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ABSTRACT: We report a method for the structure-based
calculation of the spectral density of the pigment−protein coupling
in light-harvesting complexes that combines normal-mode analysis
with the charge density coupling (CDC) and transition charge from
electrostatic potential (TrEsp) methods for the computation of site
energies and excitonic couplings, respectively. The method is
applied to the Fenna−Matthews−Olson (FMO) protein in order to
investigate the influence of the different parts of the spectral density
as well as correlations among these contributions on the energy
transfer dynamics and on the temperature-dependent decay of
coherences. The fluctuations and correlations in excitonic couplings
as well as the correlations between coupling and site energy
fluctuations are found to be 1 order of magnitude smaller in
amplitude than the site energy fluctuations. Despite considerable
amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these
correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge
distribution of the protein, which causes variations in local pigment−protein coupling constants of the normal modes, is
responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy
funnel in the FMO protein also allows for efficient dissipation of the excitons’ excess energy.

■ INTRODUCTION

The important task in photosynthesis of collecting sunlight and
transferring the excitation energy to a reaction center (RC),
where it is converted into chemical energy, is performed by
specialized pigment−protein complexes (PPCs) termed anten-
nae or light-harvesting complexes. In general, the excitation
energy is guided to the RC through energy funnels, which the
proteins create, holding the pigments at optimal positions and
varying their electronic properties. At least two different types
of funnels exist.
By adjusting interpigment distances, an excitation energy

funnel is created in the photosynthetic apparatus of purple
bacteria.1−3 Another type of excitation energy funnel is realized
in the Fenna−Matthews−Olson (FMO) protein of green sulfur
bacteria:4−6 The local transition energies of the bacteriochlor-
ophyll a (BChla) pigments in their binding sites, the site
energies, are varied by the pigment−protein interaction in a
way that pigments facing the RC are red-shifted with respect to
those facing the outer antenna system. Evidence for this site
energy funnel was obtained from fits of optical spectra7,8 as well
as direct structure-based quantum chemical/electrostatic
computations.9,10

Besides this tuning of excitation energies, the protein has to
dissipate the excess energy of the excitons when they relax
downward to the excited states of the RC. This dissipation is
achieved primarily by protein vibrations that absorb the excess
energy and distribute it over many degrees of freedom. The
coupling of pigment excited states to the protein vibrations is
characterized by the spectral density J(ω).3,8,11 Fortunately,
information about J(ω) can be obtained from optical line-
narrowing experiments.11−13 If only a single pigment is present
as in the B777 complex14,15 derived from the light-harvesting
complex 1 (LH1) of purple bacteria, the standard theory of a
two-level system coupled linearly to a bath of harmonic
oscillators16,17 can be used to extract J(ω) from the
experimental data.11 If more than one pigment is present, the
standard theory can still be applied, provided that the lowest
exciton state is strongly localized on a single pigment.12,13 If the
lowest exciton state is delocalized, more advanced approx-
imations have to be used to describe the line-narrowing
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spectra.11 These approximations concern the theory of
exciton−vibrational dynamics and the different contributions
to the spectral density.
Concerning theory, the problem of equal excitonic and

exciton−vibrational coupling strengths arises. In principle, this
problem can be solved numerically by using one of the non-
perturbative approaches, like the hierarchical equation of
motion (HEOM) approach,18−21 the density matrix renormal-
ization/polynomial transformation approach,22,23 or path
integral techniques.24,25 The numerical effort, however, is
considerable. So far, these techniques have not been applied to
analyze line-narrowing spectra of PPCs. Alternatively, the
Hamiltonian of the PPC has been transformed into the basis of
delocalized exciton states, with the hope to find a small
parameter that can be used for perturbation theory.11,26−32

In this context, two non-Markovian density matrix theories,
the time-local chronological ordering prescription (COP) and
the time-local partial ordering prescription (POP) theory, were
tested against experimental fluorescence line-narrowing (FLN)
data of the dimeric B820 subunit of LH1.11 In these
calculations, the spectral density of site energy fluctuations
derived from experiments on the B777 complex15 was used.
POP was found to provide more accurate results for the FLN
spectrum of the B820 dimer.11 Additionally, it was shown that
COP breaks down at high temperatures in simulations of linear
absorbance spectra of the water-soluble chlorophyll binding
protein (WSCP), whereas POP again was in agreement with
experiment.33 The exciton−vibrational coupling constants
obtained in the present work from a normal-mode analysis
(NMA) provide a microscopic explanation of these results.
The spectral density of a PPC contains several contributions

resulting from the fluctuation of site energies, the fluctuation of
excitonic couplings as well as correlations among and between
these two types of fluctuations. These contributions influence
exciton relaxation and the dephasing of coherences in different
ways. Therefore, it is of considerable interest to find a way to
estimate the importance of the various contributions. The main
goal of the present paper is to offer a tool for this purpose. In
the absence of methods for a quantitative evaluation of the
different parts of the spectral density, it is often presumed that
the spectral density is dominated by site energy fluctuations and
that the other contributions can be neglected. To model
correlations among the former, an empirical correlation radius
Rc has been introduced by assuming an exponential depend-
ence of cross correlations on interpigment distance.11,29,34 In
recent years, the interest in such correlated fluctuations and
their possible functional role has increased significantly.35−39

Rebentrost et al.35 and Sarovar et al.36 studied energy transfer
and the trapping efficiency in the FMO protein as a function of
Rc. Both studies found a slower transport and a higher degree of
coherences in the system if Rc is large, in agreement with earlier
results.33 Sarovar et al.36 raised the intriguing question of why
fluctuations should be correlated, if these correlations reduce
the efficiency of light harvesting. As will be shown here, the
spectral density is more complicated than assumed in these
phenomenological models. Abramavicius and Mukamel37

investigated the signature of correlated site energy fluctuations
in 2D photon echo spectra and confirmed their retarding
influence on energy transfer. They identified the cross peak
regions of the 2D spectra as particularly sensitive to the
correlations.
Other groups additionally considered the case of anticorre-

lated site energy fluctuations, fluctuations of excitonic couplings

and their correlation, as well as correlations between site and
coupling fluctuations.40−45 Whereas in the simple models,
correlations prolong the quantum beating and the energy
transfer times, the more general models show that, in principle,
it is possible to simultaneously increase the lifetime of
coherences, and to decrease the energy transfer times.44

Thus, there is a clear need for a microscopically calculated
spectral density to clarify the possible role of correlations.
Pioneering work in this direction has been performed by the

Schulten group,46 who combined molecular dynamics (MD)
simulations of the LH2 complex of purple bacteria with
quantum chemical (QC) calculations of the pigment’s
transition energies to compute the autocorrelation functions
of site energy fluctuations. The protein was included as a
classical background charge distribution in the solution of the
electronic Schrödinger equation. The spectral density was then
obtained from the Fourier transform of the autocorrelation
function. This approach has been modified by using instead of
the original ab initio electronic structure method either a
semiempirical method47−51 or density functional theory
(DFT).52 The simulations are computationally demanding,
since the QC site energy calculations have to be performed
every 1−2 fs along the classical MD trajectories. Besides the
spectral density of LH2,46−48 those of the FMO protein49,50,52

and the RC of purple bacteria51 have been investigated.
Despite considerable differences in the shape of the reported

spectral densities of site energy fluctuations, all the QC/MD
approaches discussed above (except for the ones by Jing et al.51

and Kim et al.,53 see below) have in common that they severely
overestimate the contribution from intramolecular pigment
vibrations (occurring at high frequencies) when compared with
the spectral density obtained from line-narrowing spec-
tra.12,54,55 Furthermore, significant deviations between the
QC/MD results and the spectral densities derived from
experiment are also observed in the low-frequency region (ω
< 500 cm1) that is particularly important for light-harvesting. As
pointed out by Aspuru-Guzik and co-workers,52 one possible
reason for the overestimation of the high-frequency part could
be the classical treatment of these modes because of the
quantum mechanic freezing-out effect, which suppresses the
motion of high-frequency degrees of freedom. Alternatively,
Kim et al.53 noted that the missing zero point energy of the
vibrations in a classical description may be responsible for the
spurious appearance of high-frequency components in the
spectral density.
Probably the main reason, as reported by Jing et al.,51 lies in

the mismatch between the ground state geometries of the
pigments created by the classical force field in the MD run and
the optimal geometry obtained from a QC calculation. During
the development of computational schemes for site energy
shifts,9,56 we observed a similar behavior: QC calculations based
directly on heavy-atom coordinates from a crystal structure
(supplemented with hydrogen atom positions from a classical
force field optimization) usually resulted in erroneous charge
distributions as judged from a too large difference in the
permanent dipole moment between ground and excited states
(compared to values suggested by Stark effect measurements).
This discrepancy was one reason to use a two-step procedure:
In the first step, QC calculations are performed on pigments
fully geometry-optimized in vacuo, ultimately resulting in
atomic partial charges that describe the permanent charge
distributions of ground and excited states and the transition
densities. In the second step, these partial charges are used in a
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crystal-structure-based all-atom electrostatic calculation includ-
ing the whole PPC.9,10,56,57 A second reason for the use of a
two-step procedure is the possible occurrence of electron
leakage and overpolarization resulting from an artificial
distortion of the molecular electron density due to classical
background charges.58,59 It remains to be explored in detail to
what extent these effects contribute to the error of QC/MD
approaches in the calculation of spectral densities.
Another subtlety of the calculation of site energies concerns

the dependence of the protein charge distribution on the
protonation states of titratable amino acid residues. In the
framework of an all-atom electrostatic calculation, the
protonation states can be handled by solving the linearized
Poisson−Boltzmann equation and performing a Monte Carlo
average.60,61 The electrostatic computation of site energies is
readily incorporated into this scheme,9,56 resulting in a method
that has been baptized the Poisson−Boltzmann/quantum
chemical (PB/QC) approach. In a simplified version thereof,
termed the charge density coupling (CDC) method, the
protonation states are first determined by the Poisson−
Boltzmann methods, then fixed, and, finally, the site energies
are computed by approximating the polarization effects through
an effective dielectric constant εeff.

10,56,62 In addition, εeff takes
into account uncertainties about the exact values of the QC
partial charges of the ground and excited states of the pigments,
also present in the PB/QC approach. εeff is essentially a fit
parameter, and has been found to be εeff = 3 for the FMO
protein.10 The QC/PB and CDC methods have been
successfully applied to predict low-energy excited states in
various PPCs, including the FMO protein,9,10,56 the major light-
harvesting complex II of plants,63 and photosystem I.62

Jing et al.51 reported for the first time a combination of the
CDC method with MD simulations to infer the spectral density
of the pigment−protein coupling. The coupling to intra-
molecular modes was obtained from a QC-based NMA of the
pigments in vacuo. They also tested a variant of the QC/MD
method, in which the intramolecular part of the spectral density
was calculated separately from a QC/MD simulation of the
pigments in vacuo and then subtracted from the QC/MD
results of the PPC. The qualitative agreement of the latter
difference with the CDC/MD results demonstrates that the
mismatch between classical force field and QC calculation may
be compensated in this way. Further, it shows that the
fluctuations of the Coulomb interaction between pigments and
protein are the main contributors to the intermolecular spectral
density. However, the trajectory length limiting the accuracy of
the spectral density in the low-frequency range remains a
problem in MD-based approaches. Jing et al.51 implicitly took
care of this limitation by assuming a temperature-dependent
inhomogeneous broadening. In the present work, this problem
is circumvented by applying, instead of a MD simulation, a
NMA of the PPC. Another comparison between a CDC/MD
and a QC/MD approach was recently reported by Kim et al.,53

who concluded that these two methods provide limiting cases
for the experimental spectral density. Whereas with CDC/MD
a similar shape of the spectral density was obtained as measured
in the experiment, but the calculated amplitude was too small,
with QC/MD the amplitude of the spectral density at low
frequencies seems to be in better agreement with experimental
data, but a comparison is difficult because of the overwhelming
high-frequency part that is not observed experimentally
(Figures 4 and 5 of their paper53). Consequently, the
absorbance spectrum obtained with the CDC/MD spectral

density fitted the experimental absorbance spectrum much
better than the one calculated with QC/MD (Figure 3 of their
paper53).
The development of 2D electronic spectroscopy and its

application to photosynthetic light-harvesting complexes
pioneered by the Fleming group has enormously revived the
interest in coherent exciton motion in these systems.64−67

Quantum beats have been observed that last for a couple of
hundred femtoseconds even at room temperature68 and for
weakly coupled systems.69 First signatures of excitonic quantum
beats were found in the experimental70 and theoretical29

anisotropy of pump−probe spectra of the FMO protein, 15
years ago. An interesting question71 that awaits to be answered
by structure-based simulations is whether the protein environ-
ment in light-harvesting systems acts as a “quantum protector”
of coherences by a correlated modulation of site energies. So
far, neither the QC/MD48,50,52 nor the CDC/MD51 methods
could find correlations in site energy fluctuations. The QC/MD
simulations by Olbrich et al.,50 however, found signatures of
correlations in fluctuations of excitonic couplings and between
the fluctuations of couplings and site energies. A quantification
of the related spectral densities was, however, not possible so
far and will be provided in the present work, together with that
of the correlation in site energy fluctuations.
The remaining part of this article is organized in the

following way: We first introduce the CDC/TrEsp/NMA
method for the calculation of the spectral density and show
how this spectral density enters the calculation of optical
spectra and the evolution of coherences and populations that
are generated by ultrashort optical pulses. Next, the method is
applied to the monomeric subunit of the FMO protein,
revealing all details of the intermolecular spectral density
including the correlations. The relative importance of the
different parts of the spectral density is investigated in
calculations of the temperature-dependent dephasing of
excitonic wavepackets and the population transfer. Finally, the
negligible influence of the correlations is explained and
implications of the present results for the theory of excitation
energy transfer and the mechanism of light harvesting in PPCs
are discussed.

■ THEORY AND COMPUTATIONAL METHODS
Spectral Density and Normal Mode Analysis. We

consider a standard time-dependent Hamiltonian of the PPC

∑ ∑
ω

= | ⟩⟨ | +
ℏ

+
ξ

ξ
ξ ξH H t m n P Q( )

4
( )

mn
mn

2 2

(1)

where |m⟩ denotes a state where pigment m is excited whereas
all other pigments are in their electronic ground state. The
diagonal element Hmm(t) is the electronic transition energy
between the ground state and the local excited state |m⟩, that is,
the site energy of pigment m, whereas the off-diagonal element
Hmn(t) with m ≠ n is the excitonic coupling between states |m⟩
and |n⟩. The excitonic couplings are responsible for the transfer
of excitation energy and for the delocalization of excited states.
The protein environment is described by a set of harmonic
oscillators obtained from a NMA, where the dimensionless
coordinates Qξ and momenta Pξ are related to creation and
annihilation operators of vibrational quanta Cξ

† and Cξ,
respectively, of normal mode ξ by Qξ = Cξ

† + Cξ and Pξ =
i(Cξ

† − Cξ) and to mass-weighted normal coordinates qξ and
momenta pξ by

34,72
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ω
ω

=
ℏ

=
ℏξ

ξ
ξ ξ

ξ
ξQ q P p

2
and

2

(2)

The time dependence of Hmn(t) is induced by the nuclear
dynamics via the pigment−protein coupling. The matrix
elements Hmn(t) are expanded into a Taylor series with respect
to small displacements Rj(t) of atoms j = 1, ..., Natom of the PPC
from their equilibrium positions Rj

(0). Including terms up to first
order in the displacements gives

∑≈ + ∇ | · −H t H H tR R( ) ( ) ( ( ) )mn mn
j

j mn j j
(0)

0
(0)

(3)

where Hmn
(0) and ∇jHmn|0 are the values of Hmn and of its

gradient, taken with respect to the three cartesian coordinates
of the jth atom, respectively, at the equilibrium position of
nuclei in the electronic ground state, i.e. for Rk = Rk

(0), k =
1...Natom. The mass-weighted normal coordinates qξ(t) are
related to the displacements (Rj(t) − Rj

(0)) by34

∑− =
ξ

ξ
ξ

−t M q tR R A( ) ( )j j j j
(0) 1/2 ( )

(4)

where Mj is the mass of atom j and Aj
(ξ) contains the

contributions of this atom to the eigenvector of normal mode ξ.
From eqs 3 and 4, we obtain

∑ ω≈ + ℏ
ξ

ξ ξ ξH t H g m n Q t( ) ( , ) ( )mn mn
(0)

(5)

where a dimensionless coupling constant gξ(m,n) was
introduced as

∑ω= ℏ ∇ | ·ξ ξ
ξ− − −g m n M H A( , ) (2 ) ( )

j
j j mn j

3/2 1/2 1/2
0

( )

(6)

This coupling constant will enter the spectral density below (eq
10). In order to evaluate the r.h.s. of eq 6, we need to know
how the matrix elements Hmn(t) = Hmn({Rk(t)}) depend on the
nuclear coordinates Rk. These dependencies are revealed by the
TrEsp and CDC methods.
In the TrEsp method,73 the excitonic coupling Hmn is

calculated from the Coulombic coupling of the transition
charges of two pigments. The transition charges are determined
from a fit of the electrostatic potential (ESP) of the ab initio
transition density obtained with time-dependent density
functional theory. Because of uncertainties in the magnitude
of the QC transition charges and the neglect of local field and
screening effects induced by the dielectric environment, the
TrEsp method needed to be refined. For this purpose, the
Poisson-TrEsp method has been developed,8,56,74 which takes
into account the optical polarizability of the environment
represented by the refractive index n. In this method, a Poisson
equation is solved for the potential of rescaled transition
charges that are placed into molecule-shaped cavities with n2 =
1 inside and n2 = 2 outside. The environmental refractive index
has been estimated from comparison of the oscillator strength
of protein-bound and solvent-extracted pigments.75 Rescaling
of the transition charges is done by a constant factor such that
the correct vacuum value of the transition dipole moment
results, as inferred by Knox and Spring76 from an empty cavity
analysis of the oscillator strength of BChla in different solvents.
Due to this calibration and the explicit inclusion of the
dielectric environment, there is no free parameter left. A
comparison of excitonic couplings of the FMO protein

obtained with Poisson-TrEsp to those obtained with TrEsp
shows that the influence of the optical polarizability on the
excitonic couplings may be well approximated by a constant
screening/local field correction factor of f = 0.8.3,8,56 Hence, the
excitonic coupling between pigments m and n is given as

∑=
| − |

≠H f
q q

R
m n

R

(0, 1) (0, 1)
, ( )mn

k l

k
m

l
n

k m l n,

( ) ( )

, , (7)

Here, qk
(m)(0, 1) is the transition charge of atom k of pigment m

(rescaled as described above) and Rk,m is the position of this
atom, for example. We note in passing that the exponential
distance dependence of the screening factor assumed in ref 50
cannot be justified by Poisson-TrEsp.74

In order to simplify the calculation of site energies Hmm and
to obtain an explicit coordinate dependence, our original PB/
QC approach9,63 has been modified to result in the CDC
approach,10,56,62 as discussed in the Introduction. In the CDC
method, the site energy is given as

∑
ε

= +
−

| − |
H E

q q q

R R
1 ( (1, 1) (0, 0))

mm
k i

i k
m

k
m

i k
m0

eff ,

(bg) ( ) ( )

(bg) ( )
(8)

where E0 is a constant that is independent of m, qi
(bg) denotes

the ground state partial charge of the background atom i, and
qk
(m)(1, 1) and qk

(m)(0, 0) are the excited state and ground state
partial charges of atom k at the mth pigment, respectively. Note
that i runs over all atoms of the PPC, except for those of the
macrocycle of pigment m, and k runs only over the latter. The
most probable protonation state of the titratable residues of the
protein was determined by performing Poisson−Boltzmann
type calculations as described in ref 10.
The effective dielectric constant εeff was introduced to

describe screening and local field effects of the Coulomb
coupling, in the same spirit as f was introduced in the
calculation of excitonic couplings in eq 7. Please note, however,
that excitonic couplings are influenced only by the electronic
polarizability, since the nuclei of the environment have no time
to move during an electronic transition, whereas the site
energies experience both types of polarizabilities.9 For the
calculation of static-structure site energies in the FMO protein,
we estimated εeff = 3 from a comparison of the resulting optical
spectra with experimental data.10 The site energies obtained
with CDC10 are in good agreement with earlier PB/QC values,9

showing that screening/local field effects can indeed be
approximated by using an effective dielectric constant.
Since in the present work the nuclear polarizability is

modeled explicitly by the NMA, we are just left with the effect
of electronic polarizability that can be described by a factor of f
= 0.8, as discussed above for the excitonic couplings. Hence, we
use εeff = 1/f = 1.25 in the NMA of site energy fluctuations.
By calculating the gradient in eq 6, using eqs 7 and 8, the

coupling constants gξ(m,n) finally are obtained as
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mn
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(0)
,

(0) 3

(0)
,

(0) 1/2 ( ) 1/2 ( )

,

( ) ( )

,
(0)

,
(0) 3

,
(0)

,
(0) 1/2 ( ) 1/2 ( )

(9)

where the equilibrium vectors Rj
(0) are obtained from energy

minimization of one FMO monomer taken from the crystal
structure with hydrogen atoms addded by molecular modeling.
The Aj

(ξ) are obtained from the eigenvectors of the NMA. The
dimensionless coupling constants gξ(m,n) are the weighting
factors for the density of vibrational states N(ω) = ∑ξ δ(ω −
ωξ), revealing the spectral density Jmnkl(ω) of the exciton
vibrational coupling

∑ω δ ω ω= −
ξ

ξ ξ ξJ g m n g k l( ) ( , ) ( , ) ( )mnkl
(10)

Here, Jmmmm(ω) describes the fluctuation of the site energy of
pigment m and Jmnmn(ω) that of the excitonic coupling between
pigments m and n. The correlation of site energy fluctuations
between pigments m and n is contained in Jmmnn(ω), that of
coupling fluctuation between m and n and the site energy
fluctuation of k in Jmnkk(ω), and the correlation between
fluctuations of excitonic couplings m ↔ n and k ↔ l in Jmnkl(ω).
Computational Details. The sets of atomic partial charges

used in the CDC and TrEsp methods were taken from earlier
work73 and are based on QC calculations on geometry-
optimized BChla in vacuo. For the computation of the ESP of
the charge density of ground and first excited states as well as of
the transition density between gound and first excited state,
(TD)DFT was employed with the B3LYP exchange correlation
functional. We note that, in the CDC and TrEsp methods, no
transition energies from QC but only the charge sets are used.
In this context, a critical evaluation of the performance of
various QC methods is only possible by comparison of
simulated with measured optical spectra. In the case of the
FMO protein, it was found that the charge sets inferred from
B3LYP allow for a quantitative description of optical spectra.9,10

Therefore, these charge sets are used here as well.
The atomic partial charges representing the ground state

charge density of the protein were taken from the CHARMM
force field.77,78 All calculations are based on the 1.3 Å
resolution crystal structure of the FMO protein of Prostheco-
chloris aestuarii by Tronrud et al.6 For simplicity, we restricted
the analysis to one monomeric subunit of this complex (Figure
1) and did not include the eighth BChla (apo-form). The use of
the apo-form is justified, as the eighth BChla is likely to be
absent in most samples used for spectroscopy.10 Hydrogen
atoms were added by using CHARMM.77,78 A three-step
geometry optimization of the whole complex was performed
with steepest descent, conjugate gradient and the Newton−
Raphson methods using CHARMM. The force field parameters
of BChla were adopted from Marchi and co-workers,79 who
based the parametrization on DFT computations.80 The
published force field of BChla79 was intended for use with
AMBER9481 and was adapted for the current application to the

format and functional forms of CHARMM.78 Finally, the NMA
was performed with CHARMM, revealing 19 392 normal-mode
frequencies and corresponding eigenvectors. The frequencies of
the first six normal modes, which correspond to translation and
rotation of the whole FMO protein, were zero. All other
eigenvalues of the NMA were positive, indicating a stable
minimum of the optimized structure.

Theory of Optical Spectra and Exciton Dynamics. The
Hamiltonian of the PPC in eq 1 is divided into three parts

= + +−H H H Hex ex vib vib (11)

the exciton Hamiltonian Hex, the vibrational Hamiltonian Hvib,
and the Hamiltonian Hex−vib containing the exciton−vibrational
coupling. The exciton Hamiltonian reads

∑ ∑ ω= | ⟩⟨ | = ℏ | ⟩⟨ |H H m n M M
mn

mn
M

Mex
(0)

(12)

The exciton matrix Hmn
(0) contains in the diagonal the site

energies and in the off-diagonal the excitonic couplings,
obtained from the CDC and Poisson-TrEsp methods,
respectively. By diagonalizing this matrix, delocalized exciton
states

∑| ⟩ = | ⟩M c m
m

m
M( )

(13)

are defined, where the coefficients cm
(M) are obtained from the

eigenvectors, and the eigenvalues ℏωM are the excitation
energies of the delocalized states.
The exciton−vibrational Hamiltonian reads, using eq 5,

∑ ∑

∑ ∑

ω

ω

= ℏ | ⟩⟨ |

= ℏ | ⟩⟨ |

ξ
ξ ξ ξ

ξ
ξ ξ ξ

−H g m n Q m n

g M N Q M N

( , )

( , )

mn

M N

ex vib

, (14)

where the exciton−vibrational coupling constants gξ(M,N) of
the delocalized (exciton) states were introduced as

∑=ξ ξg M N c c g m n( , ) ( , )
mn

m
M

n
N( ) ( )

(15)

with the coefficients ck
(K) of exciton states and the local coupling

constants gξ(m,n) of fluctuations of site energies (m = n) and
excitonic couplings (m ≠ n) obtained here from a NMA (eq 9).
Finally, the vibrational Hamiltonian Hvib is that of uncoupled

harmonic oscillators

Figure 1. Monomeric subunit of the FMO protein of Prosthecochloris
aestuarii6 containing seven BChla pigments (apo-form).
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∑
ω

=
ℏ

+
ξ

ξ
ξ ξH P Q

4
( )vib

2 2

(16)

with the normal-mode frequencies ωξ. Hence, all parts of the
Hamiltonian are fully parametrized by structure-based simu-
lations.
Time-local partial ordering prescription (POP) non-

Markovian density matrix theory11 is used to describe linear
absorbance and exciton dynamics following an ultrashort pulse
excitation. This theory contains an exact treatment of the
diagonal parts of the exciton−vibrational coupling in the basis
of delocalized states, characterized by the coupling constants
gξ(M,M) (eq 15), and treats the off-diagonal parts gξ(M,N) with
M ≠ N by perturbation theory. A microscopic justification for
this approximation based on the present NMA will be provided
below.
Linear Absorbance. The absorbance spectrum α(ω) is

obtained from the homogeneous absorbance spectrum
α(hom)(ω) via

α ω α ω= ⟨ ⟩( ) ( )(hom)
dis (17)

where ⟨...⟩dis denotes an average over static disorder in site
energies. An independent variation of the site energies and
Gaussian distribution functions, centered around the static-
structure site energies, is assumed, and the disorder average is
performed numerically by a Monte Carlo method, as usual.
The homogeneous absorption spectrum reads

∑α ω ω μ ω∝ | | D( ) ( )
M

M M
(hom) 2

(18)

where the transition dipole moment μ⃗M of the optical transition
between the ground state and the Mth exciton state is given as

∑μ μ⃗ = ⃗cM
m

m
M

m
( )

(19)

Here, μ⃗m is the transition dipole moment of the local optical
transition at site m.
The line shape function DM(ω) is obtained from the non-

Markovian time-local POP density matrix theory within secular
approximation and Markov approximation for the off-diagonal
elements of the exciton−vibrational coupling11

∫ω
π

= ω ω τ

−∞

∞
− ̃ − −| |D t( )

1
2

d e e eM
i t G t G t( ) ( ) (0) /M MM MM M

(20)

The time-dependent function GMM(t) describes the vibrational
sideband of the exciton transition and is related to the spectral
density Jmnkl(ω), defined in eq 10, via (M = N)

∫∑ ω ω

ω ω ω

= +

× +ω ω

∞

−

G t c c c c n

J n J

( ) d {(1 ( ))

( )e ( ) ( )e }

MN
mnkl

m
M

n
M

k
N

l
N

mnkl
i t

mnkl
i t

( ) ( ) ( ) ( )

0

(21)

where n(ω) is the Bose−Einstein distribution function of
vibrational quanta

ω =
−ωℏn( )

1
e 1kT/ (22)

The dephasing time constant τM in eq 20 contains the lifetime
broadening due to exciton relaxation between exciton state |M⟩
and the other exciton states |N⟩

∑τ =
≠

→k
1
2M

N

N M

M N
(23)

with the Redfield rate constant

∑πω ω

ω ω ω

=

× + +

→k c c c c J

n J n

2 { ( )

(1 ( )) ( ) ( )}

M N MN
mnkl

m
M

n
N

k
M
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mnkl MN

MN mnkl NM NM

2 ( ) ( ) ( ) ( )

(24)

The frequency ω̃M in eq 20 is the transition frequency
between the ground state |0⟩ and the exciton state |M⟩ that
contains a renormalization due to the diagonal and off-diagonal
parts of the exciton−vibrational coupling11,30

∫

∑ ∑ω ω

ω
ω ω ω ω ω

ω ω

̃ = − ℏ +

×
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M
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K
k

M
l
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2

(25)

where Eλ
(M) is the reorganization energy of theMth exciton state

defined as

∫∑ ω ω= ℏλ

∞
E c c c c J ( )M

mnkl
m

M
n

M
k

M
l

M
mnkl

( ) ( ) ( ) ( ) ( )

0 (26)

and denotes the principal part of the integral. Note that
Jmnkl(ω) = 0 for ω < 0.

Excitation by an Ultrashort Optical Pulse. We consider
excitation by a delta-shaped pulse E(t) = Aeδ⃗(t) with amplitude
A and polarization vector e.⃗ Using second-order perturbation
theory for the coupling of the pulse with the system, and
neglecting any nuclear dynamics during the action of the pulse,
it is seen that the δ-pulse prepares the system in a state

ρ μ μ

μ μ α

=
ℏ

⟨ ⃗· ⃗ ⃗· ⃗ ⟩

=
ℏ

A
e e

A

(0)
2

( )( )

2
3

cos

MN M N

M N MN

2

2 orient

2

2 (27)

where we have included an average over the orientation of the
complex with respect to the external field, and αMN is the angle
between transition dipole moments μ⃗M and μ⃗N.
Within the secular approximation, the equations of motion

for the off-diagonal elements of the density matrix are obtained
as11

ρ ω ρ∂
∂

= − +
t

t i F t t( ) ( ( )) ( )MN MN MN MN (28)

with the time-dependent function FMN(t)

∫

∫

∑ τ τ τ

τ τ

= + *

−
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( ) d (e ( ) e ( ))

2 d ( )
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L

t
i

MLLM
i

NLLN

t

MMNN

0

0

ML LN

(29)

The correlation function CMNKL(t) is related to the spectral
density Jmnkl(ω) in eq 10 by

∫∑ ωω

ω ω ω ω

=

× + +ω ω

∞
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0

2

(30)
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A Markov approximation is applied to the off-diagonal parts (L
≠ M and L ≠ N) in eq 29 by setting the integration limit t = ∞
for those terms. Hence, FMN(t) becomes

∫

∑ ∑ω ω

τ τ τ

τ

= ̃ + ̃*

+ + *

−

≠ ≠

F t C C

C C
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L M

MLLM ML
L

L N

NLLN NL

t

MMMM NNNN

MMNN

0

(31)

where denotes the real part, and the half-sided Fourier
transform C̃KLLK(ωKL) of CKLLK(t) was introduced as

∫ω̃ = ω
∞

−C t C t( ) d e ( )KLLK KL
i t

KLLK
0

KL

(32)

The real part C̃KLLK
(Re) (ωKL), up to a factor of 1/2, equals the

Redfield rate constant kK→L for exciton relaxation introduced in
eq 24

ω̃ = →C k( )
1
2KLLK KL K L

(Re)

(33)

and the imaginary part C̃KLLK
(Im) (ωKL) is obtained from the real

part by a principal part integral30

∫ω
π

ω
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ω ω
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̃
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(34)

By introducing the above equations into eq 29, the resulting
expression into eq 28, and performing the time integrations, we
obtain

ρ ρ= ω τ τ− ̃ − + −t( ) (0)e e eMN MN
i t t B B t(1/ 1/ ) (0) ( )MN M N MN MN (35)

with

= + −B t G t G t G t( ) ( ) ( ) 2 ( )MN MM NN MN (36)

where the function GMN(t) was introduced in eq 21, and ω̃MN =
ω̃M − ω̃N, with the latter being defined in eq 25.
In secular approximation, the dynamics of diagonal elements

of the density matrix is decoupled from that of the off-diagonal
elements reading simply

∑ρ ρ ρ∂
∂

= − +
≠

→ →t
t k t k t( ) ( ( ) ( ))MM

N

N M

M N MM N M NN
(37)

with the rate constants defined in eq 24.

■ RESULTS
Spectral Density. In Figure 2, the diagonal elements of the

spectral density, i.e., the Jmmmm(ω) describing the fluctuation of
site energies of the seven BChla (m = 1, ..., 7) in the
monomeric subunit of the FMO protein, as obtained from the
NMA are compared to the spectral density J(ω) as extracted
earlier11 from FLN spectra of the B777 complex. The latter
J(ω) is similar in shape to the vibrational sideband measured in
FLN spectroscopy on the FMO protein12 (see below and the
discussion in ref 8) and has been successfully applied to a large
number of PPCs.3 Its amplitude is determined from a fit of the
temperature dependence of linear absorbance spectra (see
below), giving a Huang−Rhys factor S = ∫ 0

∞ dωJ(ω) = 0.42.
Similar Huang−Rhys factors

∑=
ξ

ξS g m m( ( , ))m
2

(38)

are obtained for the seven pigments from the NMA with
variations between S5 = 0.19 and S2 = 0.54 and an average value
of 0.39. The Jmmmm(ω) are similar in shape for the different
pigments, but there are systematic deviations from the
experimental J(ω). At small frequencies, the NMA spectral
densities are larger, whereas at larger frequencies they are
somewhat below the experimental values. In Figure 3, the
average NMA spectral density of site energy fluctuations

∑ω ω̅ =
=

J J( )
1
7

( )
m

mmmmdiag
1

7

(39)

is compared with the experimental J(ω) of the B777 complex11

and that of the FMO protein, estimated from the vibrational
sideband measured in FLN.12 For better comparison, the
experimental data are rescaled to the same Huang−Rhys factor
(area) as the J(̅ω) obtained from the NMA. As noted above,
the NMA overestimates the low-frequency contributions to the
spectral density. On the basis of the comparison in Figure 3, we

Figure 2. Spectral densities Jmmmm(ω) describing the fluctuation of site
energies of the pigments m = 1···7. The Jmmmm(ω) are represented as
histograms, where the ω-axis has been discretized in steps of 5 cm−1.
For comparison, we show J(ω), the shape of which was obtained from
a fit of fluorescence line narrowing spectra of a one-pigment system,
the B777 complex (solid black line),11 and the integral coupling
strength, i.e., the Huang−Rhys factor S = 0.42, was obtained from a fit
of the temperature dependence of the linear absorbance spectrum of
the FMO protein (Figure 6). The individual Huang−Rhys factors Sm
(eq 38) of the pigments, obtained from the NMA, are shown as well.
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will define further below a factor f(ω) that shall correct for the
missing anharmonic terms of the force field in the NMA in an
effective way. Later, results will be compared obtained with the
original and the corrected spectral densities.
The correlation in site energy fluctuations between BChla at

sites m and n is described by the Jmmnn(ω) shown in Figure 4 for
those pigment pairs with the largest correlations. To quantify
correlations, we introduce a generalized Huang−Rhys factor

∑= | |
ξ

ξ ξS g m n g k l( , ) ( , )mnkl
(40)

Here, we use the absolute magnitude of the coupling constants
to avoid a compensation of positive and negative contributions
resulting from correlated and anticorrelated fluctuations,
respectively. Note that, for m = n = k = l, the generalized
Huang−Rhys factor reduces to the ordinary Huang−Rhys
factor Sm = ∑ξ (gξ(m, m))

2. Interestingly, the Smmnn for the
correlation in site energy fluctuations (Figure 4) are in the same
order of magnitude as the Sm of the site energy fluctuations
(Figure 2), but the amplitudes are somewhat weaker at larger
frequencies.
The fluctuations of excitonic couplings are characterized by

the Jmnmn(ω) shown in Figure 5 for those pigment pairs with

the largest exciton−vibrational coupling strength. The latter has
been evaluated according to the generalized Huang−Rhys
factor

∑= =
ξ

ξS S g m n( ( , ))mn mnmn
2

(41)

The largest Huang−Rhys factor S34 = 0.031 is still about 1
order of magnitude smaller than those of the site energy
fluctuations in Figure 2 and their correlations in Figure 4. The
spectral densities of the correlations that involve fluctuations of
excitonic couplings (site-coupling Jmmkl (k ≠ l) and coupling-
coupling Jmnkl (m ≠ n, k ≠ l)) are in the same order of
magnitude as the spectral density of the coupling fluctuations

Figure 3. Comparison of the average spectral density Jd̅iag(ω) (eq 39)
of site energy fluctuations of the seven pigments, shown separately in
Figure 2, with the experimental spectral density of the B777 complex11

and the FMO protein.12 The latter two have been rescaled to the
Huang−Rhys factor S ̅ = 0.39 of Jd̅iag(ω) (eq 39), resulting from the
NMA, for better comparison.

Figure 4. Spectral densities Jmmnn(ω) describing the correlations in site
energy fluctuations of pigments m and n. The pigment pairs with the
largest correlation strengths, characterized by the generalized Huang−
Rhys factors Smmnn (eq 40), are shown.

Figure 5. Spectral densities Jmnmn(ω) characterizing the fluctuations of
excitonic couplings between pigments m and n are shown for those
pigment pairs with the largest fluctuations, characterized by the
Huang−Rhys factors Smn (eq 41).
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Jmnmn (m ≠ n), as shown in the Supporting Information. The
Jmmkl (k ≠ l) is largest if m equals k or l (Supporting
Information, Figure S1), and Jmnkl (m ≠ n, k ≠ l)) is largest for
those combinations of pigment pairs, which share one pigment
(Supporting Information, Figure S2). From the Jmnml (m ≠ n, m
≠ l), one can get a rough picture of the characteristics of the
low-frequency normal modes. For example, the fluctuations of
excitonic couplings H12

(0) and H16
(0) are anticorrelated throughout

the spectrum of normal modes, indicating an overall oscillating
motion of pigment 1 between pigments 2 and 6.
Linear Absorbance. The spectral density Jmnkl(ω)

determined above from a NMA is used to calculate linear
absorbance spectra of the FMO protein as a function of
temperature. The site energies Hmm

(0) obtained recently by using
the CDC method and a refinement fit (ref 10, Table 1, column
2 (apo)) are used as well as the excitonic couplings (Supporting
Information of ref 10, Table 5, please note the misprint
concerning the coupling H12

(0) = −94 cm−1, where the minus
sign was missing in the Supporting Information) obtained from
a point-dipole approximation with an effective dipole strength
of 29.8 D2 for BChla. The point-dipole approximation has been
verified by comparison with the TrEsp method, and the
effective dipole strength was determined by comparison with
Poisson-TrEsp values.8,56 The direction of the transition dipole
of BChla is taken along the NB−ND axis (e.g., ref 73). We use
the inhomogeneous broadenings of the BChla pigments from
our earlier publications.9,10 The width of the inhomogeneous
distribution function is 60 cm−1 for pigments 1, 3, and 4, 100
cm−1 for pigment 2, and 120 cm−1 for pigments 5−7. This
choice has been motivated by the presence of mobile water
molecules in the neighborhood of the pigments with a larger
inhomogeneous broadening.
The nonbonded interactions of molecular mechanics force

fields describe the soft degrees of freedom of the protein, which
are responsible for the conformational flexibility of the
macromolecule. Therefore, it can be expected that the
harmonic approximation of a NMA is particularly critical for
the latter degrees of freedom. We will assume in the following
that anharmonic effects can be taken into account by a
frequency-dependent factor f(ω) resulting in the corrected
spectral density Jmnkl

c (ω) that is obtained from the NMA
spectral density Jmnkl(ω) as

ω ω ω=J f J( ) ( ) ( )mnkl mnkl
c

(42)

The correction factor f(ω), which in a simple picture takes into
account a change in the (effective) density of vibrational states,
is obtained by comparing the average diagonal part of the NMA
spectral density Jd̅iag(ω) defined in eq 39 with the experimental
spectral density Jexp(ω) (Figure 3) as

ω ω ω= ̅f J J( ) ( )/ ( )exp diag (43)

Jexp(ω) is obtained, up to a constant factor, from the vibrational
sideband of the FLN spectra of the FMO protein (the red solid
line in Figure 3). The constant factor, that is the experimental
Huang−Rhys factor, is obtained from an analysis of the
temperature dependence of linear absorbance (Figure 6). The
rationale behind this definition of f(ω) is that the lowest
exciton state of the FMO protein has a dominant contribution
from one pigment, and therefore, the vibrational sideband
observed in fluorescence line narrowing spectra at low T is
mostly influenced by the diagonal part of the spectral density.
The average over all pigments in Jd̅iag(ω) (eq 39) is taken to

make the corrections factor less dependent on site-specific
details that might be not accurate enough.
With both spectral densities, original and corrected, the

change of the absorbance spectrum with temperature between
4 and 300 K can be qualitatively understood (Figure 6). At
higher temperatures, the increased dephasing introduced by
exciton relaxation and vibrational excitations leads to a
broadening of the absorbance peaks. Overall, the corrected
spectral density provides a slightly better description of the
temperature dependence. From this temperature dependence, a
Huang−Rhys factor of S = 0.42 was determined for the average
diagonal part of Jmnkl

c , that is (1/7)∫ 0
∞ dω∑m Jmmmm

c = 0.42, in
good agreement with earlier studies, which gave S = 0.4512 and
S = 0.5.8 We note that the NMA includes only the
intermolecular part of the spectral density, the Huang−Rhys
factor of which has been estimated to S = 0.3 from the FLN
spectra on the FMO protein of P. aestuarii.12 The same
intermolecular Huang−Rhys factor was measured for the FMO
protein of C. tepidum.82 The average Huang−Rhys factor S ̅ =
∑1

7Sm/7 = 0.39 of the pigments obtained without any
correction directly from the NMA is in good agreement with
this value.

Population Transfer and Decay of Coherences. In the
next step, the two spectral densities are used to simulate exciton
relaxation at 77 K, where the initial population of exciton states
is assumed to be prepared by an ultrashort (δ-shaped) optical
pulse acting at t = 0. In this calculation and also in the
calculation of dephasing below, the homogeneous behavior is
studied; i.e., no inhomogeneous broadening is included. As
seen in Figure 7, the excitons equilibrate faster when the
corrected spectral density Jmnkl

c (ω) is used. The time scale
obtained for the latter is in agreement with experimental data,83

whereas the exciton dynamics obtained for the original spectral
density Jmnkl(ω) contains a slow component that is not
observed experimentally.
In addition, it was investigated which parts of the spectral

density Jmnkl
(c) (ω) are important for exciton relaxation by setting

certain other parts to zero. Whereas the solid lines in Figure 7
were obtained for the full spectral densities, the dashed lines
represent the case for which only the diagonal parts Jmmmm

(c) (ω)
were included. The dotted lines were obtained by including
only spectral densities Jmnmn

(c) (ω), which for m = n describe the

Figure 6. Linear absorbance spectrum at three different temperatures.
The experimental data12 (left) are compared to simulations obtained
with the directly calculated spectral density Jmnkl(ω) (middle) and with
the corrected spectral density Jmnkl

c (ω) (right).
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fluctuation of site energies and for m ≠ n that of excitonic
couplings. Note that in the latter two cases all correlations are
neglected. It is clearly seen that exciton relaxation is determined
by the diagonal part Jmmmm(ω) of the spectral density and that
neither the fluctuations in excitonic couplings nor the
correlations between the different types of the spectral density
play any significant role for the energy transfer.
Next, we study the decay of coherences created by the

ultrashort pulse. As before, we consider the original and the
corrected spectral densities. In Figure 8, the decay of the
density matrix element ρ12 describing the coherence between
the two lowest exciton states in the FMO protein is investigated
for four different temperatures between 77 and 277 K as in the
experimental study.68 With increasing temperature, the
coherence decays faster, as expected. The decay, in particular
at low T, is faster for the original spectral density than for the
corrected one. The latter, however, describes the experimental
data better (see Figure 3 in ref 68). There is a second set of red
dotted lines present in Figure 8 that were calculated without
taking into account correlations. However, the agreement with
the full calculations is so complete that the two sets of curves lie
practically on top of each other. We find that for both spectral
densities the influence of correlations is negligible.
In an attempt to find out which properties the spectral

density of correlation in site energy fluctuations Jmmnn
c (ω) (m ≠

n) should have to allow the protein to protect coherences
between different exciton states, we replaced Jmmnn

c (ω) by the
average of the diagonal parts of the spectral density of the two
pigments, scaled by a constant α

ω α ω ω= + ≠J J J m n( )
1
2

( ( ) ( )) ( )mmnn mmmm nnnn
protect c c

(44)

where the spectral densities on the r.h.s. were taken from the
NMA (corrected as described above). As shown in the upper
part of Figure 9, for negative α values, the coherences are even
further suppressed, whereas positive values of α prolong their
lifetimes. For α = 1, the coherences live longer than 10 ps, even

Figure 7. Population of exciton states after δ-pulse excitation at t = 0,
calculated with the original spectral density Jmnkl(ω) (left part) and the
corrected one Jmnkl

c (ω) (right part) at T = 77 K. The solid curves show
results obtained by taking into account the full spectral density
Jmnkl
(c) (ω). The dashed and dotted curves show simulations, where only
uncorrelated site energy fluctuations (Jmmmm

(c) (ω)) and uncorrelated site
energy and coupling fluctuations (Jmnmn

(c) (ω)), respectively, were
included. Please note that the sum probability of excited state
populations is a constant that depends on the amplitude of the external
field, which was chosen small enough to justify the second-order
perturbation theory used for the initial populations (eq 27).

Figure 8. Dephasing of coherences ρ12, created by a δ-pulse acting at t
= 0, between the two lowest exciton states in dependence on
temperature, obtained for the original (left part) and the corrected
(right part) spectral density, Jmnkl(ω) and Jmnkl

c (ω), respectively. The
real part of ρ12 is shown. The solid black lines show calculations
obtained using all parts of the spectral densities, and for the red-dotted
lines, all correlations were neglected by including only Jmnmn

(c) (ω) and
setting all other elements to zero. The solid and dotted lines lie
practically on top of each other.

Figure 9. Dephasing of coherences ρ12 (upper part) and population of
the lowest exciton state ρ11 (lower part) at T = 277 K, following
excitation by a δ-pulse acting at t = 0, for different forms of the site
energy correlation part of the spectral density Jmmnn

protect(ω), created
artificially from the site energy fluctuation parts Jmmmm

c (ω) and Jnnnn
c (ω)

of the NMA, as described in detail in the text (eq 44).
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at 277 K, whereas, for absolute magnitudes of α smaller than
0.3, there is almost no influence of the correlations in site
energy fluctuations. In the lower part of Figure 9, the
corresponding population ρ11 of the lowest exciton state is
shown for the different α-values. As seen there, large positive α-
values, which lead to long coherence times, strongly suppress
exciton relaxation.
Finally, we investigate how far away the actual spectral

density Jmmnn
c (ω) obtained from the NMA is from the case of

ideal protection of coherences as defined in eq 44 for α = 1. For
this purpose, we introduce the following dephasing coefficient:

ω
ω

ω ω
= −

+
d

J

J J
( ) 1

2 ( )

( ) ( )mn
mmnn

mmmm nnnn

c

c c
(45)

which is essentially 1 − α and does not depend on the
correction from Jmmnn(ω) to Jmmnn

c (ω) (i.e., the factor f(ω) in eq
42 cancels out). If there is no correlation in site energy
fluctuations, we have Jmmnn

c (ω) = 0 for m ≠ n and the resulting
dmn(ω) = 1 indicates a strong dephasing. For anticorrelated
fluctuation in site energies, it holds that Jmmnn(ω) < 0, and the
resulting dmn(ω) > 1 shows even stronger dephasing
(corresponding to negative α values). If, on the other hand,
it holds that 2Jmmnn

c (ω) = Jmmmm
c (ω) + Jnnnn

c (ω), we have dmn(ω)
= 0 corresponding to α = 1, that is, weak dephasing.
In Figure 10, the dephasing coefficients obtained from the

normal mode spectral density are shown. The coefficients
fluctuate around 1 at all frequencies, with α = 1 − dmn values
much smaller than 0.3 for almost all normal modes, indicating a
strong dephasing. In many cases, the correlations at some

frequency seem to be compensated by anticorrelations at
another frequency.

■ DISCUSSION

Structure-Based Modeling of Pigment−Protein Com-
plexes. The present study represents one further step toward
an entirely structure-based modeling of excitation energy
transfer and optical sepctra of PPCs. By combining the
previously developed CDC and TrEsp methods for the
computation of site energies and excitonic couplings,
respectively, with NMA, information about the spectral density
can be obtained. It is important to note that, by construction,
this approach allows only to calculate intermolecular exciton−
vibrational couplings, i.e., couplings of a transition on pigment
m with the vibrations of the protein and other pigments n ≠ m.
The coupling between a transition on pigment m with its own
vibrations cannot be obtained. While this appears to be a
drawback at first glance, it actually turned out to be an
advantage. This seemingly counterintuitive result has its roots
in one major problem of MD-based computations of the
spectral density. The latter approach involves the computation
of time correlation functions that in turn are based on transition
energies computed directly with QC on snapshots of the MD
trajectory. As a consequence, the correlation functions suffer
from systematic errors due to the inherent limitations of QC
calculations of excited states (depending on the electronic
structure methods employed) and suboptimal pigment geo-
metries, as mentioned in the Introduction. Apparently, these
errors result in a severe overestimation of the contributions
from intrapigment exciton−vibrational couplings to the spectral
density predominantly (but not exclusively) in the high-
frequency range, masking the actually more important
contributions from intermolecular couplings being predom-
inant at lower frequencies. By inevitably omitting the
intrapigment part, the CDC/TrEsp/NMA approach opens up
the view on the intermolecular couplings. Nonetheless, the
omission of intramolecular vibrational excitations remains a
problem that we discuss below. Another problem of the MD-
based methods is also related to the computation of time
correlation functions. In order to resolve the low-frequency part
of the spectral density along with eventual correlations of site
energy fluctuations, long simulation times are required. This
problem does not show up in the NMA-based approach, as the
spectral density is obtained directly. For the same reason,
artifacts due to the classical description of high-frequency
vibrational motions occurring in MD simulations are not an
issue in the NMA method.
The present analysis provides a qualitatively correct

description of the shape and the amplitude of the spectral
density, as the comparison of the diagonal parts with spectral
densities extracted from experimental data suggests (Figures 2
and 3). However, at very low frequencies, the normal mode
spectral density is systematically too large, and at higher
frequencies, it is lower than the experimental data. This
deviation can have several reasons. First of all, many vibrational
degrees of freedom of the PPC contributing to the low-
frequency region are soft and anharmonic, so that a NMA
might be an oversimplification for some of them. Further, the
force field parameters are not necessarily optimal for the
analysis of vibrations and so may contain uncertainties that lead
to a systematic deviation of the calculated spectral density from
the experimental data.

Figure 10. Dephasing coefficients dmn(ω), defined in the text (eq 45),
for those pigment pairs m and n with the largest correlations in site
energy fluctuations.
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In addition, the neglect of intramolecular vibrational
excitations certainly contributes to the underestimation of the
high-frequency part of the spectral density. However, most of
the pigment modes have very small Huang−Rhys factors51,84
and the high-frequency range is less important for excitation
energy transfer. Therefore, we do not consider this
approximation to be critical. We note that, in principle, these
contributions could be included by performing QC-based NMA
of the excited and ground states of BChla in vacuo, as shown by
Jing et al.51 and for a different system (a pheophorbid a
molecule dissolved in ethanol) by Megow et al.85 Jing et al.51

performed QC calculations on geometry-optimized BChla in
vacuo, and therefore, the Huang−Rhys factors obtained do not
suffer from the geometry-distortion problem. Megow et al.85

performed QC calculations on the geometry-optimized
chromophore in a homogeneous dielectric, representing the
solvent, revealing the Hessians of the ground and excited states.
These calculations were combined with MD simulations of the
chromophore in an explicitly described solvent. Using a suitable
mapping procedure, the deviations of the chromophore
geometry from the equilibrium structure were determined
along the MD trajectory, and, using the Hessians, the
fluctuation of the chromophore’s excitation energy calculated.
The good agreement of the resulting absorbance spectrum with
experimental data suggests that the geometry−distortion
problem cannot be severe. Therefore, the latter approach
might be a good compromise between a simple QC-based
NMA in vacuo and a very involved QM/MM approach of the
PPC, where the force constants are obtained directly from ab
initio quantum chemical calculations, to avoid the geometry-
mismatch problem.
In the present work, we decided to correct for the missing

anharmonicities, the uncertainties of force field parameters, and
the missing contributions from intramolecular modes by
introducing a scaling function f(ω) that is determined on the
basis of a comparison of the average diagonal part of the
spectral density with experimental data. It was demonstrated
before that, in the spirit of the central limit theorem and a
second-order cumulant expansion, even a strongly anharmonic
system might still be described by an effective spectral density
of harmonic oscillators.86,87 Our scaling function f(ω) may be
seen as one way to create such an effective spectral density. As
the calculations of linear absorbance (Figure 6), exciton
relaxation (Figure 7), and dephasing of coherences (Figure 8)
show, in all three cases, the corrected spectral density provided
an improved description of the experiment. Note that the
correction of the spectral density according to eq 42 does not
affect the relative amplitudes of the different parts of the
spectral density.
At present, we believe that the most serious approximation of

our NMA is the harmonic treatment of the nonbonded
interactions in the molecular mechanics force field. We are
currently performing CDC/TrEsp/MD calculations to inves-
tigate this point in detail.
Concerning the decay of quantum beats measured in 2D

spectroscopy68 and our simple calculation of the decay of the
exciton coherence ρ12 between the two lowest exciton states,
which reproduces the observed temperature dependence of the
experimental decay, we have to add a word of caution. Recent
results obtained by Christensson et al.88 and Caycedo-Soler et
al.89 suggest that the static disorder present in this system, if it
is uncorrelated, can lead to significant additional decay of the
quantum beating observed in the 2D spectra. This result

implies that the evolution of off-diagonal density matrix
elements cannot be directly compared with the oscillations in
the 2D spectra. On the other hand, Kreisbeck and Kramer21

reported a large similarity between these two quantities (as seen
from a comparison of Figures 3 and 4 of their paper).
It will be interesting to use the present model for a direct

calculation of the 2D signal, including also inhomogeneous
broadening.21,89,88 An open question in that respect is whether
there are correlations in the static disorder of the site energies
of different pigments. The correlation functions in Figure 4
have a large amplitude at small frequencies. The lowest
frequency (2.7 cm−1) corresponds to an oscillation period of 2
ps, which is already in the range of the time scale of exciton
equilibration. A NMA on the whole FMO trimer would allow
us to reach even lower frequencies (longer time scales). In this
way, it will be possible to check also the assumption of
uncorrelated static disorder in site energies, commonly used in
the theory of optical spectra and excitation energy transfer, with
a NMA. Considering the fact that the present NMA of the
FMO monomer reveals the largest correlations in site energy
fluctuations for low frequencies, it seems likely that the
correlations in static disorder are significant. If so, these
correlations have to be included in the calculation of the 2D
signal and can be expected to lead to long dephasing times.88,89

We note that Christensson et al.88 found that, in the absence of
static site energy correlations, intramolecular vibronic tran-
sitions of the pigments are able to provide the means for
correlated energy level fluctuations and thereby long-lived
coherences.
To check this idea, Engel and co-workers90 recently

performed 2D experiments on BChla in two different solvents
but did not find the characteristic beating pattern that they
observed before in the FMO protein. This result seems to
suggest that the beating indeed involves coherent motion of
excitonic wavepackets, rather than vibrational wavepackets. On
the other hand, the coupling between intra- and intermolecular
vibrational modes could be much stronger in the solvent than
in the FMO protein. Butkus et al.91 recently reported model
calculations suggesting that vibrational quantum beats in 2D
spectra can be suppressed by a strong coupling to environ-
mental modes.
Finally, we note that Kreisbeck and Kramer21 found that a

small slope of the spectral density at small frequencies is
required for long-lived coherences to occur. The faster
dephasing of coherences in the left part of Figure 8 obtained
for the original spectral density, that has a larger amplitude in
the low-frequency region than the corrected one, is in
agreement with this result. Exciton relaxation is faster for the
corrected spectral density than for the original (Figure 7). This
result demonstrates that it is not the exciton-relaxation induced
dephasing, described by the factor e−t(1/τM+1/τN) in eq 35, but
rather the pure dephasing term e−BMN(t) in this equation that
dominates the overall dephasing of coherences. The latter
corresponds to vibrational excitations in excitonic potential
energy surfaces, which is stronger if the spectral density has
large low-frequency components, because the latter can be
most easily excited thermally.

Role of Correlations. A main goal of the present work was
to quantify the correlations among the different contributions
to the spectral density and to investigate their role in energy
transfer. Despite the rather strong amplitude of the correlation
in site energy fluctuations present in the spectral density
(Figure 4), their function in energy transfer and dephasing of
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coherences is practically zero (Figures 7 and 8, respectively).
There exists an optimal form of the correlation part of the site
energy fluctuations that would allow the protein to protect
excitonic coherences even at 277 K (upper part of Figure 9).
However, the analysis of dephasing coefficients, introduced in
eq 45, of the coherences in the FMO protein clearly shows that
the protein has realized a correlation regime that is far from
such a protection scenario. Two questions arise: (i) Is there an
advantage for the light-harvesting function of the protein, if
coherences between exciton states dephase fast? (ii) What is
the microscopic origin of the fast dephasing? The answer to the
first question is yes. A protection state of coherences would
considerably slow down exciton relaxation and thereby energy
transfer (lower part of Figure 9), as found earlier also by using
phenomenological models for the spectral density.35,36 On the
other hand, we know that exciton delocalization may persist
over long times and is used, e.g., in the photosystem of purple
bacteria to create an excitation energy funnel. Therefore, we
have to conclude that even an uncorrelated fluctuation of site
energies appears to be too weak to destroy a delocalization of
excitons over a certain number of pigments. Upon optical
excitation, these delocalized states are created and excitation
energy relaxes within the domains of delocalized states and is
transferred also between different such domains. A fast
relaxation in the domains helps to direct the excitation energy
to the domain with the lowest energy. The same mechanism
that would protect exciton coherences created by an ultrashort
pulse would inhibit exciton relaxation in the domains of
strongly coupled pigments. Therefore, it is not surprising that
the protein does not protect these coherences. It rather protects
interpigment coherences (i.e., between localized excited states),
as will be discussed further below.
Concerning the second question about the microscopic

origin of the fast dephasing, we believe that the answer is
connected to the inhomogeneous charge distribution of the
protein and the long-range Coulomb interaction. To make this
point clear, let us consider a single normal mode ξ. Our ideal
protection scenario would require gξ(m,m)gξ(n,n) = (gξ(m,m)
gξ(m,m)+gξ(n,n)gξ(n,n))/2 or (gξ(m,m) − gξ(n,n))

2 = 0, which
is fulfilled, if gξ(m,m) = gξ(n,n). Hence, in order to maximally
protect coherences, the protein has to create a situation, in
which the pigments m and n are coupled to every normal mode
in exactly the same way. A strong dephasing, therefore, can be
accomplished in two ways: (i) by localizing the normal modes
such that every pigment feels its own independent heat bath
and (ii) for delocalized normal modes ξ by strongly varying the
local coupling constants from site to site and excitonic coupling
to excitonic coupling. Since low-frequency modes in general
involve the motion of larger parts of the protein, one might
expect to find smaller dephasing coefficients for small
frequencies ω. If at all, this expectation is only fulfilled for d12
and d34 (Figure 10) and only for very low frequencies. The
strikingly small variation of dephasing coefficients with
frequency suggests that (ii) is the dominating mechanism,
responsible for fast dephasing of coherences and fast energy
transfer. As a consequence of the inhomogeneous distribution
of charges and vibrating atoms, every pigment feels a different
Coulomb field and hence the local coupling constants will not
be identical. It is interesting that the inhomogeneous charge
distribution is also responsible for the creation of an excitation
energy funnel in the FMO protein.9,10 Thus, the same physical
mechanism that directs excitation energy flow also causes fast
dephasing of coherences and thereby exciton relaxation.

As pointed out by Huo and Coker,44 a strong correlation in
excitonic coupling fluctuations could change the simple picture
of long-lasting coherences and fast energy transfer excluding
each other. We have, therefore, estimated the maximum
contribution of the part of the spectral density containing the
coupling fluctuations in the following way. Assuming that the
NMA cannot describe the polarizability of the protein, we
would have to use εeff = 3, determined from static-structure site
energy calculations,10 instead of εeff = 1.25, used so far in the
CDC part of the NMA. This change would increase the relative
strength of the coupling fluctuations by a factor of (3/1.25)2 =
5.8, bringing it closer to that of the site energy fluctuations but
leaving it still smaller by an average factor of about 5. In this
case, the exciton relaxation is influenced somewhat stronger by
the coupling fluctuations than in Figure 7, but the influence of
correlations is still negligible. This result shows that the present
system is far away from the scenario that Huo and Coker
identified for a more complicated relation between energy
transfer and dephasing. In other words, the dominating
influence of site energy fluctuations, found here, implies that
a fast decay of exciton coherences is needed for a fast energy
transfer.

Implications for the Theory of Optical Spectra and
Excitation Energy Transfer. The Spectral Density. In the
absence of any microscopic analysis of the spectral density, the
most reasonable and simple approximation, used in many
previous theories, was to neglect all parts of the spectral density
Jmnkl(ω) except for the diagonal part Jmmmm(ω) describing the
uncorrelated fluctuation of site energies. The present work
shows that the fluctuations of excitonic couplings and the
related correlations are small compared to the site energy
fluctuations and, therefore, can indeed be neglected. The
correlations in site energy fluctuations are of the same order of
magnitude as the site energy fluctuations. However, since their
influence on the exciton dynamics is negligible due to the
inhomogeneous charge distribution of the protein, as explained
in detail above, this part of the spectral density may also safely
be neglected. Although only shown for the FMO protein here,
the inhomogeneous charge distribution of other PPCs suggests
that they should not behave in a qualitatively different way.
Therefore, we conclude that the present work provides a quite
general microscopic justification for the above standard
assumptions.
Another assumption of theories was to assume the same

coupling strength for all pigments, i.e., to neglect the
dependence of Jmmmm(ω) on m. The present approach, in
contrast, shows considerable variations of the related Huang−
Rhys factors varying by up to 50% (Figure 2). Since in line-
narrowing spectroscopy only the low-energy exciton states can
be investigated, it is an important contribution of microscopic
theory to provide information about the exciton−vibrational
coupling of those pigments contributing to high-energy exciton
states. At the present level of agreement between directly
calculated spectral density and experimental data, it is too early
to draw definite conclusions about quantitative differences of
local exciton−vibrational coupling strengths of particular
pigments. We leave this question for future studies that include
anharmonicities of the force field like the CDC/TrEsp/MD
method.

Is There a Small Parameter for Perturbation Theory? As
noted before, when modeling optical spectra and excitation
energy transfer in PPCs, one is confronted with the problem
that the exciton−vibrational (pigment−protein) as well as the
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excitonic (pigment−pigment) coupling are in the same order of
magnitude. As an example, for the present system, the average
reorganization energy of local fluctuations in site energies E̅λ =
∫ 0
∞ dωJ(̅ω) amounts to 46 cm−1 and the absolute magnitudes

of nearest neighbor excitonic couplings vary between 30 cm−1

(pigments 2 and 3) and 95 cm−1 (pigments 1 and 2). Such
scenarios can be treated by non-perturbative methods (see the
Introduction); however, these methods are rather involved. In
other, numerically less costly approaches, like polaron and non-
Markovian density matrix theory, one tries to find a
representation, in which a small parameter appears that can
be used for a perturbative treatment. In the time-local (POP)
non-Markovian density matrix theory, used in the present work,
this small parameter is the off-diagonal part of the exciton−
vibrational coupling in the representation of delocalized exciton
states, characterized by the coupling constants gξ(M,N) (M ≠
N) in eq 15.
Thus, by using a representation of delocalized excited states,

we transform a problem, where we had competing excitonic
couplings Vmn = Hmn

(0) and reorganization energies Eλ = ∑ξ

ℏωξgξ
2(m,m) of the local exciton−vibrational coupling, into a

problem with only exciton−vibrational coupling constants
gξ(M,N), which are still difficult to treat non-perturbatively.
However, as Figure 11 shows, the off-diagonal elements

gξ(M,N) (M ≠ N) are found to be smaller than the diagonal
elements gξ(M,M). We take this difference as a justification of
using a perturbation theory for the off-diagonal parts of the
exciton−vibrational coupling (including a Markov approxima-
tion), while using an exact summation of the diagonal parts as
provided by the time-local non-Markovian (POP) density
matrix theory. It now becomes clear why the alternative COP
theory (see the Introduction) gave less accurate results than
POP,11,33 since COP contains a partial summation of both the
diagonal as well as the off-diagonal parts of the exciton−
vibrational coupling. A comparison of the more accurate POP
with a numerically exact theory would be helpful to judge about
the conversion of the present perturbation theory of the off-
diagonal exciton−vibrational coupling. A close inspection of the
red wing of the absorbance spectrum calculated with the
corrected spectral density in the right part of Figure 6 reveals a
somewhat too strong broadening with increasing temperature
when compared with the experimental data shown in the left

part of this figure. This effect was first noted by Novoderezhkin
et al. and was termed Redfield artifact.92 The origin could lie in
the perturbation theory used for the off-diagonal parts of the
exciton−vibrational coupling.

How Can the Protein Protect Electronic Coherences? The
dominance of the diagonal parts of the exciton−vibrational
coupling in the basis of delocalized states found above (Figure
11) shows that exciton states stay delocalized over a certain
number of pigments, as determined by their differences in site
energies and static disorder. A dynamic localization of excitons
would be caused by the off-diagonal parts which are, however,
small. By keeping the pigments at the right distance, the protein
is able to allow for a certain delocalization of excited states and
thereby for prevailing interpigment coherences, that is, density
matrix elements ρmn that are off-diagonal in the basis of
localized excited states. Even when excitons are relaxed, where
we have approximately ρMN ∝ δMN exp{−ℏωM/kBT}, interpig-
ment coherences are present, since ρmn = ∑M cm

(M)cn
(N)ρMM.

Note that the dominance of the diagonal parts gξ(M, M) of the
exciton−vibrational coupling in the delocalized basis justifies
the assumption of a Boltzmann equilibrium in that basis. As we
have seen in the present calculations, the correlations in site
energy fluctuations have no influence on the relaxation
dynamics of excitons (described by ρMM) and the decay of
coherences (ρMN) between different delocalized states and,
therefore, also not on the interpigment coherences ρmn. An
interesting question is: How could the protein change the
delocalization of excited states? A dynamic localization is
observed, if two pigments come so close that they can
exchange, in addition to excitations, also electrons.93 In this
case, the mixing of exciton states with charge transfer states94,95

leads to very strong exciton−vibrational coupling that can
localize the excited states and also allows for nonradiative
transitions to the ground state. Hence, we may conclude that
the protein protects interpigment coherences by locating
pigments at close enough distances such that the excitonic
coupling is comparable with the difference in site energies and
the amount of static disorder and, on the other hand, at large
enough distances to prevent dynamic localization effects.

■ SUMMARY AND CONCLUSIONS
A method for the microscopic calculation of the spectral density
of the pigment−protein coupling in light-harvesting systems
was established that combines NMA with the CDC and TrEsp
methods. The quality of the calculations was checked by
comparison with spectral densities extracted from line
narrowing spectroscopy, revealing good qualitative agreement
concerning shape and amplitude. The correlations in site
energy fluctuations obtained from the NMA are of similar
magnitude as the site energy fluctuations, whereas the
fluctuations of excitonic couplings and the related correlations
are 1 order of magnitude smaller. Therefore, a microscopic
justification was obtained for the standard assumption of
neglecting this part of the spectral density. Concerning the
correlations in site energy fluctuations, it was found that their
influence on the relaxation dynamics of excitons and the
dephasing of coherences between exciton states is practically
zero. A detailed analysis of the dephasing process and of
possibilities of its inhibition was performed. It reveals that the
same mechanism that creates an excitation energy sink in this
system, namely, the inhomogeneous charge distribution of the
protein, is responsible for the fast dephasing of coherences and
its insensitivity to correlations in site energy fluctuations. In this

Figure 11. Coupling constants gξ(M,N) of exciton−vibrational
coupling of delocalized exciton states, obtained from eq 15, using
the microscopic coupling constants gξ(m,n) from the NMA as a
function of normal mode index ξ for the first 4000 normal modes. The
black solid line shows the corresponding normal-mode frequencies ω
= ωξ.
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way, a directed energy transfer and a fast dissipation of the
excitons’ excess energy become possible. The large amplitude
correlations in site energy fluctuations found at low frequencies
could be important for the interpretation of 2D spectra.
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