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Simple Summary: Cancer recurrence caused by tamoxifen resistance hampers chemotherapy in
breast cancer patients. The reasons behind the resistance were investigated by screening epigenetically
regulated genes through analysis of methylation data from tamoxifen-resistant MCF-7 cells. MMP1
locus was found to be hypomethylated at a promoter CpG site and its expression was upregulated
in the cell line, which was verified by the drug-resistant tumor tissues from breast cancer patients
(n = 28). Downregulating MMP1 using a short hairpin RNA inhibited the growth of resistant cells
and increased sensitivity to tamoxifen in vitro as well as in a xenografted mouse model in vivo. This
study suggests that MMP1 is potentially a target gene to control tamoxifen resistance in breast cancer.

Abstract: Background: Tamoxifen (tam) is widely used to treat estrogen-positive breast cancer.
However, cancer recurrence after chemotherapy remains a major obstacle to achieve good patient
prognoses. In this study, we aimed to identify genes responsible for epigenetic regulation of tam
resistance in breast cancer. Methods: Methylation microarray data were analyzed to screen highly
hypomethylated genes in tam resistant (tamR) breast cancer cells. Quantitative RT-PCR, Western
blot analysis, and immunohistochemical staining were used to quantify expression levels of genes in
cultured cells and cancer tissues. Effects of matrix metalloproteinase-1 (MMP1) expression on cancer
cell growth and drug resistance were examined through colony formation assays and flow cytometry.
Xenografted mice were generated to investigate the effects of MMP1 on drug resistance in vivo.
Results: MMP1 was found to be hypomethylated and overexpressed in tamR MCF-7 (MCF-7/tamR)
cells and in tamR breast cancer tissues. Methylation was found to be inversely associated with
MMP1 expression level in breast cancer tissues, and patients with lower MMP1 expression exhibited
a better prognosis for survival. Downregulating MMP1 using shRNA induced tam sensitivity in
MCF-7/tamR cells along with increased apoptosis. The xenografted MCF-7/tamR cells that stably
expressed short hairpin RNA (shRNA) against MMP1 exhibited retarded tumor growth compared
to that in cells expressing the control shRNA, which was further suppressed by tam. Conclusions:
MMP1 can be upregulated through promoter hypomethylation in tamR breast cancer, functioning as
a resistance driver gene. MMP1 can be a potential target to suppress tamR to achieve better prognoses
of breast cancer patients.

Keywords: breast cancer; MMP1; CpG methylation; tamoxifen resistance; xenograft

Cancers 2022, 14, 1232. https://doi.org/10.3390/cancers14051232 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14051232
https://doi.org/10.3390/cancers14051232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8951-6008
https://orcid.org/0000-0001-6818-3956
https://doi.org/10.3390/cancers14051232
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14051232?type=check_update&version=1


Cancers 2022, 14, 1232 2 of 14

1. Introduction

Breast cancer (BC) is one of the most common cancers in women, with over two
million new cases (11.7% of all cancers) and causing the death of approximately 0.7 million
patients (6.9% of all cancers) worldwide in 2020 [1]. BC is caused by the dysregulation
of various cancer-related genes in different cell types; therefore, it is characterized by
multiple subtypes [2]. Precise characterization of the cancer type is essential to determine
clinical treatment options. Presence or absence of the estrogen receptor (ER) is a crucial
factor to classify the breast cancers into ER-positive (ER+) and ER-negative (ER-), with
the former accounting for approximately 70% of all breast cancer cases [3]. ER+ cancer
cells express a functional ER that is essential for their survival. Therefore, the ER can
be considered a major target for therapeutic medicines. Tamoxifen is an antagonist of
the ER, blocking its signaling activity entirely by binding to it [4]. The downstream
signaling pathways including PI3K/AKT and NFκB are consequently inhibited, leading to
dysregulation of cancer-related genes such as HOXA5, TNF, and CCL2 [5,6]. Eventually,
proliferation of cancer cells is suppressed by induction of cell death. Based on these
anticancer activities, tam has been widely used to treat ER+ breast cancer and has exhibited
high effectiveness during the initial treatment period [7]. However, as observed for many
other therapeutic drugs, tam-resistant (tamR) cells can emerge, which escape the drug,
causing cancer recurrence [8]. It has been shown that approximately 25% of tam-treated
patients experience recurrence after five years of chemotherapy [9].

Tam resistance can emerge in various ways due to dysregulation of cell proliferation-
related pathways [10]. This mechanism is closely associated with CYP2D6, which is
crucial for the metabolism of tam to its active metabolite [11]. Genetic variants of CYP2D6
can lead to diminished or even no enzyme activity resulting in tamR ER+ breast cancer
patients [12]. The status of ERα, which is the primary target of tam, can determine a
clinical outcome [13]. Typically, patients with tumors expressing low or diminished ERα
levels do not benefit from tam therapy, though a small fraction of ERα-negative tumors
have exhibited sensitivity to tam [14]. Tam resistance can also emerge through a ligand-
independent pathway, where the ER is downregulated by receptor tyrosine kinases such as
the epidermal growth factor receptor (EGFR), ErbB receptor 2 (ERBB2), and insulin-like
growth factor receptor (IGF1R) [15,16]. The AKT and MAPK pathways activated by these
receptors downregulate ER expression, contributing to tam resistance [17].

Epigenetic changes, including altered methylation levels at CpG sites that are usually
located on the promoters of coding genes, and dysregulation of microRNAs (miRNAs),
have been also implicated in several tamR cases [18,19]. Aberrant CpG island methylation
has been observed at the promoter of various genes in tamR cancer cells, resulting in
dysregulated transcription [20,21]. A study has demonstrated that DNA hypermethylation
occurs predominantly at the estrogen-responsive enhancers and is associated with reduced
ESR1 binding and decreased expression of crucial ERα activity regulators, thereby abating
endocrine responses in ERα-positive breast cancers [22]. Three miRNAs, miR-101, miR-206,
and miR-24-3p, have been identified to significantly increase in breast cancer tissues, with
their ectopic expression inducing tam resistance in cancer cells [23–25]. In another study,
exosomal miR-205 that targets the E2F1 transcription factor, which is a major driving force
for the cell cycle, has been shown to be dysregulated in breast cancer cells by promoting
tam resistance [26]. Histone modifications can also contribute to tam resistance by affecting
gene expression. In tamR breast cancer cells, ERα expression has been found to be increased
due to elevated H3K4 methylation levels, which are induced by the upregulation of two
histone methyltransferases, MLL3 and SET1A [27].

Unlike dysregulated molecular events in tamR cancer cells, not much is known about
epigenetically regulated oncogenes that can be potential chemotherapy targets. In this
study, we screened genome-wide methylation data obtained from tamR MCF-7 breast
cancer cells to identify hypomethylated oncogenes that were consequently upregulated,
potentially aggravating the tumor state. The matrix metalloproteinase-1 (MMP1) gene was
selected because it ranked high in the hypomethylated gene list; its epigenetic regulation
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was also validated in tamR breast cancer patients. MMP1 is suggested as a potential
prognostic factor for the malignancy risk of cancer, as it is activated and overexpressed by
many signaling pathways involved in the initiation and progression of cancer, which can
promote the hallmarks of cancer such as angiogenesis, metastasis, and invasion [28]. The
contribution of MMP1 in driving tam resistance was assessed by downregulating its gene
expression using an shRNA. Finally, the involvement of MMP1 in tumor cell growth and
drug resistance induction was examined using a xenografted mouse model.

2. Materials and Methods
2.1. Cell Culture and Lentiviral Infection

Human breast cancer MCF-7 cells were purchased from the American Type Culture
Collection (Manassas, VA, USA). Tamoxifen-resistant MCF-7 (MCF-7/tamR) cells were
developed as described in our previous study [29] and further used for in vitro cell as-
says as well as in vivo xenografts. All cells were cultured in RPMI 1640 medium (Gibco
BRL, Carlsbad, CA, USA) supplemented with 2% penicillin/streptomycin (Capricorn,
Ebsdorfergrund, Germany) and 10% fetal bovine serum (Capricorn) at 37 ◦C in 5% CO2.
Stable MMP1 knockdown (MCF-7/shMMP1 and MCF-7/tamR/shMMP1) and control cells
(MCF-7/shNC and MCF-7/tamR/shNC) were developed by seeding 5 × 103 cells/well
of MCF-7 or MCF-7/tamR cells on a 96-well plate. After 24 h, the cells were infected with
the shRNA-harboring lentiviral particles (Origene, Rockville, MD, USA, TL311450V and
TR30021V) containing 8 µg/mL polybrene (Sigma-Aldrich, St. Louis, MO, USA), followed
by puromycin (1 µg/mL) selection for 10 days.

2.2. Study Subjects

Tamoxifen-sensitive (n = 33) or -resistant (n = 28) patient-derived breast cancer tissues
used in this research were obtained according to protocols approved by the Research Ethics
Board of National Cancer Center (NCC) in Korea. All tissues were acquired from patients
operated on between 2012 and 2013. The clinical information of the patients has been
previously described [29].

2.3. Quantitative Real-Time RT-PCR (qRT-PCR) and Methylation-Specific PCR (MSP)

Total RNA and DNA were isolated from patient-derived tissues and cultured cells
using the ZR-Duet DNA/RNA MiniPrep Kit (Zymo research, Irvine, CA, USA). In order to
detect the relative MMP1 expression levels, cDNAs were synthesized from the extracted
RNAs and then amplified before measuring gene expression, as described previously [30].
In total, 100 ng of genomic DNA was bisulfite modified using the Zymo Research EZ DNA
Methylation Kit (Zymo Research, Irvine, CA, USA), and MSP was conducted as described
previously [31]. Oligonucleotide primers were synthesized by IDT (Coralville, IA, USA)
and Bioneer (Seoul, Korea) (Supplementary Table S1).

2.4. Proliferation and Tamoxifen Sensitivity Assays

The CCK-8 assay (Dojindo Laboratories, Kumamoto, Japan) and the colony formation
assay were both employed to monitor cell viability and sensitivity recovery. In order to
measure cell growth rate, 3 × 103 cells/well were seeded in a 96-well plate and cultured for
up to 6 days, before being stained with WST-8 from the CCK-8 solution. The optical density
(OD) was measured at 450 nm using a microplate reader (Sunrise, Tecan, Switzerland). The
tam sensitivity was evaluated by treating 1 × 104 cells with tam for 24 h in 96-well plates,
before adding the CCK-8 solution. After incubation for 90 min, the OD450 values were
measured using the plate reader.

For the colony formation assay, 3 × 103 cells were seeded in a 60-mm dish, treated
with tam for 24 h, and then cultured in refreshed media containing no tam. Staining and
colony measurements were conducted as described previously [32].
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2.5. Western Blot Analysis

The total protein was extracted from cell lysates and Western blot analysis was per-
formed as described previously [32]. Briefly, the breast cancer cells were suspended in RIPA
buffer containing 1% Halt protease inhibitor cocktail (Thermo Fisher Scientific, Waltham,
MA, USA). The protein (35 µg) was blotted with either anti-MMP1 (1:400, Bioss, Woburn,
MA, USA, bs-0424R) or anti-β-actin (1:1000, Bioss, bs-0061R) overnight, followed by in-
cubation with an HRP-conjugated anti-rabbit IgG antibody (1:1000, Genetex, Irvine, CA,
USA, GTX213110-01) for 2 h. The bands were visualized using the ECL reagent (Abfrontier,
Seoul, Korea).

2.6. Apoptosis Assay

For detection of apoptosis and necrosis, the APC Annexin V Apoptosis Detection
Kit with propidium iodide (PI) (BioLegend, San Diego, CA, USA) was used, following
the manufacturer’s instructions. The harvested cells were washed twice with PBS and
resuspended in binding buffer at a density of 1 × 106 cells/mL. The cells were treated with
Annexin V and the PI reagent and incubated for 15 min in the dark. Samples were assayed
using an Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA).

2.7. Xenograft Mouse Model

All animal studies were approved by the Institutional Animal Care and Use Com-
mittee of Dongguk University (No: IACUC-2017-010-1). In total, 1 × 107 cells (MCF-
7/tamR/shNC and MCF-7/tamR/shMMP1) in a 100-µL suspension [1:1 mix of PBS and
Matrigel (BD Biosciences, San Jose, CA, USA)] were implanted subcutaneously into 6-week-
old female BALB/c nude mice (Orient Bio, Sungnam, Korea), followed by implantation
of 60-day release 17β-estradiol pellets (0.72 mg/pellet total dose; Innovative Research of
America, Sonnasota, FL, USA). After 4 weeks, the test group was intraperitoneally injected
with 100 µL (1 mg/kg) of tam in corn oil (Sigma-Aldrich, St. Louis, MO, USA) five times per
week for 4 weeks, whereas the control group was treated with only corn oil. Tumor volume
(length × width2 × 0.5) was measured each week. After eight weeks of cell injection,
xenografted tumors were collected. The tissues were fixed in 4% paraformaldehyde and
embedded in paraffin blocks for histological analysis.

2.8. Immunohistochemistry (IHC) Staining

IHC staining was conducted to examine MMP1 expression in mice xenografts. Af-
ter deparaffinizing tissue sections, endogenous peroxidase blocking was conducted for
10 min, followed by proteinase blocking for 1 h before incubation with the rabbit anti-
MMP1 antibody (1:200, Bioss, bs-0424R). The EnVision Detection System (K5007, Agi-
lent Dako, Santa Clara, CA, USA) was used for detection. Sections were counterstained
using hematoxylin, hydrated, cleaned, and mounted under coverslips. Slides were vi-
sualized using an Olympus BX41 light microscope. The 3,3′-diaminobenzidine (DAB)-
positive areas were determined from IHC images using the ImageJ program (v.1.51j8)
(https://imagej.nih.gov/ij/download.html (accessed on 6 September 2021)).

2.9. Data Mining and Statistical Analysis

Genes showing a significant hypomethylation in the MCF-7/tamR cells were retrieved
from the methylation array data of the NCBI GEO DataSet (GSE132615 and GSE132616).
The association of MMP1 expression level with the clinical breast cancer patient outcome
was investigated using the GOBO tool (http://co.bmc.lu.se/gobo (accessed on 4 November
2021)). The MethHC database (http://methhc.mbc.nctu.edu.tw (accessed on 4 November
2021)) was used to analyze the correlation between promoter methylation and MMP1
expression level. Data from qRT-PCR, MSP, Western blotting, and IHC analysis and those
from flow cytometry and xenograft were statistically analyzed using the Student’s t-test and
two-way ANOVA followed by the Tukey post hoc test, respectively (significance threshold:

https://imagej.nih.gov/ij/download.html
http://co.bmc.lu.se/gobo
http://methhc.mbc.nctu.edu.tw
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p < 0.05); presented values represent the mean ± SEM. Statistical analysis was performed
using SPSS software for Windows, release 17.0 (SPSS, Chicago, IL, USA).

3. Results
3.1. MMP1 Is Upregulated by DNA Hypomethylation in tamR Breast Cancer

In our previous study, genome-wide methylation was analyzed in MCF-7/tamR cells
to identify epigenetically regulated genes responsible for drug resistance [29]. In the current
study, we focused on hypomethylated genes, as numerous oncogenes have been reported
to be upregulated by hypomethylation. The 20 most hypomethylated genes were screened
from the array data by comparing the CpG methylation levels between the MCF-7/tamR
cells and the parental tam-sensitive MCF-7 cells (Figure 1A). The alteration in methylation
level (∆β) of the 20 genes ranged from −0.47 to −0.22 (Table 1). MMP1 with a ∆β of −0.32
was selected for further investigation because it is an oncogene known to be crucial in
tumor development and metastasis [33]; however, its epigenetic regulation and molecular
mechanisms that contribute to chemo-resistance have not been elucidated.

Table 1. Top twenty hypomethylated genes in the MCF-7/tamR cells.

Gene Symbol Accession No. Description ∆ β-Value a Fold Change b

GUCY1B3 NM_000857 guanylate cyclase 1 soluble subunit beta 1 −0.47 −2.24
UHRF1 NM_001048201 ubiquitin-like with PHD and ring finger domains 1 −0.42 −2.37
TMEM167A NM_174909 transmembrane protein 167A −0.37 −2.32
RPS6KL1 NM_031464 ribosomal protein S6 kinase-like 1 −0.36 −2.64
C4orf47 NM_001114357 chromosome 4 open reading frame 47 −0.35 −1.87
GLS2 NM_013267 glutaminase 2 −0.34 −2.15
PATE1 NM_138294 prostate and testis expressed 1 −0.33 −1.60
MMP1 NM_002421 matrix metallopeptidase 1 −0.32 −1.96
PTS NM_000317 6-pyruvoyltetrahydropterin synthase −0.31 −3.70
PLAC1 NM_021796 placenta enriched 1 −0.30 −2.10
DNAJA4 NM_018602 DnaJ heat shock protein family (Hsp40) member A4 −0.30 −1.62
MAPK8IP2 NM_012324 mitogen-activated protein kinase 8 interacting protein 2 −0.29 −1.87

ZRSR2 NM_005089 zinc finger CCCH-type, RNA binding motif and
serine/arginine rich 2 −0.29 −1.54

PCDHB9 NM_019119 protocadherin beta 9 −0.27 −3.16
VSNL1 NM_003385 visinin-like 1 −0.25 −1.66
EHD4 NM_139265 EH domain containing 4 −0.24 −1.88
TTC39C NM_153211 tetratricopeptide repeat domain 39C −0.24 −1.94
S100P NM_005980 S100 calcium binding protein P −0.23 −1.54
HTRA3 NM_053044 HtrA serine peptidase 3 −0.22 −1.61
TNRC6B NM_001024843 trinucleotide repeat containing adaptor 6B −0.22 −2.24

a The values were obtained by subtracting the average methylation level of MCF-7/tamR cells with that of MCF-7
cells from two independent array datasets (GSE132615 and GSE132616). b The values were obtained by dividing
the average methylation level of MCF-7 cells by that of MCF-7/tamR cells from two independent array datasets
(GSE132615 and GSE132616). A negative symbol is added to the obtained value.

In order to confirm hypomethylation at the specific CpG site of MMP1, its methylation
level was examined from the chromosomal DNA of MCF-7/tamR cells by performing
methylation-specific PCR. The results revealed a methylation decrease of 73% in tamR cells
compared to that in parental MCF-7 cells (Figure 1B). MMP1 gene and protein expressions
were determined using qRT-PCR and Western blot analysis, which revealed upregulation
of the MMP1 transcript as well as the MMP1 protein in tamR cells (Figure 1C,D; Figure S1).
Subsequently, the methylation and expression levels were examined in tumor tissues
obtained from breast cancer patients who underwent surgery at the National Cancer Center,
Korea. The tamR tissues (n = 28) were found to exhibit lower methylation (p < 0.005) and
higher MMP1 expression than those in the tam-sensitive (tamS) tissues (n = 33, p < 0.005)
(Figure 1E). The methylation and MMP1 expression levels were found to be negatively
correlated in the breast cancer tissues (n = 61; r = −0.35; p < 0.05) (Figure 1F). MMP1
expression levels in breast cancer patients also affected patient prognosis for survival, with
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shorter survival periods in patients with high MMP1 expression than those in patients with
low MMP1 expression (Figure 1G). These data indicate that MMP1 expression is increased
by promoter hypomethylation in tamR breast cancer patients compared to that in tamS
cancer patients, potentially affecting patient prognosis and chemotherapeutic options.
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Figure 1. MMP1 is hypomethylated and upregulated in tamR breast cancer compared to that in tamS
breast cancer. (A) Heatmap of the 20 most hypomethylated genes in MCF-7/tamR cells compared
to those in parental MCF-7 cells. Data of two arrays are presented. Methylation level of the CpG
site at the MMP1 promoter (B) and mRNA level (C) were analyzed by MSP and qRT-PCR in breast
cancer cells. The data are presented as mean ± SE of three independent experiments. (D) Western
blot analysis was performed to detect MMP1 protein level in cultured cells. (E) Hypomethylation
and upregulation of MMP1 were identified by MSP and qPCR in breast cancer tissue of patients.
n: number of samples. (F) The association between the CpG methylation and mRNA expression of
MMP1. (G) Kaplan–Meier survival curve of MMP1 level in breast cancer patients. Samples (n = 1379)
were categorized into tertiles based on MMP1 expression. Distant metastasis-free survival (DMFS)
was compared for all tumor samples using the log-rank test (p < 0.001). * p < 0.05, ** p < 0.01.

3.2. MMP1 Stimulates MCF-7/tamR Cell Proliferation and Enhances Tam Resistance

MMP1 is an oncogene involved in various cancers including breast cancer [34]; how-
ever, its role in chemotherapeutic drug resistance remains undetermined. Therefore, its
effects on cancer cell growth and drug resistance were examined in tamR and tamS can-
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cer cells. First, cell growth and drug resistance were examined in MCF-7/tamR cells,
wherein MMP-1 was downregulated by stably transfecting an MMP1 shRNA (shMMP1).
(Supplementary Figure S2). The control MCF-7/tamR/shNC cells were stably transfected
with a control shRNA (shNC). The shMMP1-transfected cells exhibited retarded growth
compared to that of the control shRNA-transfected cells (Figure 2A). Furthermore, the
shMMP1-transfected cells displayed more sensitivity to tam (<1.0 µM) than that displayed
by control cells (Figure 2B). These results were also observed in the parental MCF-7 cells that
have lower MMP1 expression than that of tamR cells; however, the change in expression
level was not significant (Figure 2C,D). Then, the effects of MMP1 on drug resistance were
assessed through a colony formation assay. Downregulating MMP1 markedly inhibited
colony growth even in the absence of tam, which muddled the results of the effects of tam
on drug resistance (Figure 2E). Inhibiting MMP1 expression in MCF-7 cells resulted in the
clearly observed recovery of tam sensitivity (Figure 2F).
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Figure 2. MMP1 promotes cell growth and confers tam resistance in MCF-7 and MCF-7/tamR cells.
MMP1 was downregulated by injecting a stably expressed shRNA lentiviral vector into MCF-7 and
MCF-7/tamR cells. Effects of MMP1 on cell growth (A,C) and tam sensitivity (B,D) were examined by
colorimetric analysis using the CCK-8 reagent in MCF-7/tamR (A,B) and MCF-7 cells (C,D). Effects
of MMP1 on tam sensitivity were confirmed by the colony formation assay for MCF-7 (E) and MCF-
7/tamR cells (F). All assays were performed in three independent experiments. Data are presented
as mean ± SE. The values at each day of culture were compared to assess statistical significance in
(A−D). Representative images are shown for the colony formation assay. shMMP1, short hairpin RNA
against MMP1; shNC, negative control shRNA. * p < 0.05, ** p < 0.01, and *** p < 0.001 versus shNC
control; ### p < 0.005 versus shMMP1 control; ± p < 0.05, ±± p < 0.01, ±±± p < 0.005.
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In order to examine the antigrowth effect of MMP1 downregulation combined with
tam treatment on apoptosis or necrosis, the MCF-7/tamR cells harboring either a control
shRNA (MCF-7/tamR/shNC) or the shMMP1 (MCF-7/tamR/shMMP1) were examined.
Apoptosis and necrosis of cells were found to increase by 8.2 and 0.6%, respectively, in the
MCF-7/tamR/shMMP1 cells compared to those in the control cells. Apoptosis and necrosis
further increased by 7.5 and 1.5%, respectively, upon tam treatment, while the number of
live cells decreased (Figure 3). Taken together, these results indicate that MMP1 is a crucial
oncogene to stimulate MCF-7 cancer cell growth and a driving factor for drug resistance.
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Figure 3. Effects of MMP1 on apoptosis and necrosis of MCF-7/tamR cells. Flow cytometry was
performed after downregulating MMP1 with a stably expressed shRNA lentiviral vector. Representa-
tive flow cytometry images at 0 µM (A), 1 µM (B), and 2 µM (C) of tam are shown. Top and bottom
images are for shNC and shMMP1, respectively. Cells in each quadrate of the FACS image represent,
clockwise from the upper left, necrosis (green), late apoptosis (blue), early apoptosis (red), and live
cells (black). Ratio of live cells (D), apoptotic cells (E), and necrotic cells (F) are shown in a bar graph.
All assays were performed for three independent experiments, and data presented as mean ± SE.
shMMP1, short hairpin RNA against MMP1; shNC, negative control shRNA. * p < 0.05, ** p < 0.01;
## p < 0.01 versus shMMP1 control.
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3.3. MMP1 Increases Tumor Growth of the MCF-7/tamR Cells in Xenografted Mice

The aforementioned in vitro observations were tested in vivo by evaluating whether
MMP1 can drive tumor cell growth and drug resistance in a xenograft mouse model.
First, MMP1 expression was examined in the tumor tissues obtained after xenografting
MCF-7 and MCF-7/tamR cells into nude mice, as described in our previous study [29]. In
situ immunohistochemistry of tumor sections validated the elevated MMP1 expression in
MCF-7/tamR cells compared to that in parental MCF-7 cells (Figure 4A,B).
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Figure 4. Downregulating MMP1 inhibits tumor growth and induces tam sensitivity in xenografted
mice. (A) Immunohistochemical analysis of MMP1 expression was conducted on xenografted tumor
tissues containing MCF-7 and MCF-7/tamR cells. Three tissue sets were analyzed, and the protein
expression is depicted in the bar graph (B). Representative images are shown. Scale bar, 100 µm.
MCF-7/tamR cells stably transfected with shMMP1 or shNC were subcutaneously injected into
BALB/c nude mice. The tumor volume was examined every week for eight weeks. Corn oil (C) or
Tam (E) was administered according to intraperitoneal method after 3 weeks of cell transplantation.
At week 8, mice were sacrificed to extract untreated (D) and tam-treated tumor tissues (F), of which
size is denoted in a bar graph (G). n = 5 for each group. * p < 0.05 versus shNC control; # p < 0.05
versus shNC tam; ± p < 0.05.
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Subsequently, the involvement of MMP1 in tumor growth and tam resistance was
investigated in the xenografted mice. Both MCF-7/tamR/shMMP1 tumor cells and MCF-
7/tamR/shNC cells were transplanted intraperitoneally into mice, and the tumor growth
was monitored for 8 weeks. The MCF-7/tamR/shMMP1 cells expressing low MMP1 levels
exhibited dramatically retarded tumor growth by 79% at week 8 compared to the control
cells (n = 5, p < 0.05) (Figure 4C,D). Other groups were intraperitoneally administered with
tam after 4 weeks of transplantation to examine the effects of MMP1 on drug sensitivity
recovery. Tumor sizes in tam-treated mice were significantly smaller (>7-fold) compared to
that of untreated control group (n = 5, p < 0.05) (Figure 4E,F). The MCF-7/tamR/shMMP1
cells without tam treatment were found to grow slower than those treated with tam;
however, the growth was reversed after 8 weeks (Figure 4G).

4. Discussion

In this study, we aimed to identify signature genes that contributed to the emergence
of tam resistance through epigenetic regulation in breast cancer. MMP1 was identified after
a thorough examination through a series of experiments. The MMP1 gene was found to
be markedly hypomethylated at a specific CpG site of its promoter, while its transcript
and protein levels were found to be elevated in MCF-7/tamR cells. It is known that tam is
metabolized to hydroxytamoxifen (OH-tam) in vivo, which has 20~25 times higher affinity
to ER, although both forms bind specifically to ER [35]. Therefore, use of OH-tam instead of
tam in the cultured MCF-7 cells in vitro could result in stronger cellular as well as molecular
effects. A negative association between promoter methylation and MMP1 expression levels
was also confirmed in tamR and tamS breast cancer patients. Downregulation of MMP1
using shRNA inhibited the growth of the MCF-7/tamR cells in vitro as well as that of
the tumor tissues derived from the MCF-7/tamR cells in the animal model. Although
the orthotopic injection reproduces a more realistic environment of the breast cancer, the
subcutaneous approach adopted in this study was enough to explain the efficacy of MMP1
in stimulating the tumor cell growth and drug resistance. Furthermore, breast cancer
patients with high MMP1 expression exhibited a lower survival ratio compared to those
with low expression. Collectively, these experimental results indicated that oncogenic
MMP1 causes cancer cells to acquire chemo-resistance during chemotherapy.

MMP1 is a member of the MMP family of zinc-containing endopeptidases that have
multiple functions in tissue remodeling, including their participation in turnover of collagen
fibrils in extracellular spaces and the cleavage of nonmatrix substrates [36]. The protein has
been shown to be upregulated in various cancers including breast cancer, and its expression
has a significantly negative correlation with patient survival [37]. Previous studies have
suggested that MMP1 can be epigenetically regulated; a methyltransferase inhibitor, 5-aza-
2′-deoxycytine, has been shown to induce a decrease in its protein expression in a human
fibrosarcoma cell line [38]. The MMP1 gene promoter does not appear to contain CpG
islands [38], suggesting the presence of a single or a few CpGs at specific loci for regulation
of gene expression. Here, the methylation array data and bisulfite-PCR assay revealed a
single CpG at the promoter, highlighting a significant correlation between its methylation
and MMP1 expression levels in tamR and tamS breast cancer cells and tumor tissues.

Although the molecular mechanism of tam resistance has implicated multiple signal-
ing pathways, the mechanism by which MMP1 induces tam resistance remains elusive.
The activity of MMP1 in tam resistance can be speculated through two mechanisms. First,
MMP1 can crosstalk with the ER+ pathway. Several previous studies have demonstrated
the regulation of MMP1 by ER. For instance, Thaler et al. reported increased expression
of transfected MMP1-promoter constructs in response to ERβ [39]. Jung et al. revealed
crosstalk between ER and human epidermal growth factor receptor 2 (HER2) to induce
MMP1 expression [40]. MMP1 has also been shown to crosstalk with the IGF pathway by
degrading IGFBP-1 that binds IGF with high affinity. Elevated IGFBP-1 expression has
been reported in tamR MCF-7 and T-47D breast cancer cells, suggesting an association
between tam resistance and IGFBP-1 accumulation [41]. Second, MMP1 might induce
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tam resistance by acting independently through previously identified routes including
ER, EGF, or IGF pathways. This mechanism of action could be supported by the fact that
most MMP1-regulating genes do not overlap with those involved in previously known
pathways. For example, MMP1 is regulated by various cytokines such as epidermal growth
factor, hepatocyte growth factor, and a few types of interferons [42–44]; however, these
factors are not observed in cases with previously established tam resistance.

Elucidating downstream molecular events initiated by the upregulation of MMP1
should be the next step to better understand the mechanism by which the gene induces tam
resistance in breast cancer. Recently, Hamadneh et al. reported dysregulation of PI3K/AKT
and MAPK1 in the tamR-MCF-7 cells [45]. These genes are known to be regulated by MMP1
and their increased expression has been shown to promote proliferation and metastasis of
cancer cells [46]. Notably, hypomethylation was observed at numerous CpG sites including
the MMP locus during investigation of tam resistance. SRPX2, LNX1, GUCY1B3, and
CD59 are among the top 20 hypomethylated genes and are known to be oncogenes. CD59
has been shown to be elevated in tamR MCF-7 cells, validating our methylation array
data. SRPX2 has also been shown to confer chemoresistance for 5-Fu and gemcitabine by
activating the PI3K/AKT axis in pancreatic cancer [47]. LNX1 has been shown to contribute
to cisplatin resistance by regulating cell cycle progression in human cancer cells [48]. For all
these genes, epigenetic modulation of gene expression involved in chemoresistance has not
been elucidated. Our methylation data suggest that many oncogenes are upregulated due
to hypomethylation in chemo-resistant cancers including tamR breast cancer. Moreover,
the PI3K/AKT pathway functions as a linchpin for the emergence of various types of
chemoresistance. A limitation of this study is the lack of experimental evaluation of the
impact of MMP1 methylation status on gene expression and tam resistance. Nonetheless,
our results revealed a strong association between the methylation level and expression,
especially in the tamR and tamS breast cancer patients. Furthermore, we demonstrated that
MMP1 is a driving factor to induce tam resistance using transplanted cancer cells.

5. Conclusions

MMP1 is a gene that drives breast cancer cells to become tamR. During the induction
of tam resistance, the MMP1 gene is upregulated through hypomethylation at its pro-
moter. Suppressing MMP1 expression attenuates tam resistance and increases apoptosis, as
confirmed by in vitro cell culture and an in vivo xenograft mouse model. Taken together,
these results confirm that MMP1 is a crucial gene involved in induction of tam resistance;
therefore, it could be used as a molecular target to prevent or treat tamR breast cancer.
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