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High-risk primary biliary cholangitis (PBC), defined by inadequate response at one year to Ursodeoxycholic acid
(UDCA), is associated with disease progression and liver transplantation. Stratifying high-risk patients early
would facilitate improved approaches to care. Using long-term follow-up data to define risk at presentation, 6
high-risk PBC patients and 8 low-risk patients were identified from biopsy, transplant and biochemical archival
records. Formalin-fixed paraffin-embedded (FFPE) liver biopsies taken at presentationwere graded (Scheuer and
Nakanuma scoring) and gene expression analysed using the NanoString® nCounter PanCancer Immunity 770-
gene panel. Principle component analysis (PCA) demonstrated discrete gene expression clustering between
controls and high- and low-risk PBC. High-risk PBC was characterised by up-regulation of genes linked to T-
cell activation and apoptosis, INF-γ signalling and leukocyte migration and down-regulation of those linked to
the complement pathway. CDKN1a, up-regulated in high-risk PBC, correlatedwith significantly increased expres-
sion of its gene product, the senescencemarker p21WAF1/Cip, by biliary epithelial cells. Our findings suggest high-
and low-risk PBC are biologically different from disease outset and senescence an early feature in high-risk
disease. Identification of a high-risk ‘signal’ early from standard FFPE tissue sections has clear clinical utility
allowing for patient stratification and second-line therapeutic intervention.

Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Primary Biliary Cholangitis (PBC) is a chronic cholestatic liver
disease with an autoimmune component to its aetiology. Pathogenesis
is however complex with cholestatic injury to the small intra-hepatic
bile ducts resulting from the actions of retained hydrophobic bile acids
occurring in addition to direct immune injury (Dyson et al.,
2015a). Importantly, PBC stratifies into two distinct clinical courses.
For 70% of patients PBC is low-risk, non-progressive and responsive to
ursodeoxycholic acid (UDCA) therapy, believed to act through reduc-
tion of secondary cholestatic injury. The remaining 30% have high-risk,
progressive disease, unresponsive toUDCAand go on to developfibrosis
and ultimately biliary cirrhosis with its associated complications
(Corpechot et al., 2011). High-risk patients are currently identified by
non-response to UDCA at one year and whether the disease is biologi-
cally different from earlier stages of disease pre-treatment between
high- and low-risk PBC has not previously been addressed. Early strati-
fication of high-risk PBC is of clear clinical importance in establishing
those likely to have progressive disease and to benefit most from
novel second-line therapy.
r B.V. This is an open access article u
Second-line therapies for PBC, and their integration into stratified
approaches to management, are areas of current active research
(Dyson et al., 2015b). Results have beenvariable, in particular in relation
to the use of second-line immunomodulatory therapies. A potential
reason for the apparent lack of efficacy of such therapies is the timing
of their use (the challenge of “therapy sequencing” in a condition with
both primary and secondary pathogenetic processes) (Dyson et al.,
2015a). Need for second-line therapy being signalled by failure of
response to a minimum of a year of UDCA therapy has clear limitations,
with the risk of disease progression during that time. Importantly the
use of immunomodulatory therapies (which work “upstream” in con-
ventional models for the disease) is not considered until patients have
failed anti-cholestatic therapy that targets “downstream” processes.
The benefits of immunomodulatory therapy in PBC may therefore be
missed, limited as much by our current timing of their use as by any
intrinsic lack of efficacy.

A clinical tool that could allow for early identification of patients
with high-risk PBC without the need to allow time for first-line therapy
to prove itself ineffective would have clear utility. Current standard
protocols for analysis of liver biopsy samples from patients with PBC
do not allow for robust stratification early in the disease process. Forma-
lin fixed paraffin embedded (FFPE) tissue remains the main-stay
worldwide for diagnostic analysis of histomorphology and long-term
preservation of tissue blocks but its use in molecular analysis has been
hindered by difficulties of RNA degradation and the limitations of
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 2
Biopsy scoring.

Category Scheuer
stage

Interface
hepatitis

Portal
inflammation

Nakanuma
score

Ductopenia

High risk 4 Moderate Moderate CA2 HA1 Yes
High risk 3 Mild Moderate CA3 HA1 Yes
High risk 4 Moderate Moderate CA1 HA3 Yes
High risk 3 Mild Moderate CA1 HA3 Yes
High risk 4 Moderate Moderate CA1 HA2 Yes
High risk 3 Mild Mild CA1 HA1 Yes
Low risk 1 None Mild CA1 HA0 No
Low risk 1 None Mild CA0 HA1 No
Low risk 1 None Mild CA2 HA2 Yes
Low risk 1 None Mild CA1 HA0 No
Low risk 2 Moderate Moderate CA2 HA1 No
Low risk 2 None Mild CA1 HA2 No
Low risk 1 None Mild CA1 HA1 No
Low risk 1 Mild Moderate CA2 HA2 No
Control 0 None None NA No
Control 0 None None NA No
Control 0 None None NA No

Table 1
Patient characteristics.

Baseline characteristics High-risk PBC Low risk PBC

Sex, n (%)
Female 6 (6) 8 (8)

Ethnic group, n (%)
White, British 6 (6) 8 (8)
White, Other 0 (6) 0 (8)

Age, y
Mean (SD) 45 (6.46) 57 (8.32)
Range 36–55 43–66

Laboratory markers, mean (SD)
ALP, U/L 696.6 (432.7) 302.6 (201.6)
Bilirubin, mg/dL 48.2 (18.6) 8.75 (2.63)
Albumin, g/dL 40 (2.12) 51.5 (18.6)
Platelets, 103/μL 218.33 (105.3) 366 (67.9)

PBC inclusion criteria, n (%)
Increased ALP 6 (6) 8(8)
Positive AMA titre 5 (6) 8 (8)

Positive ANA titre
Liver biopsy 6 (6) 8 (8)

UDCA response (Paris 1)
Yes 0 (6) 8 (8)
No 6 (6) 0 (8)
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down-stream PCR-based techniques for RNA amplification. However,
newer platforms of RNA analysis have opened up use of FFPE tissue
for research and as a prospective molecular diagnostic tool
(Mittempergher et al., 2011;Waldron et al., 2012), with even the possi-
bility of reuse of tissue sections previously used for immunohistochem-
ical staining (Al-Attas et al., 2016). The Nanostring® nCounter analysis
system uses digital colour coded barcodes attached to single target
specific probes corresponding to a gene of interest. Although a biased
approach for the purposes of research, analysing a limited gene-set
(up to 800 genes), the Nanostring® nCounter platform has clear advan-
tages over other platforms for use in clinical settings. Sensitivity is
comparable to qPCR (Geiss et al., 2008) and it is simple to use, highly
automated, cost- and time- effective. RNA is measured directly with
no amplification or other enzymatic processing andworkswellwith de-
graded RNA such as that obtained from FFPE tissue (Reis et al., 2011)
and compared to other RNA profiling platforms (Tyekucheva et al.,
2015). This makes it a good candidate technology for the development
of prognostic and diagnostic assays.

In this proof of concept study the Nanostring® nCounter 770 gene
Pan-Cancer Immunity panel was used to compare gene-expression
profiles in archival FFPE liver tissue obtained at the earliest point in
the disease course from a historic PBC cohort with known disease
outcome allowing stratification for future risk. The discovery of a
distinct gene expression immune ‘signal’ at baseline between the
two patient groups indicates high- and low-risk PBC are biologically
distinct from early disease and points to potential treatment
targets for high-risk PBC patients in the future. Use of FFPE tissue in
this context has exciting implications for development of a new
diagnostic and prognostic clinical tool, allowing better targeting of
enhanced therapy.

2. Subjects and Methods

2.1. Study Design

The concept behind this studywas to identify patients from a histor-
ic PBC cohort who had had a routine diagnostic liver biopsy performed
and progressed to have either a positive outcome (UDCA response
sustained over at least 15 years, alive and in full response at the study
point (defined as low-risk patients)) or a poor outcome in terms of
their PBCdevelopment (non-response to UDCA and progression leading
to transplantation (defined as high-risk patients)), and to investigate
any significant differences in the molecular characteristics of their
liver tissue at the outset of disease (at a point where stratified second-
line therapy to alter disease trajectory might be possible in the future).
Transcriptomic profiling of archived formaldehyde-fixed paraffin
embedded (FFPE) liver tissue was piloted using archive biopsy material
from the pre-definedhigh and low risk patients. Ethical approval for this
work is covered by the UK-PBC project (REC 14/NW/1146), a national
cohort study.

2.2. Patient Groups

All study patients were female and aged between 36 and 66 at diag-
nosis of PBC. Diagnosis of PBC was determined by cholestatic liver
biochemistry, presence of anti-mitochondrial antibodies (AMAs)
which are present in up to 95% of patients and characteristic histological
appearance of chronic, non-suppurative cholangitis that mainly affects
the interlobular and septal bile ducts (Mittempergher et al., 2011). For
the purposes of the study we used high stringency definitions of risk
status. High-risk patientswere formally defined for the study as follows:

1) Non-responders to treatmentwith UDCA at one year of treatment at
a dose of 13–15 mg/Kg using Paris 1 criteria

2) Requiring liver transplantation for prognostic reasons for their PBC
during subsequent follow-up.
Patients were excluded from this group if they had disease overlap

with autoimmune hepatitis, histological evidence of other liver disease
processes, or if their primary indication for liver transplantation was
itch. These strict criteria assisted in ensuring homogeneity of the sample
group and the minimisation of confounding factors during analysis.
Low-risk patients were defined as follows:

1) Responsive to UDCA fully according to Paris 1 criteria.
2) Remained well and in full UDCA response after a minimum of

15 years follow up
3) Did not require liver transplantation.

Group allocation andmeeting of study criteria were confirmed by an
independent investigator. Time zero biopsy material from the donor
liver of 3 liver transplant recipients was used for a non-disease compar-
ator group.

Electronically recorded biopsy lists from 1992 to 2000 were
reviewed in order to identify 96 low-risk patients. 46 patients were



Table 3
Genes with A significant upregulation in early high risk disease and B significant upregulation in early low risk PBC. Two-tailed t-test was used as recommended by manufacturer, and
genes shown are significant to p b 0.05 with fold change N1.5 after Benjamini and Hochberg correction.

Gene Name p-Value Fold change

A Increased expression in high-risk PBC
HLA-DQB1 Major Histocompatability Complex, Class 2, DQ beta 1 0.017 13.57
SOCS1 Suppressor of Cytokine Signalling 1 0.009 5.67
CD24 CD24 Molecule 0.028 5.39
SLAMF1 Signalling Lymphocytic Activation Molecule Family Member 1 0.026 4.99
CARD11 Caspase Recruitment Domain Family Member 11 0.040 4.46
LY86 Lymphocyte Antigen 86 0.040 4.36
COL3A2 Collagen, type III, alpha 2 0.010 4.11
MFGE8 Milk Fat Globule-EGF Factor 8 Protein 0.006 4
CD80 CD80 Molecule 0.049 3.8
FCER2 Fc Fragment of IgE Receptor II 0.033 3.77
CCL3L1 Chemokine (C-C motif) Ligand 3 Like 1 0.014 3.75
ISG20 Interferon-Stimulated Gene 20 kDa Protein 0.017 3.73
TNFSF15 Tumor Necrosis Factor Superfamily Member 15 0.038 3.61
LAIR2 Leukocyte Associated Immunoglobulin Like Receptor 2 0.003 3.22
MCAM Melanoma Cell Adhesion Molecule 0.011 3.17
HLA-G Histocompatibility antigen, class I, G 0.030 3.12
S100B S100 calcium-binding protein B 0.038 3.08
IRF4 Interferon Regulatory Factor 4 0.044 3.06
CXCR4 C-X-C Motif Chemokine Receptor 4 0.018 3.03
CCL4 C-C Motif Chemokine Ligand 4 0.046 3.01
CXCR3 C-X-C Motif Chemokine Receptor 3 0.024 2.99
CD34 CD34 Molecule 0.017 2.97
ITGA6 Integrin alpha-6 0.019 2.87
BCL2 B-cell lymphoma 2 0.039 2.82
TNFRSF11B Tumor Necrosis Factor Receptor Superfamily Member 11b 0.015 2.7
RUNX1 Runt-related transcription factor 1 0.032 2.58
KLRC1 Killer Cell Lectin Like Receptor C1 0.045 2.57
COL3A1 Collagen, type III, alpha 1 0.024 2.5
TLR6 Toll-like Receptor 6 0.025 2.47
CD83 CD83 Molecule 0.011 2.41
SPN Sialophorin 0.050 2.36
ITGAX Integrin, alpha X (complement component 3 receptor 4 subunit) 0.005 2.31
NLRC5 NOD-like receptor family CARD domain containing 5 0.047 2.15
RELB RELB Proto-Oncogene, NF-KB subunit 0.015 2.1
ADA Adenosine deaminase 0.004 2.08
IL18 Interleukin-18 0.050 2.08
CCL13 Chemokine (C-C motif) Ligand 3 Like 13 0.035 2.04
IFI16 Gamma-interferon-inducible protein 16 0.012 2
AMICA1 Adhesion Molecule Interacting with CXADR Antigen 1 0.035 1.99
PNMA1 Paraneoplastic Ma Antigen 1 0.049 1.97
SYK Spleen Tyrosine Kinase 0.017 1.87
TAP1 Transporter1, ATP-Binding Cassette, Sub-Family B 0.034 1.87
ABCB1 ATP-Binding Cassette Subfamily B Member 1 0.008 1.79
CDKN1A Cyclin-Dependent Kinase Inhibitor 1A 0.032 1.78
STAT1 Signal Transducer and Activator of Transcription 1 0.015 1.76
NFKB2 Nuclear Factor NF-kappa-B p100 Subunit 0.020 1.75
CCND3 Cyclin D3 0.042 1.74
PRKCE Protein Kinase C Epsilon 0.042 1.72
HLA-B Major Histocompatability Complex, Class 1, B 0.036 1.7
PRKCD Protein Kinase C Delta 0.007 1.68
HLA-A Major Histocompatibility Complex, Class 1, A 0.020 1.66
CD59 CD59 Molecule 0.006 1.65
CASP8 Caspase 8 0.036 1.62
OAS3 2′-5′-oligoadenylate synthetase 3 0.020 1.58
ITGB2 Integrin, Beta-2 Precursor 0.044 1.57
MAP3K1 Mitogen-Activated Protein Kinase Kinase Kinase 1 0.006 1.56
LAMP2 Lysosome-associated membraine protein 2 0.040 1.53
CCL3 Chemokine (C-C Motif) Ligand 0.006 1.52
CDH5 Cadherin 5 0.008 1.51
LILRB1 Leucocyte Immunoglobulin Like Receptor B 0.043 1.51
ICAM1 Intercellular Adhesion Molecule 1 0.011 1.46
MAPK3 Mitogen-Activated Protein Kinase 3 0.015 1.45
CKLF Chemokine-Like Factor 0.007 1.43
BAX Bcl-2 like protein 4 0.013 1.41
BST2 Bone Marrow Stromal Cell Antigen 2 0.023 1.41
CD47 Cluster of Differentiation 47 0.016 1.41
CD68 Cluster of Differentiation 68 0.050 1.38
ITGB1 Integrin Subunit Beta 1 0.041 1.35
PSEN1 Presenilin-1 0.049 1.33
NRP1 Neuropilin-1 0.024 1.3
IRF2 Interferon Regulatory Factor 1 0.031 1.27
HCK Tyrosine-Protein Kinase 0.026 1.26

(continued on next page)
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Table 3 (continued)

Gene Name p-Value Fold change

DDX58 Probable ATP-dependent RNA helicase DDX58 0.003 1.24
ILF3 Interleukin Enhancer Binding Factor 3 0.034 1.19

B Increased expression in low-risk PBC
MME Membrane Metallo-Endopeptidase 0.044 4.7
SYT17 Synaptotagmin 17 0.023 3.66
CCL23 Chemokin (C-C motif) ligand 23 (CCL23) 0.019 3.22
IL13RA2 Interleukin-13 Receptor Subunit Alpha-2 0.043 2.84
MAP2K1 Mitogen-Activated Protein Kinase Kinase 1 0.001 2.1
CCL14 C-C Motif Chemokine Ligand 14 0.001 1.93
C9 Complement Component 0.020 1.85
C6 Complement Component 6 0.012 1.8
ARG1 Arginase 1 0.001 1.79
CKLF Chemokine-Like Factor 0.026 1.78
MIF Macrophage Migration Inhibitory Factor 0.037 1.78
C8A Complement Component 8 Alpha Subunit 0.013 1.61
HSD11B1 Hydroxysteroid 11-beta dehydrogenase 1 0.010 1.6
DUSP6 Dual Specificity Phosphatase 6 0.015 1.54
REPS1 RALBP1 Associated Eps Domain Containing 1 0.002 1.54
RORC RAR-Related Orphan Receptor Gamma 0.038 1.53
C4BPA Complement Component 4 Binding Protein Alpha 0.006 1.51
MARCO Macrophage Receptor With Collagenous Structure 0.041 1.51
AMBP Alpha-1-Microglobulin/Bikunin Precursor 0.001 1.5
C5 Complement Component 5 0.038 1.46
LBP Lipopolysaccharide Binding Protein 0.027 1.45
C1R Complement Component 1R 0.004 1.44
ATF1 Activating Transcription Factor 1 0.024 1.42
FEZ1 Fasciculation and Elongation Protein Zeta-1 0.012 1.41
ITCH Itchy E3 Ubiquitin Protein Ligase 0.039 1.33
C1S Complement Component 1, S Subcomponent 0.015 1.32
ECSIT ECSIT Signalling Integrator 0.028 1.3
C1QBP Complement Component 1, Q Subcomponent Binding Protein 0.015 1.28
ST6GAL1 ST6 beta-galactoside alpha-2,6-sialyltransferase 1 0.013 1.27
MAVS Mitochondrial Antiviral Signalling Protein 0.018 1.26
RELA Transcription Factor p65 0.041 1.26
FCGR2B Fragment of IgG Receptor Iib 0.028 1.23
CKLF Chemokine-Like Factor 0.026 1.21
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excluded as they had been discharged to their GP, limiting the accuracy
of our follow-up records, 14 had clinical information suggesting UDCA
under-response during follow-up, insufficient tissue was available for
20 patients and 8 were not recruited to the UK-PBC study precluding
access to the tissue. This left 8 eligible patients in the low-risk category,
all of whom were confirmed to be UDCA responders throughout their
disease course and had a liver biopsy taken at the point of presentation
with the condition.

49 potential high-risk patients were identified from the transplant
recipient list. Two were excluded due to itch as the primary indication
for transplantation, four were excluded for cross-over with other auto-
immune liver diseases, 33 due to insufficient tissue available and three
were not recruited to UK-PBC. This left eight patients for inclusion in
the study as high-risk participants. All patients were Caucasian females
aged between39 and 55years at the time of theirfirst diagnostic biopsy.

2.3. Tissue

FFPE liver tissue samples were obtained from the cellular pathology
department archive of Newcastle Hospitals NHS Foundation Trust.
10 μm curls were cut from the FFPE blocks, discarding the outer
40 μm. Liver tissue examined included blocks of core liver biopsies
from patients with PBC and time zero, non-disease liver biopsies.

2.4. RNA Purification

mRNA was extracted from 10 μm FFPE curls using AllPrep kit
(Qiagen, Hilden, Germany). 320 μl of de-paraffinisation solution
(Qiagen) was used for each sample then manufacturer's instructions
were followed to isolate the ribonucleic acid (RNA). This kit was chosen
as it has been reported to be the most appropriate for RNA isolation
from FFPE tissue (Al-Attas et al., 2016) as it enables reversal ofmodifica-
tion of RNA by the formaldehyde preservation process. mRNA was
assessed for quantity and purity using a NanoDrop spectrophotometer
(NanoDrop ND-1000, Thermo Scientific, Wilmington, USA). An Agilent
Bioanalyzer RNA assay kit (GCB, Durham, USA) was used to measure
the RNA integrity of a number of the samples. Comparison between
quality and age of sample was carried out to assess suitability of old
tissue.

2.5. RNA Array

The nCounter Analysis System (NanoString®, Seattle, USA)was used
to analyse the gene expression levels in themRNAextract,first using the
18-gene Human Reference panel, then the 770-gene PanCancer
Immune Profiling panel. The system works by solution-based mRNA
hybridisation of short length (50mer) probes, which are subsequently
fixed to a biotin-coated cartridge. This is then digitally imaged and count-
ed to quantify expression. GEO data available at: http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE79850. Accession GSE79850.

2.6. Pathological Scoring

The scoring of pathological specimens was simultaneously
performed by two pathologists (JGB and DGT) using H&E, Orcein and
Sirius red fast green histological stains. Biopsies were assessed using
hepatic activity index parameters for interface hepatitis (none, mild,
moderate or severe), portal inflammation (none, mild, moderate or
severe). The presence of ductopenia (N66% of portal tracts without a
bile duct), Scheuer stage (1–4) and the components of the Nakanuma
score were given (CA0-CA3 and HA0-HA3) rather than the summative
Nakanuma stage.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79850
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Fig. 3. Pathway analysis and heatmap for high- and low-risk PBC.Pathway analysis of the
top 8 pathways of differentially expressed genes for high- and low-risk PBC (red: up-
regulation; blue: down-regulation).

Fig. 1. Principle component analysis (PCA) for transcriptional signatures in low-risk and
high-risk early PBC. PCA displays sample clustering (low-risk PBC, high-risk PBC and
controls) following identification of the top 57 differentially expressed genes by two-
tailed t-test.
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2.7. Immunohistochemical (IHC) Staining of Paraffin Embedded Liver Tissue

Anonymised FFPE sectionswere de-waxed in xylene forfiveminutes
then rehydrated through graded alcohols andwashed in tapwater. Sec-
tions were then treated in 0.2% hydrogen peroxide (H2O2) block for ten
minutes before being washed in tap water. Sections were subsequently
treated in boiling citrate buffer for twominutes in a pressure cooker and
washed in tap water. Blocking was carried out using anti-rabbit/goat
IgG Vectastain ABC kit (Vector, Peterborough, UK) for ten minutes
Fig. 2. Dendrogram of genes identified by PCA to most separate high- and low-risk PBC groups
low-risk PBC. Colours indicate scale of gene expression (red: up-regulation; blue: down-regula
then, to reduce endogenous biotin, an avidin-biotin blocking kit (Vec-
tor) was used. Blocking serum was replaced with primary antibody
(p21WAF1/Cip Santa Cruz Biotechnology #CatSc-6246; RRID:AB_
628073) diluted in tris-buffered saline (TBS) pH 7.6 for one hour and
replaced with just TBS on negative controls. Secondary and tertiary
. Dendrogram generated from the 34 genes identified by t-test to most separate high- and
tion).

nif-antibody:AB_628073
nif-antibody:AB_628073


Fig. 4. GeneMANIA pathway analysis of up-regulated genes in high- and low-risk PBC. Diagrams show GeneMANIA linked up-regulated gene-products that participate within the same
biological pathway in (a) high-risk PBC and (b) low-risk PBC.
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antibodies anti-rabbit/goat IgG Vectastain ABC kit (Vector Laboratories
Cat #PK-7100 RRID:2336827) were used to develop the sections ac-
cording to manufacturer's instructions.

3′ 3′ diaminobenzidine tetrehydrochloride (DAB)was used to devel-
op the sections. Mayers haematoxylin was used to counterstain,
sections were washed in tap water then Scott's tap water substitute.
Sections were washed in tap water then dehydrated through graded
alcohols and mounted in DPX. This technique was used to examine dif-
ferences in expression in the liver of p21 in high and low risk disease. To
ensure objectivity, two observers (BM and BI) were trained by JB to
interpret immunohistological staining for p21. Scoring was then
performed in a blind fashion by the assessment of number of positive
biliary epithelial cells per 10 hpf, and corroborated by JB.

3. Statistical Analysis

Statistical analysis of Nanostring® nCounter mRNA expression data
was performed using a custom analysis pipeline based on the ‘R’ pro-
gramming language, two-tailed t-test was used as recommended by
manufacturer with significant genes to p b 0.05 with fold change N1.5
after Benjamini-Hochberg false discovery rate correction. Gene expres-
sion patterns were assessed using String (Jensen et al., 2009). This data
was assessed using principle component analysis (PCA) where genes
are weighted by the according to the sample variance they account
for. GraphPad Prism 6.0 was used for immunohistochemistry statistical
analysis. Pathway analysis was performed using GeneMANIA analysis
software (Warde-Farley et al., 2010).

4. Results

4.1. Sample Selection and Patient Stratification

RNA analysis of first liver biopsies was performed for PBC patients
with defined subsequent clinical outcomes. Suitable cohorts (high-
and low-risk defined using stringent criteria) were identified by
reviewing our clinical database. High-risk patients were defined as
non-responders to treatment with UDCA at 1 year using Paris 1 criteria
and subsequently requiring liver transplantation. Low-risk patients
were defined as responders to UDCA at one year and still responsive
after a minimum of 15 years follow up. Patient details are given in
Table 1. Time zero biopsies taken from normal liver during transplanta-
tion were used as non-disease controls. Six high-risk patients, eight
low-risk patients and three controls were identified. Histological stag-
ing of the biopsy material is found in Table 2.

4.2. RNA Extraction From FFPE Samples

RNAwas successfully extracted from formalin fixed paraffin embed-
ded (FFPE) tissue from pre-treatment, diagnostic liver biopsies and was
Fig. 5. p21WAF1/Clp expression by biliary epithelial cells from time-zero, low-risk PBC, h
immunohistochemistry showing p21WAF1/Clp expression by biliary epithelial cells from time-z
p21WAF1/Clp expression by biliary epithelial cells from T0, high-risk PBC, low-risk PBC and expla
of sufficient quality for transcriptomics using the PanCancer Immune
Profiling panel from NanoString Technologies®.

4.3. Identification of Genes Differentially Expressed Between Low- and
High-risk PBC

Gene expression data were analysed according to the
manufacturer's instructions and showed 107 immune-related genes to
be significantly different between high- and low-risk disease (Table
3). Principle component analysis (PCA) was employed to display the
top 57 differentially expressed genes identified after the two-tailed t-
test. This analysis was able to cluster samples discretely by PBC risk
group, (Fig. 1), with both groups also having a distinct clustering com-
pared to control liver.

A dendrogram (Fig. 2) using 34 genes identified by t-test that most
separated the high-risk from the low-risk PBC groups was generated
to visualise the sample. Only one low-risk biopsy was grouped with
the high-risk strata and there were no high-risk biopsies in the low-
risk strata. Interestingly, patients with high-risk disease were
characterised by up-regulation of genes linked in particular to apoptosis
and cell cytotoxicity as well as down regulation of the complement
pathway in comparison to low risk and control tissue. Pathway analysis
of the top 8 pathways of differentially expressed genes found T cell
activation, IFNγ response, T-cell activation and leukocyte migration to
be most significant in high-risk disease (Fig. 3).

Differentially expressed genes were entered into geneMANIA to
further clarify the pathways contributing to the difference between
high- and low-risk patients (Fig. 4). As anticipated, pathways related
to interferon-γ response, leukocytemigration, T cell activation and apo-
ptosis were the most significant in high-risk disease.

4.4. p21WAF1/Clp Expression Is Associated With High-risk PBC and CDKN1a
mRNA Expression Levels

The gene product of CDKN1a (which was up-regulated with a 1.78
fold change) (p = 0.032) in expression in high- compared to low-risk
PBC (Table 3), p21WAF1/Cip, is a marker of biliary senescence and has
been shown to predict outcome in a number of liver diseases and to cor-
relate with Scheuer stage (Sasaki et al., 2010). Biliary epithelial cell
staining for p21WAF1/Cip by immunohistochemistry (Fig. 5) shows signif-
icantly higher expression levels in explanted tissue versus time zero
biopsies and also on bile ducts in high- compared to low-risk patients
and controls.

5. Discussion

This study demonstrates high-risk PBC to be fundamentally biologi-
cally distinct at an early stage from more indolent forms of the disease.
PBC risk is therefore pre-determined and not defined by UDCA
igh-risk PBC and explanted liver biopsies. (a) Representative images generated by
ero (T0), high-risk PBC, low-risk PBC and explanted liver biopsies. (b) Cumulative data of
nted liver biopsies. One-way ANOVA (*p b 0.05, **p b 0.001).



C

K

La

B

B

Sa

D

Je

V

M

D

Jo

Lu

72 C. Hardie et al. / EBioMedicine 14 (2016) 65–73
response, as is the current model of stratification. Risk of progression
could be predicted from the baseline liver mRNA expression ‘signal’
obtained from conventionally processed FFPE liver tissue, allowing for
potential development of an early clinical stratification tool to inform
not only patient management and follow up but also the development
and early use of novel second-line therapies (Dyson et al., 2015a); an
important issue given recent data highlighting the rapid nature of PBC
progression (Carbone et al., 2016).

Current histological methods of scoring lack sensitivity in differenti-
ating high- and low-risk PBC patients in early disease. In this study,
patients with high-risk disease tended to have a higher Scheuer score
at their first biopsy, although there was no clear-cut off point. The
cholangitis component of the Nakanuma score (Carbone et al., 2013;
Thurairajah et al., 2013) appeared to enable a degree of differentiation
between high- and low-risk disease, but the hepatitis component did
not. It was notable, however, that all patients with high-risk disease
had evidence of ductopenia on biopsy, only present in one low risk
patient. Further confirmation of ‘high-risk’ features using molecular
techniques has a clear role in disease stratification.

Although using archival FFPE liver tissue, we were able to dem-
onstrate that mRNA could be successfully extracted for analysis
using the Nanostring® nCounter platform from FFPE blocks dating
back over 20 years. RNA expression-signatures from FFPE tissue
has previously been difficult to assess due to high levels of degrada-
tion (von Ahlfen et al., 2007; Thompson et al., 2013). Despite patient
sample sizes being small, the significantly different molecular sig-
nature demonstrated by PCA and hierarchical clustering
differentiating high- and low-risk disease is an important finding.
Although limited in scope and requiring validation in further pa-
tient cohorts, this study offers real potential for the development
of a molecular ‘signature’ gene set for use as a practical therapy
stratification tool essential for targeted intervention. Advantages
of the Nanostring® nCounter platform in this setting are clear. No
modifications to standard pathology handling of tissue samples
would be required and data suggests a reference-based strategy, ap-
plicable to single-patient molecular testing, would allow for correc-
tion of the systemic and technical variations in measurements that
lead to the batch effect inherent in the handling of such samples
(Talhouk et al., 2016).

In terms of pathogenesis, we have demonstrated clear differ-
ences in both the ‘immune’ and ‘senescence’ phenotype between
high- and low-risk PBC from early stages of disease. What we have
likely identified is two distinct disease processes. Low-risk disease
appears to be characterised by cholestatic biliary injury in the
absence of immune-mediated damage and therefore treatable by
the detoxifying effect of UDCA. High-risk disease, however, is
characterised by T cell activation and apoptosis causing on-going
bile-duct damage un-modifiable by UDCA alone. Up-regulation of
CDKN1a/p21WAF1/Cip expression by biliary epithelial cells in early
disease not only identifies a potential risk marker for use in early
disease stratification, but indicates biliary senescence to be an
early and differentiating process in high-risk PBC. Furthermore,
this study serves to validate data from genome-wide association
studies (GWAS) of un-stratified PBC cohorts highlighting the im-
portance of immune pathways in PBC pathogenesis (Mells et al.,
2011; Cordell et al., 2015). Nine of the genes with significantly up-
regulated expression identified by this study in high-risk disease
correspond to candidate genes identified in PBC GWAS studies
(HLA-DQ1B, SOCS1, CD80, TNFSF15, HLA-G, HLA-A, HLA-B, IL-18,
STAT1) indicating important pathways for further study. An
immune directed RNA panel was used as published genome-wide
association data suggested associated immune pathways to be the
most relevant to disease progression (Mells et al., 2011), however
unbiased methods of transcriptomic analysis may provide greater
information for on-going research and a prospective unbiased
transcriptomic analysis of PBC patient biopsies is required.
Although data presented here are essentially descriptive and
require pro- and retrospective validation in larger cohorts, the
potential for identifying high-risk patients at an early stage is
clear, enabling stratified intervention as novel therapeutics come
to trial. Early stratification would also be of benefit in triaging
low-risk patients, allowing follow up in primary care without
need for expensive specialist resources. With support rising for
centralised molecular pathology institutions, concurrent tran-
scriptomics represents a feasible method to determine patient
management in conjunction with current histopathological diag-
nostic, grading and staging approaches.
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