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Objective. To establish a model for estimating genetic risk using known and unknown family data. Methods. Four simulated datasets
were generated for four paternal and maternal chromosomes. The simulated data for children were generated from the parental data
according to the Mendelian law. The correlation coefficient between the children’s and paternal data was calculated, and 2R was
defined as the heredity index for continuous data (HIC). The simulated continuous data were transformed into binary data according
to the gene accumulation threshold (incidence); the incidences of children in the parental no-disease group and the disease onset
group were obtained; the correlation coefficient (R) was calculated as expected R (Re). The ratio of observed R (Ro) and Re was
defined as the Heredity index for binary data (HIB). Results. Different actual pedigree data (lunula and holding a hammer in the right
or left hand) were successfully used to verify the accuracy of the model. The genetic risk was estimated according to the incidence in a
population using a lookup table. Conclusion. Our findings indicate the reliability of the model based on the fact that the multigene
effect constitutes the normal distribution. Thus, this model can be used for comprehensive analysis of the influence of genetic and
nongenetic factors on the genetic phenotype and to estimate genetic risk using known and unknown family data.

1. Introduction

Polygenic inheritance is a genetic trait controlled by multiple
pairs of nonalleles. Multigene inheritance is more compli-
cated than single-gene (Mendelian) inheritance. In poly-
genic heritable diseases, susceptibility is affected by both
genetic and environmental factors, making research into the
mechanism difficult [1-3]. Single-gene hereditary traits are
qualitative in nature, and the variation between them is
discontinuous. Polygenic hereditary phenotypes, such as
height, body weight, blood pressure, and intelligence, are
quantitative in nature, and the variation between them is
continuous. The distribution of many traits forms a bell-
shaped curve, which is similar to the distribution of traits
determined by several genes. Each gene either enhances or
weakens the trait and acts by external mechanisms that are
not influenced by other genes. There are very few individuals
at the two extremes of the distribution curve, while most are
concentrated in the middle of the curve because each

individual does not inherit many factors that act in the same
direction. Environmental factors can enhance or weaken the
final result, resulting in a normal distribution.

Many chronic diseases do not conform to the single-gene
inheritance law (Mendelian inheritance) but follow a pattern
that is closer to polygenic inheritance, with a threshold of
separation between the susceptible and nonsusceptible in-
dividual [4]. There is a higher risk of developing diseases in
the first-degree relatives (siblings and offspring) who carry
50% of the affected patient’s genes. In contrast, the risk is
much smaller in distant relatives who inherit only a few high
susceptibility genes.

For polygenic genetic diseases, susceptibility is affected
by both genetic and environmental factors [5-7]. Herita-
bility describes the degree to which the variation in a par-
ticular trait, such as disease susceptibility, is influenced by
genetics and is generally expressed as a percentage (%). If the
susceptibility variability and morbidity of a disease are all
determined by genetic factors, the heritability of the
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polygenic genetic disease is 100% although this case is rare. A
general heritability of 50% or more indicates that genetic
factors play an important role in determining susceptibility
variability and morbidity, and environmental factors are less
influential, that is, the heritability rate is high [8-10].

Heritability can be calculated using different methods.
These calculations require close relative or even twin data,
which are difficult to collect [11, 12]. Therefore, the data
collection standard is broadened, and the accuracy of the data
is difficult to guarantee. For most diseases, reliable data on
close relatives are scarce, which limits both the application of
the concept of heritability and in-depth studies on the disease.

In polygenic genetics, single-gene inheritance follows the
Mendelian codominant model, that is, 50% of the charac-
teristics of both parents is transmitted to their offspring.
These features are suitable for establishing observational
models of multigene genetic laws of inheritance from par-
ents to children using data simulated for the pedigree. In this
study, normally distributed data were simulated for four
chromosomes from the father and the mother; the numerical
values represented the enhancement or attenuation of the
trait associated with each gene in the polygenic inheritance
model; genetic traits of offspring were predicted according to
the Mendelian law. A heritability analysis model was
established without complex pedigree data, and it was also
aimed to establish a presumption method of heredity with
no family data or incomplete family data.

2. Methods

2.1. Theory of the Analytical Model. The basic assumptions of
the analytical model are as follows: (1) the genetic charac-
teristics of the research target are subject to polygenic in-
heritance with dominant expression. For a single gene,
inheritance follows the Mendelian law; (2) the contribution
of each gene to the trait is either strong, medium, or weak.
Different genes play a role in a superimposed manner, and
the combination of strong and weak genes is moderate,
regardless of interaction or weight; (3) the polygenic he-
reditary phenotype belongs to quantitative traits, and the
variation between the traits is continuous and normally
distributed in a population; (4) the group genes are com-
posed of known and unknown genes; therefore, the distri-
bution of these genes is unknown; (5) there is a threshold
that clearly separates the disease-affected from the non-
affected individuals [13]. If environmental factors are not
taken into consideration, the gene accumulation threshold is
set to medium, with medium or above (including medium)
representing the disease onset group, and moderate-to-low
representing the no-disease occurrence group. A threshold
can be represented with incidence of a disease; (6) the in-
crease in the onset threshold is the result of resistance
factors; the role of these factors is also considered as the
genetic characteristics of the research target.

2.2. Model Building. Four simulated data groups were
generated for four maternal and paternal chromosomes.
Each normally distributed simulated dataset (100 + 30,
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n=10,000) was established on the SPSS platform according
to random distribution and designated as A, B, C, and D; the
numerical values were set as the effect degree of genes. The
sum of A and B represents the paternal effect, and the sum of
C and D represents the maternal effect; thus, according to the
Mendelian law, the effect in the children is represented by 1/
4(A+C)+1/4 (A+D)+1/4 (B+C)+1/4 (B+ D). Different
thresholds of genes were generated for the paternal, ma-
ternal, and children’s data; for instance, for a 25% threshold,
the top 25% of samples was assigned a value of 1, while all
others were assigned a value of 0. The continuous variables
were transformed into binary variables using this design.

The corresponding simulated data were also established
using the same method. Four simulated datasets were also
generated for four chromosomes for two brothers. Each
normally distributed simulated dataset (100 + 30, n = 10,000)
was established as described previously and also designated
as A, B, C, and D. According to the Mendelian law, the sum
of A and B represents the effect in brother 1, and the sum of
1/4 (A+B)+1/4 (A+C)+1/4 (B+D)+1/4 (C+ D) repre-
sents the effect in brother 2. The continuous variables were
also transformed into binary variables as described
previously.

2.3. Heredity Index for Continuous Data. Height and body
weight are represented by continuous data. The simulated
data (continuous data) were used to simulate polygenic
inheritance and evaluate the relationship between the
children and either the father or mother according to
correlation analysis. The correlation coefficients (R) were
0.510 between the children and their fathers and mothers,
respectively. Because nongenetic factors were not incorpo-
rated into the method used to generate the simulated data,
the R was considered to reflect only the effects of genetic
factors and considered as expected R (Re). The ratio of
observed R (Ro) and Re was defined as the heredity index for
continuous data (HIC), where HIC = Ro/0.5.

A HIC of less than 1.0 indicates a lesser role of inher-
itance, with smaller HIC values indicating a greater impact
of nongenetic factors. A HIC of more than 1.0 indicates the
possibility that only a few stronger genes play a role in
inheritance.

2.4. Heredity Index for Binary Data. Carrying or not carrying
a gene represents binary data. The continuous simulated
data were transformed into binary data according to the
different thresholds of genes in the populations of fathers,
mothers, and children. The fathers (or mothers) were di-
vided into a no-disease group and an onset group. The
incidence of children in the parental no-disease group and
the onset group was obtained, and the correlation coefficient
(Spearman method) was calculated. R from special numbers
is listed Table 1 as Re between incidence in children with
disease and no-disease fathers for different nature incidence.

It was considered that the ratio of Ro and Re (from
Table 1) was defined as the heredity index for binary data
(HIB), where HIB = Ro/Re.
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TaBLE 1: Relationship of nature incidence with the correlation
coefficient between incidence in children with disease and no-
disease fathers.

Nature incidence Group for father Incidence in children Re

0.5 No(—);isse;w 822; 0.345
0.25 NO?;SSZ[aSG 85(6)2 0.335
0125 No.dinesse oot 027
00625 No.dinesse oo 02
0010 No.dinese ooos 0162

Re: correlation coeflicients expected.

Ro is calculated with actual data; Re is the correlation
coeflicient under an incidence regardless of nongenetic fac-
tors and from Table 1. A HIB of more than 1.0 indicates that
only a few stronger genes play a role in inheritance rather than
reflecting the phenomenon of polygenic hereditary.

2.5. Actual Data for Continuous Variables. The lunula, which
is the crescent-shaped white colored area at the base of a
fingernail that is visible in some digits, is shown in Figure 1.
This structure is formed by the visible part of the root of the
nail and appears whiter than the rest of the nail because of
the arrangement of the tissue in this area.

A total of 370 Chinese adults were randomly selected
(186 male and 184 female) over the age of 18 years and their
biological parents as participants in this study. The initial
fingertip lunula count for each individual was collected
through self-reporting or telephone interviews. The total
lunula count for the 10 fingertips was considered as the
continuous variable, and the correlation coeflicient between
children and their fathers was represented by HIC.

2.6. Actual Data for Binary Variables. Holding a hammer in
the right or left hand was used as binary data. A total of 121
Chinese children (45 male and 76 female) and their parents
(biological parents) were enrolled in the study. The data were
obtained by self-reported surveys or telephone interviews.
The genetic development of the gene intensity in the family
was analyzed quantitatively using HIB. The proportion of the
left-handed people is 15%, approximately [14].

3. Results

The siblings’ data were used to replace the parents’ data (the
ratio of the nonincidence rate to the incidence rate on one
side was calculated by dividing the other side into the no-
disease and disease onset groups), and the HIB was calcu-
lated as shown in Table 2. The results were similar to those of
the fathers and children for higher incidence rate.

The lunula counts in 10 fingertips of children in different
father groups are shown in Table 3. The correlation coef-
ficient was 0.549, implying HIC was 1.10.

FIGURE 1: The lunula that is visible in some digits.

TasLE 2: Coincidence rate from siblings’ data for different nature
incidence.

Nature incidence Group for father Incidence in children Re

0-> No(—);iZZ;se 8?9)2 0413
0.25 No?giss:ise 8??91 0.405
0125 No.dinesse oor 030
00625 No.dinesse oour 03
0010 No.diese ooy 033

Re: correlation coeflicients expected.

TaBLE 3: The lunula count in ten fingertips of children in different
father groups.

Father group Children (mean)

3.17
1.67
3.00
3.83
4.23
5.53
6.03
6.38
6.15
7.89
7.86
HIC 1.10

O NN U W~ O
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The original data for holding a hammer in the right or
left hand are shown in Table 4. Because the proportion of the
left-handed people is 15% approximately [14], Re should be
0.272; the correlation coefficient was 0.293, implying that the
HIB for the mode of holding a hammer was 1.10.



TaBLE 4: Heredity index for binary data (HIB) for holding a
hammer in the right or left hand.

Children with left

Father groups  Total number hammer holding (%) HIB
Left hand 20 65.0 1.10
Right hand 101 27.7

4. Discussion

In this study, a model was established for estimating genetic
risk using known and unknown family data. HIC and HIB
values were established based on the genetic coincidence
rate. The model was based on the fact that the multigene
effect constitutes the normal distribution of the effects of
genes (strong or weak) in the population, and its theoretical
basis is solid and reliable.

In terms of diseases, especially tumors or chronic diseases,
their occurrence is greatly affected by nongenetic factors such as
aging [15-17]. Furthermore, the incidence is low and family data
are difficult to obtain [18]. Therefore, either of the parents was
used to establish the model. When the siblings’ data were used to
replace the parents’ data, the results should be similar to those of
the fathers and children. It should be noted that when data for
both parents were obtained, the father’ data were suggested to be
used although data from the mother or siblings could be used to
replace missing data; when data for more siblings were obtained,
the eldest sibling’s data were suggested to be used.

In the calculations using actual data, HIC and HIB
provided a reliable reflection of typical genetic phenomena
(Tables 3 and 4). It should be pointed out that to simplify the
calculation, the HIC or HIB value was not exactly equal to
the actual heredity values and were therefore designated as
the heredity index, which can be used for comprehensive
analysis of the influence of genetic and nongenetic factors on
the genetic phenotype.

The model established in this study can be used to es-
timate genetic risk according to prevalence in a population
rather than that in the first-degree relatives. The incidence in
each group can be obtained from Tables 1 and 2. For in-
stance, if the disease prevalence is 1% in a population, the
father or mother with disease implies a 17% incidence for
their child; the sibling with disease implies a 34% incidence
for their brothers and sisters. In contrast, the absence of
disease in the father, mother, or first-degree relatives implies
a maximum incidence of 0.8% for their child without
consideration of nongenetic factors.

In conclusion, this model for estimating genetic risk
based on the normal distribution of the multigene effect is
reliable. Although the HIB or HIC value is not exactly equal
to the actual heredity, this index provides a comprehensive
analysis of the influence of genetic and nongenetic factors on
the genetic phenotype and can be used to estimate genetic
risk using known and unknown family data.
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