
solution in some cases.

From poikilosis point of view, definition of outliers is 
equally important. There is a possibility that putative outli-
ers are true observations and an extreme value is for another 
lagom state or it is entirely non- lagom but real observation. 
Only controlled experiments with perturbations can explain 
such cases.

8 |  MEASURING AND DEFINING 
LAGOM

When measuring poikilosis it is essential to identify what 
is lagom extent of heterogeneity in the investigated condi-
tion. When measurement escapes from the lagom extent, the 
system may be in transition state from one lagom level to 
another (Figure 6). Lagom is context dependent, thus measur-
ing conditions have to be harmonized and then systematically 
perturbed. By perturbing controlled measurement conditions, 
it will be possible to define lagom extent of poikilosis. The 
system is at lagom state when measurements after perturba-
tion stay within certain limits. After excessive perturbation, 
the system escapes the lagom level and further increased per-
turbations have ever increasing effects.

The capability of a system to stay at lagom level is due to 
systemic and active mechanisms that restrict variation extent. 
In biology these are called TARAR mechanisms14 and they 
limit extent of variation in normal conditions. Despite pertur-
bations the measured entity remains within certain range that 
indicates the extent of lagom. The interval of lagom poikilo-
sis is determined with repeated measurements along with dif-
ferent extents of perturbation. Measurements within lagom 
extent are biologically equal. Once perturbation is too large 
for TARAR mechanisms to restrict or small enough, the sys-
tem either enters to another lagom level with higher or lower 
extent of heterogeneity or goes to non- lagom level (Figure 6).

Studies of intra- and inter- individual variations of bio-
markers in healthy subjects are examples of collected 
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heterogeneity data, see also Table 1. Reference values used 
e.g. in clinical diagnosis are defined in this way by measuring 
a sample of population. It is possible that such results refer to 
one or several lagom states, this cannot be estimated from the 
data items as the data collection is not systematic enough and 
does not include perturbation.

Many of the reported biomarker reference values are 
based on quite small populations and some of them are out-
dated.36 Inter- individual variation is wide for many biomark-
ers and many times close to population variation, such as in 
the analysis of 21 hematological parameters.37 In addition to 
cohort/population variation there are day- to- day and within- 
day variations, which can be large, exemplified by circulating 
cell- free DNA levels38 and inflammation biomarkers in type 
2 diabetes patients and healthy controls,39 respectively.

Transition states, even in well controlled systems, are diffi-
cult to measure because the transition can be very quick from 
one lagom level to another. Measurements in such cases are 
mainly for one or the other lagom state. It is likely that the 
lagom extents for different lagoms of a system can overlap, but 
the extreme ends of the distributions are either higher or lower 
than for the previous lagom state, see L2 and L3 in Figure 6. 
This can be seen when the interval of measurements is different 
from the measurements in the previous lagom state.

A system is at non- lagom situation when increased pertur-
bations lead to ever increasing values for the measurand. This 
can be because the system may not be able to return to lagom 
extent of poikilosis without external actions, as in medicine, 
or changes in the environment, etc. The consequences of non- 
lagom heterogeneity depend on the level, effects to the sys-
tem, how linked the level is to others, and so on. Non- lagom 
is widely variable and increases along increased perturbation, 
that is, TARAR countermeasures cannot control the extent of 
variation (Figure 6).

Only for cases with very large deviations from lagom, a 
single reliable measurement can indicate non- lagom extent. 
Therefore, it is important to follow the progress in measured 
parameter over time, for example, for patients, and to perform 
perturbations and remeasurements, when possible. Excessive 
non- lagom heterogeneity leads to disease in organisms, pos-
sibly to impaired functionality and eventually to death. Once 
non- lagom extent is large enough, the system cannot return 
to normal state without some kind of intervention. In medi-
cine, this can be established with a treatment, for example, 
with a drug that reduces the extent of poikilosis and reconsti-
tutes the system to normal extent of heterogeneity.40 Curative 
treatment is not available for all non- lagom variations and 
diseases caused by them.

Non- lagom variation affects other connected levels, such 
as molecules, processes, pathways, cells or tissues and when 
excessive causes some of the connected levels to enter to non- 
lagom level. Then, in the most severe instances, a domino- like 
effect follows and leads to systemic disease and even to death.

Relevant tools and approaches at systems level to fol-
low, control, perturb, and measure poikilosis simultane-
ously at many levels are largely missing. Once available, 
systems biological studies would provide highly interest-
ing multidimensional information and possibilities to un-
derstand and simulate systems at all levels of poikilosis. 
Method development would be necessary to make full use 
of such data.

9 |  DOCUMENTATION OF 
EXPERIMENTS

Poikilosis and its effects cannot be properly considered 
and understood unless experiments are comprehensively 

F I G U R E  6  Measuring lagom. System stays at lagom state L1 with the help of active and passive TARAR mechanisms despite perturbations. 
Once the perturbation is large enough, the system leaves state L1 and moves either to another lagom state (L2 or L3) or becomes non- lagom when 
the extent increases along increased perturbation. TARAR countermeasures limit the extent of variation at lagom levels L1 to L3. The box in the 
non- lagom indicates region where the measurements are of lagom L2 extent [Colour figure can be viewed at wileyonlinelibrary.com]
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described. Without full details even those studies that are 
solid cannot be retested. At the moment, most published 
articles include insufficient details to allow reproduction of 
the analyses and comprehension of poikilosis and its origins. 
Among 268 biomedical publications with experimental data 
there was only one (0.37%) that reported the full protocol.41

Guidelines and recommendations have been published 
for description of many types of experiments and computa-
tional approaches. These guidelines, checklists and instruc-
tions need to consider how to cover and explain poikilosis. 
The documentation of experiments and measurements has to 
include all the relevant details for samples, their collection, 
selection and treatment, for measurements and instruments 
used for this purpose, followed by the full account of data 
analysis and computational approaches.

Several minimum reporting requirements and other guide-
lines are available from FAIRsharing at https://fairs haring.org/. 
Some guidelines will be discussed in here; however, there are 
many more available –  and to follow. The Biological Variation 
Data Critical Appraisal Checklist (BIVAC) is systematics for 
variation description in clinical medicine samples.42 There are 
altogether 14 items to be included. The European Federation of 
Clinical Chemistry and Laboratory Medicine (EFLM) has re-
leased a checklist for the assessment of publications of biolog-
ical variation data.43 The Standards for Reporting Diagnostic 
Accuracy (STARD) provides instructions how to systematically 
describe relevant details in publications.44 The STrengthening 
the Reporting of OBservational studies in Epidemiology 
(STROBE) Statement and its extensions are instructions for 
how to conduct and disseminate observational studies 45 and 
the CONsolidated Standards of Reporting Trials (CONSORT) 
2010 statement explains systematics for reporting randomized 
trials.46 Enhancing the QUAlity and Transparency of health 
Research (EQUATOR) Network distributes more than 400 
reporting guidelines for various types of studies, evaluations, 
reviews, protocols etc.47

All the guidelines mentioned above are for studies in 
human or with human samples. Many of these guidelines 
are equally relevant for studies on other organisms. There 
are some specific instructions for researchers working on 
other organisms, those for veterinary clinical pathology48 
and Animals in Research Reporting In Vivo Experiments 
(ARRIVE) guidelines for animal research49 being examples.

Thus, instructions and guidelines for proper reporting are 
available for many types of studies and can be applied also to 
related investigations. The problem is that these guidelines 
are not followed or just some part of them are followed, an-
imal studies being an example where progress in systematic 
description has been slow despite availability of recommen-
dations for a decade.24 As replication of poikilosis studies 
demand for even more detailed description of the methods 
and study protocols than currently customary, it is essential 
to increase the quality of publications in this respect. Most 

journals allow supplements where the details can be distrib-
uted. Systematic reporting with proper metadata will facili-
tate also computerized data analyses.

Even when full descriptions of methods and approaches 
are available, repeatability may be difficult to achieve in dif-
ferent laboratories. Some 100,000 Caenorhabditis elegans 
worms were needed to reproduce studies on effects of drug- 
like molecule treatments in three laboratories 50 despite very 
close collaboration and harmonization of approaches, joint 
purchase of reagents etc. For example, differences in tem-
perature fluctuations of incubators and lab benches had sig-
nificant effects. Internal replication of studies at US Defense 
Advanced Research Projects Agency (DARPA) indicated 
numerous factors ranging from reagents to flow rates etc. 
as instrumental for reproducibility.51 The authors present a 
list of items to follow including documentation of reagents, 
following how experiment is done by other researcher, stat-
ing ranges instead of single numbers (i.e. poikilosis), testing 
cells before shipping, double checking protocols, having a 
designated person for communication and keeping data anal-
ysis software and pipelines up to date. Replication studies 
demand for close and intense collaboration, communication 
and attention to all details.

Special attention has to be paid to the choice of research 
objects. Misidentification of cell lines is a common problem 
in literature. ICLAC Register of Misidentified Cell Lines ver-
sion 10 (iclac.org/databases/cross- contaminations/) lists 537 
misidentified cell lines where no authentic stock is known 
and 71 cell lines where authentic stock is known to exist. 
Publications based on or using these cell lines are of sus-
pect. Over 32,000 articles report studies on these cell lines 
and they were estimated to be cited half a million times.52 
Literature is thus littered with irrelevant and irreproducible 
studies and citations to them.

10 |  DISCUSSION

As poikilosis affects all systems, it should be regarded 
when designing and conducting measurements. Current 
systems, practices and methods have not been designed 
and optimized for this purpose. Although some of them 
may be appropriate for the task in some cases, there is need 
for new solutions throughout the measurement process and 
data analysis.

Interval arithmetic could be used for poikilosis- related 
calculations of heterogeneity in some mathematical opera-
tions. Probabilistic and fuzzy logic are potential approaches 
as they provide mathematical means to represent vagueness, 
uncertainty and imprecise information, that is, poikilosis 
data. Fuzzy logic is already used for clinical diagnosis of 
some diseases53,54 as well as in several other applications in 
medicine and life sciences.55- 57

https://fairsharing.org/
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When heterogeneity in a system is not properly treated, 
researchers make overoptimistic estimates of the significance 
of results due to statistical significance filter.58 In such cases, 
the magnitude of effect can be exaggerated in small studies. 
Consideration of poikilosis throughout experimental studies 
and measurements demands for new types of analysis meth-
ods and statistical analyses. Some of the existing methods can 
be used, especially when there is very low level of heteroge-
neity; however, inclusion of more extensive poikilosis will 
only be possible with new analytical methods.

Consideration of poikilosis in experimental design affects 
the choice of the study type as well as how to measure and esti-
mate the heterogeneity. Therefore, existing methods for evaluat-
ing required sample sizes have to be updated. To cover intrinsic 
poikilosis of systems, it is likely that larger samples are needed 
than currently estimated by the tools. Poikilosis need to be in-
cluded also to meta- analyses where the hierarchy of evidence 
should be based on evidence not just on the types of experimen-
tal designs with which the measurements are obtained.

Measurements of poikilosis provide a continuum for the 
investigated phenomena. Still, many systems and predic-
tions are considered to have binary dichotomy. Pathogenicity 
model (PM)59 is an example of how to deal with and inter-
pret continuous data. PM displays the continuum in healthy- 
diseased spectrum.59 For example, heterogeneity among 
individuals with similar medical condition provides means 
for making diagnosis and to stratify individuals to drug re-
sponders and non- responders, and possibly to identify and 
stratify those who could benefit from a drug and those at risk 
of adverse drug reactions.

Poikilosis- aware predictors have to accommodate for het-
erogeneity and continuum in the data based on which the tool 
is developed, as well as in the interpretation of predictions. 
This can be achieved in several ways. Still, most existing pre-
dictors are binary and thus too simplistic. There are some 
prediction methods that account for the heterogeneity, for 
example, by having more than two classes in variant effect 
prediction. PON- P2 variant tolerance/pathogenicity predictor 
achieves this by having three categories for benign, disease- 
related and cases of unclassified, unsure or heterogenous 
outcome.60 Another example of a predictor geared towards 
inclusion of poikilosis is PON- PS method for phenotypic se-
verity that classifies variants into benign, mild/moderate and 
severe disease- causing groups.61

It will be necessary to rethink also quality control ap-
proaches to include poikilosis. By considering poikilosis at 
different levels and stages of quality assessment process, con-
sequences of poikilosis could be understood. External Quality 
Assurance Systems (EQASs) are widely used for laboratory ac-
creditation. Although highly standardized, even these schemes 
should consider and test for effects of poikilosis.

Different experimental designs can be used for different 
purposes. Hypothesis generation and hypothesis testing and 

verification require different experiments, amounts of data 
etc. It is essential to consider whether the tested system is at 
lagom level, otherwise the results are difficult or impossible 
to compare and interpret.

Measurements are involved in various types of experiments. 
Exploratory observations can be validated by larger studies to 
confirm the findings. Many measurements are done for ana-
lytical purposes, or to aid in predictions or for optimization of 
processes. Many initial studies are hypothesis- generating by 
nature. Their replication could be done in different ways as 
suggested by.62 They propose a multi- tiered approach includ-
ing exact, close or direct replication experiments followed by 
extended replications for partial, systematic or differential, or 
conceptual replication. Quasi replications e.g. in different spe-
cies further validate the original study. Inclusion of poikilosis 
in experiments and experimental design significantly contrib-
utes to reproducibility provided that large enough studies are 
performed. As experiences from animal studies show,23 the ex-
periment/measurement setup should be tested by introducing 
various types of heterogeneity.

Poikilosis accounts for uncertainty in measurements and 
occurrence of intervals in measurements. It is a normal phe-
nomenon but largely neglected. Measurements of poikilosis 
demand for novel approaches in experimental design, con-
duction of experiments, data analysis and statistics. Without 
including poikilosis in measurements, obtained results can-
not be fully understood nor are they reliable. What needs to 
be done depends on the case. Consideration of poikilosis can 
open new ways to solve controversies and enigmas and can 
allow novel insight into systems, processes, mechanisms and 
reactions and their interpretation, understanding and manip-
ulation as well as increase reproducibility of measurements 
and experiments.
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